

# IDENTIFICATION OF OUTLIERS IN LOGISTIC REGRESSION BASED ON ROBUST DEVIANCE COMPONENT

K. SENTHAMARAI KANNAN AND G. SAMPATH\*

ABSTRACT. Logistic regression (LR) is widely used in the medical field and behavioral sciences to develop the model for the dependence of the binomial response variable on a set of predictor variables. Diagnostic is one of most indispensable thing that needs to be taken into account for analyzing data. Leverage outlier can easily biased the parameter estimates and imprecise the other observation in LR model. This study examined the daily variation in hospital for cardiovascular disease. Robust Deviance Component (robDEVC) method is based on deviance component. The aim of this paper is to analyze, whether the high leverage points can either be good or bad and the outliers are identified with numerical illustrations.

# 1. Introduction

Multivariate methods are most common statistical analyses appearing in the medical literature. It is relationship between two or more predictor (independent, exposure) variables and one outcome (dependent, response) variable. Formally, the model states for the predicted value of the outcome variable as a sum of products, each product formed by multiplying the value of the variable and its coefficient. This coefficients are calculated from the data taken. A regression model assists two purposes: First one is to predict the outcome variable for new values of the predictor variables and second one is to help for answer the queries about the area in study. The coefficient of each predictor variable clearly describes the relative role of that variable to the outcome variable, it automatically controls the influences of the other predictor variables.

LR is a multivariate method that was developed for dichotomous outcomes (Vollmer RT, 1996; Hosmer DW *et. al.*, 1989). The particularly appropriate for the models which are involving syndrome state (diseased/healthy) and decision making (yes/no) and therefore it is broadly used in the health science studies. LR technique is used to find the logarithm of the odds of a positive outcome (here "positive" means the encoding of the outcome variable, (i.e., Y = 1)); a straightforward algebraic manipulation transforms this into the outcome's probability.

In multivariate methods, the calculation of the coefficients from the original data is more complex than can be conveniently performed by hand. The coefficients calculation for logistic models involves equations that are not able to solve

<sup>2000</sup> Mathematics Subject Classification. Primary 62G35; Secondary 62G08.

 $K\!ey$  words and phrases. logistic regression, leverage, Robust Deviance Component, outlier, Cardiovascular disease .

### K. SENTHAMARAI KANNAN AND G. SAMPATH\*

explicitly but can solved by an iterative procedure, easily expressed in computational form. The quality of the regression analysis depends heavily on researchers understanding. The following principles are developed to ensure their sound application (Feinstein AR, 1996; Concato J, 1994). Generally, Diagnostics methods are used in all branches of regression analysis. In modern years diagnostic has become an obligatory part of LR (Hosmer and Lemeshow, 2000). A diagnostic method on the identification of residual outliers in LR based on deviance components (Syaiba B.A, 2010; Sanizah A, 2011; Norazan M.R, 2012).

#### 2. Materials and Methods

In this study, the secondary data was used. The data was taken from the Worcester Heart Attack Study data from Dr. Robert J. Goldberg of the Department of Cardiology at the University of Massachusetts Medical School.

**2.1. Logistic Regression.** Logistic model describe the expected value of y that is E(y) in terms of the following "logistic" formula:

$$E(y) = \frac{1}{1 + exp\left[-\left(\beta_0 + \sum_{j=1}^k \beta_j x_j\right)\right]}$$

For (0,1) random variable say 'y' it follows from basic statistical principles about expected values. So that E(y) is equal to the probability pr(y=1); so, the formula for the logistic model can be written in the form which describes the probability of occurrence of one of the two possible outcomes of y, as follows:

$$pr\left(y=1\right) = \frac{1}{1 + exp\left[-\left(\beta_0 + \sum_{j=1}^k \beta_j x_j\right)\right]}$$

The logistic model is useful in many important practical situation where the response variable can yield one of two possible values. For example, a study of the development of a specific disease in some human population could employ a logistic model to describe in probabilistic terms, whether a specified individual in the study group will (y = 1) or will not (y = 0) develop the disease in question during a follow up period of concern.

The first step in LR analysis is to propose (based on knowledge about and experience, with the process under study) a mathematical model describing the average of y as a function of the  $x_j$  and  $\beta_j$  values. Using maximum likelihood, the model is then fitted to the data, are eventually appropriate statistical inferences are made (after the model's adequacy of fit is verified, including consideration of relevant regression diagnostic indices).

2.2. Residuals. In LR, we can get a feel for exactly in what way the model agrees with the data by comparing the observed and predicted logits or probabilities for all possible covariate patterns. In multiple LR, the residuals provided useful information about possible problem with the model. We can also use the residuals in LR to examine the fit of the logistic model. Two common forms of residuals used in LR are Standardized Pearson Residuals (SPR), Deviance Residual and

Pearson Residuals (PR). These residuals are useful for identifying outlying and influential points (Pregibon 1981). The PR is defined as

$$r_i = \frac{y_i - n_i \widehat{\pi_i}}{\sqrt{n_i \widehat{\pi_i}} \left(1 - \widehat{\pi_i}\right)}$$

where  $n_i$  is the number of observations with the  $i^{th}$  covariate pattern,  $y_i$  is the number of observations with the outcome of interest among  $n_i$  observations,  $\hat{\pi}_i$  is the predicted probability of the outcome of interest for the  $i^{th}$  covariate pattern. The form of the PR is familiar – dividing the difference in the observed count. Note that we can also express the numerator of  $r_i$  as  $y_i - \hat{y}_i$ , where  $\hat{y}_i$  is equal to  $n_i \hat{\pi}_i$ .

Some recommend, a slightly different form of the PR. For example, according to collet (2003), a better procedure is to divide the raw residual,  $y_i - \hat{y}_i$ , by its standard error (se),  $se(y_i - \hat{y}_i)$ . This standard error is complicated to derive, but it is used in many of the LR programs. Residuals based on the  $se(y_i - \hat{y}_i)$  are known as the (SPD). The DR is defined as

$$d_i = sgn\left(y_i - n_j\widehat{\pi_j}\right) \left[2y_i \ln\left(\frac{y_i}{n_i\widehat{\pi_i}}\right) + 2\left(n_i - y_i\right) ln\left(\frac{n_i - y_i}{n_i\left(1 - \widehat{\pi_i}\right)}\right)\right]^{1/2}$$

where sgn is plus if the quantity in the parenthesis is positive and negative if the quantity is negative. It is known that the MLE is not resistant to outlying observation. Since the estimated probability relies on the initial  $\hat{y}_i$  a good initial parameter is needed by using the robust method. Thus, diagnostic method based on the robDEVC was used. Even though this is a robust estimate, it down weights high leverage points (both good and bad leverage points) and not just bad leverage points. This causes the problem of swamping by identifying to many suspected outlying observation. We accommodate this problem by using a robust initial estimate,  $\hat{y}_i^{rob}$ . Calculate the estimated probability

$$\hat{\pi}_i^{rob} = \frac{\exp(x_i^T \hat{y}_i^{rob})}{1 + \exp(x_i^T \hat{y}_i^{rob})}$$

Calculate the robDEVC

$$rdc_i = \begin{cases} 2\log\left(\frac{1}{1-\hat{\pi}_i^{rob}}\right) & \text{if } y_i = 0\\ 2\log\left(\frac{1}{\hat{\pi}_i^{rob}}\right) & \text{if } y_i = 1 \end{cases}$$

Bad leverage points occurs when the following condition are satisfied:

 $\begin{array}{ll} (1) \ \mbox{If} \ y_i = 1, \ \hat{\pi}_i^{rob} \rightarrow 0 \\ (2) \ \mbox{If} \ y_i = 1, \ \hat{\pi}_i^{rob} \rightarrow 1 \end{array}$ 

# 3. Results and Discussion

In this study, the outliers are identified using SPR, DR, PR and robDEVC methods from the Table 1. It can be noted that SPR method shows two high leverage points, DR method shows one high leverage point, PR method shows two high leverage points and robDEVC method shows that two high leverage points.

# K. SENTHAMARAI KANNAN AND G. SAMPATH\*

| Obs. | SPR     | DR      | PR      | robDEVC | Obs. | SPR     | DR      | PR      | robDEVC |
|------|---------|---------|---------|---------|------|---------|---------|---------|---------|
| 1    | -0.7006 | -0.7082 | -0.7049 | 0.4014  | 51   | -1.1503 | -1.1720 | -1.1239 | -1.1257 |
| 2    | -0.7006 | -0.7082 | -0.7049 | 0.3384  | 52   | -0.7181 | -0.7325 | -0.7202 | 0.2913  |
| 3    | 1.3667  | 1.3939  | 1.3885  | 0.5793  | 53   | 0.9344  | 0.9521  | 0.8898  | 0.4014  |
| 4    | -1.1503 | -1.1720 | -1.1239 | -0.4874 | 54   | -1.1503 | -1.1720 | -1.1239 | -1.293  |
| 5    | -0.7006 | -0.7082 | -0.7049 | 0.4267  | 55   | 1.1047  | 1.2225  | 1.0362  | 0.6829  |
| 6    | 0.1458  | 0.1643  | -0.0002 | -0.297  | 56   | 0.9344  | 0.9521  | 0.8898  | 0.9281  |
| 7    | -0.7006 | -0.7082 | -0.7049 | -0.7343 | 57   | 1.3842  | 1.3992  | 1.4186  | 1.1269  |
| 8    | -0.7006 | -0.7082 | -0.7049 | -1.0704 | 58   | -0.7006 | -0.7082 | -0.7049 | 1.942   |
| 9    | 5.9344  | 0.9521  | 3.8898  | 0.8792  | 59   | 1.3842  | 1.3992  | 1.4186  | 0.8619  |
| 10   | -0.7006 | -0.7082 | -0.7049 | 0.7038  | 60   | -0.7006 | -0.7082 | -0.7049 | 1.2093  |
| 11   | -0.7181 | -0.7325 | -0.7202 | 1.1254  | 61   | -0.5479 | -0.6149 | -0.6184 | -0.6566 |
| 12   | -1.1503 | -1.1720 | -1.1239 | 1.1825  | 62   | 0.9344  | 0.9521  | 0.8898  | 0.7775  |
| 13   | -0.7006 | -0.7082 | -0.7049 | 2.5194  | 63   | 1.3842  | 1.3992  | 1.4186  | 0.7222  |
| 14   | 0.9344  | 0.9521  | 0.8898  | 0.2827  | 64   | 0.9344  | 0.9521  | 0.8898  | -0.6735 |
| 15   | -0.7181 | -0.7325 | -0.7202 | -0.636  | 65   | -1.1503 | -1.1720 | -1.1239 | -1.0023 |
| 16   | -0.7181 | -0.7325 | -0.7202 | 0.5328  | 66   | 1.1047  | 1.2225  | 1.0362  | 0.748   |
| 17   | 0.9344  | 0.9521  | 0.8898  | -1.3412 | 67   | -0.7006 | -0.7082 | -0.7049 | 1.5824  |
| 18   | 0.9169  | 0.9548  | 0.8709  | 2.0716  | 68   | -0.7181 | -0.7325 | -0.7202 | 1.528   |
| 19   | -0.7181 | -0.7325 | -0.7202 | 2.7972  | 69   | -0.7006 | -0.7082 | -0.7049 | -1.0126 |
| 20   | -0.3039 | -0.3465 | -0.0003 | 0.3529  | 70   | -0.5479 | -0.6149 | -0.6184 | 1.1536  |
| 21   | 1.3842  | 1.3992  | 1.4186  | 5.0744  | 71   | 0.9344  | 0.9521  | 0.8898  | -0.9976 |
| 22   | -1.1503 | -1.1720 | -1.1239 | -0.6202 | 72   | -0.7006 | -0.7082 | -0.7049 | 1.1588  |
| 23   | 1.3842  | 1.3992  | 1.4186  | 9.9723  | 73   | -0.7181 | -0.7325 | -0.7202 | 1.8606  |
| 24   | -0.7181 | -0.7325 | -0.7202 | 0.132   | 74   | 1.3667  | 1.3939  | 1.3885  | -0.1184 |
| 25   | -0.7006 | -0.7082 | -0.7049 | 1.0686  | 75   | -0.7181 | -0.7325 | -0.7202 | 1.5531  |
| 26   | -0.7006 | -0.7082 | -0.7049 | -0.2378 | 76   | -1.1503 | -1.1720 | -1.1239 | 1.1674  |
| 27   | -1.1679 | -1.2161 | -1.1482 | 0.4258  | 77   | -0.7006 | -0.7082 | -0.7049 | 2.65    |
| 28   | 1.3842  | 1.3992  | 1.4186  | -0.3712 | 78   | 1.3667  | 1.3939  | 1.3885  | -1.9104 |
| 29   | -0.7181 | -0.7325 | -0.7202 | 0.2494  | 79   | 1.3667  | 1.3939  | 1.3885  | 1.8891  |
| 30   | 1.3667  | 1.3939  | 5.3885  | 0.7768  | 80   | 1.3842  | 1.3992  | 1.4186  | 1.3931  |
| 31   | -0.7006 | -0.7082 | -0.7049 | 0.4998  | 81   | 1.3842  | 1.3992  | 1.4186  | -0.7975 |
| 32   | 0.9169  | 0.9548  | 0.8709  | 1.2142  | 82   | 4.3667  | 1.3939  | 1.3885  | 0.4787  |
| 33   | 0.9344  | 0.9521  | 0.8898  | -1.9098 | 83   | -0.7006 | -0.7082 | -0.7049 | 0.4721  |
| 34   | 1.3842  | 1.3992  | 1.4186  | -0.7158 | 84   | -0.7006 | -0.7082 | -0.7049 | 0.7953  |
| 35   | 0.9344  | 0.9521  | 0.8898  | 0.3246  | 85   | 1.3842  | 1.3992  | 1.4186  | 0.6985  |
| 36   | -0.7006 | -0.7082 | -0.7049 | 0.7968  | 86   | 1.3842  | 1.3992  | 1.4186  | 0.6231  |
| 37   | 1.3667  | 1.3939  | 1.3885  | 2.7072  | 87   | -0.7006 | -0.7082 | -0.7049 | 0.8357  |
| 38   | 0.9344  | 0.9521  | 0.8898  | 1.6087  | 88   | -0.9801 | -1.0846 | -0.9651 | 0.7893  |
| 39   | -1.1503 | -1.1720 | -1.1239 | 1.846   | 89   | -0.7006 | -0.7082 | -0.7049 | 0.6782  |
| 40   | -0.7006 | -0.7082 | -0.7049 | 1.136   | 90   | 1.3842  | 1.3992  | 1.4186  | 0.8876  |
| 41   | -1.1503 | -1.1720 | -1.1239 | -1.3963 | 91   | -0.7006 | -0.7082 | -0.7049 | 1.304   |
| 42   | 1.3667  | 4.3939  | 1.3885  | 0.8734  | 92   | -0.7006 | -0.7082 | -0.7049 | -0.6566 |
| 43   | 0.9344  | 0.9521  | 0.8898  | -1.5329 | 93   | -0.7181 | -0.7325 | -0.7202 | 0.7775  |
| 44   | -0.7006 | -0.7082 | -0.7049 | 1.086   | 94   | 0.1458  | 0.1643  | -0.0002 | 0.7222  |
| 45   | -0.7006 | -0.7082 | -0.7049 | 1.2364  | 95   | -0.7181 | -0.7325 | -0.7202 | 1.1674  |
| 46   | -0.7006 | -0.7082 | -0.7049 | 1.1289  | 96   | -0.7006 | -0.7082 | -0.7049 | 2.65    |
| 47   | -1.1503 | -1.1720 | -1.1239 | 2.5194  | 97   | -0.7181 | -0.7325 | -0.7202 | 1.9104  |
| 48   | 0.1458  | 0.1643  | -0.0002 | 1.3914  | 98   | -0.1336 | -0.1620 | -0.0003 | -0.4787 |
| 49   | 1.3842  | 1.3992  | 1.4186  | 1.8523  | 99   | -1.1679 | -1.2161 | -1.1482 | -0.4721 |
| 50   | -0.7006 | -0.7082 | -0.7049 | 1.2696  | 100  | 1.3842  | 1.3992  | 1.4186  | 1.2358  |

TABLE 1. Bad Leverage Diagnostics for Cardiovascular Disease data

The results of the iteration analysis using cardiovascular disease are shown in Table 2. Effect modification was found for cardiovascular disease as shown by the significant Wald test for iteration items. Odds ratio value is 0.0522, p-value

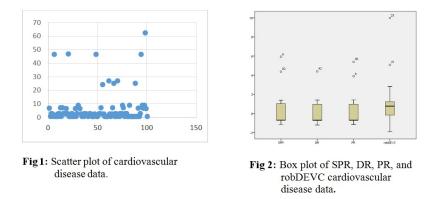
is 0.9110 and residual deviance value is 132.74 in cardiovascular disease data. Cardiogenic shock odds ratio is 0.0251, p-value is 0.9552 and residual deviance value is 143.04. Congestive heart complications odds ratio is 0.8536, p -value is 0.0607 and residual deviance value is 129.24.

| TABLE     | 2.   | Residual | deviance | for | cardiovascul | ar | disease | using | lo- |
|-----------|------|----------|----------|-----|--------------|----|---------|-------|-----|
| gistic re | egre | ession   |          |     |              |    |         |       |     |

| Variable | Estimate $(\beta)$ | $\Pr(> z )$ (P value) | Residual Deviance |
|----------|--------------------|-----------------------|-------------------|
| Cvd      | 0.0522             | 0.9110                | 132.74            |
| Sho      | 0.0251             | 0.9552                | 143.04            |
| Chf      | 0.8536             | 0.0607                | 129.24            |

Abbreviations: cvd - Cardiovascular Disease, sho - Cardiogenic Shock, chf - Congestive Heart Complications

The scatter plot of the cardiovascular disease shown Figure 1. All the identified bad leverage points are represented in bold and the good and bad leverage points are underlined in Table 1. The results in the table suggest that the diagnostic measure using the SPR, DR, PR and robDEVC fail to identify the case 23 as bad leverage. Only robDEVC correctly identify the one bad leverage points. The Box plots in Figure 2 confirm these results.



# 4. Conclusions

High leverage points contain both the good leverage points and bad leverage points. As already mentioned, the bad points are harmful to the fit while the good points improve it. There are many diagnostics available for identifying high leverage points but these methods cannot distinguish between the good and bad ones. There is still a lack of diagnostic methods on the identification of bad leverage points which can pose the real danger to the parameter estimation of the LR model.

#### K. SENTHAMARAI KANNAN AND G. SAMPATH\*

From the results, we can observed that the outliers are identified by the SPR, DR, PR and robDEVC. The performance of the four diagnostic measures are compared. Among the four methods robDEVC method identified the bad leverage point. The numerical examples shows that the robDEVC method performed better and successfully identifies all the bad leverage point when both the good leverage and bad leverage points are present in the data.

Acknowledgment. The first author express his gratitude to the UGC for providing financial support to carry out this work under scheme UGC SAP (DRS-I). The second author acknowledges the UGC for awarding the scheme of Basic Scientific Research (BSR) Fellowship for providing financial support to carry out this work.

# References

- Belsley, D.A., Kuh, E. and Welsch., R.E.: Regression Diagnostics: Identifying Influential Data and Sources of Colinearity, Wiley, New York, 1980.
- Collett, D.: Modelling Survival Data in Medical Research (second edition) ISBN 1584883251; 408 pages, CRC Press, 2003.
- Concato J, Feinstein AR, Holford TR.: The risk of determining risk with multivariable models, Ann Intern Med 118:20110, 1993.
- Dary Pregibon.: Logistic Regression Diagnostics the Annals of Statistics, Vol. 9, No.4, 705-724, 1981.
- Feinstein AR.: Multivariable Analysis: An Introduction., Yale University Press, New Haven CT 1996.
- Glantz SA, Slinker BK.: Primer of Applied Regression and Analysis of Variance McGraw-Hill, Inc., New York 1990.
- 7. Hosmer, D. W., Lemeshow, S. Applied Logistic Regression. 2nd ed. Wiley, New York, 2000.
- Norazan, M.R., Sanizah, A., and Habshah, M.: Identification Bad Leverage Points in Logistic Regression Model Based on Robust Deviance Components: Mathematical Models and Methods in Modern Science 2011.
- Sanizah Agmad, Habshah Midi and Norazan Maogamed Ramli.: (2011). Diagnostics for Residual Outliers Using Deviance Component in Binary Logistic Regression. World Applied Science Journal 14 8, 1125-1130.
- Syaiba, B.A., and Habshah, M.: Robust Logistic Diagnostic for the Identification of High Leverage Points in Logistic Regression Model. *Journal of Applied Science* 10 23, 3042-3050.

K. Senthamarai Kannan: Department of Statistics, Manonmaniam Sundaranar University, Tirunelveli-12

E-mail address: senkannan2002@gmail.com

G. SAMPATH\*: DEPARTMENT OF STATISTICS, MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI-12

E-mail address: sampathg490gmail.com