

ROLE OF INFLATION AND TRADE CREDIT IN STOCHASTIC INVENTORY MODEL

KHIMYA S TINANI AND DEEPA KANDPAL

ABSTRACT. At present, it is impossible to ignore the effects of inflation and it is necessary to consider the effects of inflation on the inventory system. Inflation plays an essential role for the optimal order policy and influences the demand of certain products. We develop stochastic inventory model for non deteriorating items under the effect of inflation and trade credit for two suppliers to determine an optimal ordering policy. In the classical inventory models, it was assumed that the buyer pays for the purchased items as they are received from the seller. In practice, however, the seller allows the buyer to settle the account with a delay period. Such a contract has attracted the attention of many researchers and practitioners in recent years. In case of two suppliers, spectral theory is used to derive explicit expression for the transition probabilities of a four state continuous time Markov chain representing the status of the systems. These probabilities are used to compute the exact form of the average cost expression. We use concepts from renewal reward processes to develop average cost objective function. Optimal solution is obtained using Newton Rapson method in R programming. Numerical examples are also given to demonstrate the presented model. Finally sensitivity analysis of the varying parameter on the optimal solution is done.

1. Introduction

In the classical inventory it is assumed that all the costs associated with the inventory system remains constant over time. Since most decision makers think that the inflation does not have significant influence on the inventory policy and most of the inventory models developed so far does not include inflation and time value of money as parameters of the system. But due to large scale of inflation the monetary situation in almost all the countries has changed to an extent during the last thirty years. Nowadays inflation has become a permanent feature in the inventory system. Inflation enters in the picture of inventory cost. Thus the inflation plays a vital role in the inventory system and production management though the decision makers may face difficulties in arriving at answers related to decision making. At present, it is impossible to ignore the effects of inflation and it is necessary to consider the effects of inflation on the inventory system. Inflation plays an essential role for the optimal order policy and influences the demand of certain products. As inflation increases, the value of money goes down and erodes

²⁰⁰⁰ Mathematics Subject Classification. 90B05; 82C31.

Key words and phrases. Future supply uncertainty, trade credit, non deteriorating items, inflation, two suppliers.

KHIMYA S TINANI AND DEEPA KANDPAL

the future worth of saving and forces one for more current spending. Usually, these spending are on peripherals and luxury items that give rise to demand of those items. As a result, the effect of inflation and time value of the money cannot be ignored for determining the optimal inventory policy. Buzacott (1975) first developed the Economic Order Quantity (EOQ) model taking inflation into account. Misra (1979) developed a discount cost model in which the effects of both inflation and time value of money are considered. Chandra and Bahner (1985) developed models to investigate the effects of inflation and time value of money on optimal order policies. Data and Pal (1991) considered the effects of inflation and time value of money on an inventory model with a linear time-dependent demand rate and shortages. Ray and Chaudhuri (1997) provided an EOQ model with inflation time discounting. Jaggi, Aggarwal and Goel (2006) determine an optimal ordering policy for deteriorating items under inflation induced demand. Sarker, Jamal and Shajunwang (2000) developed Supply Chain Models for Perishable products under inflation and permissible delay in payment. Hou and Lin (2006) proposed an EOQ model for deteriorating items with price and stock-dependent selling rates under inflation and time value of money. Tripathi, Misra and Shukla (2010) developed an inventory model for non deteriorating items and time-dependent demand under inflation when delay in payment is permissible. Guria, Das, Mondal, and Maiti (2013) formulated an inventory policy for an item with inflation induced purchasing price, selling price, and demand with immediate part payment.

Trade credit is commonly used by business organizations as a source of shortterm financing. By using the trade credits facilities, we can increase our total annual profit and also, this credit is extended by one trader to another for the purchase of goods and services. The suppliers offer delay in payment to the retailers to buy more items and the retailers can sell the item before the closing of the delay time. As a result, the retailers sell the items and earn interests. Usually, there is no interest charge if the outstanding amount is paid within the permissible delay period. This provides opportunities to the retailers to accumulate revenue and earn interest by selling their items during the delay period. This permissible delay in payment provides benefit to the supplier in as much as attracting new customers who consider it to be a type of price reduction and reduction in sells outstanding as some customers make payments on time in order to take advantage of permissible delay more frequently. In this direction, Goyal (1985) extended the EOQ model under the conditions of permissible delay in payments. Shah (1993) developed model for deteriorating items when delay in payments is permissible by assuming deterministic demand. Aggarwal and Jaggi (1995) developed a model to determine the optimum order quantity for deteriorating items under a permissible delay in payment. Liao, Tsai, and Su (2000) developed an inventory model for initial-stock-dependent consumption rate when a delay in payment is permissible.

In most inventory models it is implicitly assumed that the product to be ordered is always available (that is continuous supply availability), that is when an order is placed it is either received immediately or after a deterministic or perhaps random lead time. However if the product is purchased from another company (asinthe JIT deliveries of parts and components), the supply of the product may sometimes be interrupted due to the suppliers equipment breakdowns, labor

ROLE OF INFLATION AND TRADE CREDIT

strikes or other unpredictable circumstances. Silver (1981) appears to be first author to discuss the need for models that deal with supplier uncertainty. Articles by Parlar and Berkin (1991) consider the supply uncertainty problem for a class of EOQ model with a single supplier where the availability and unavailability periods constitute an alternating Poisson process. Parlar and Berkin (1991) assume that at any time the decision maker is aware of the availability status of the product although he does not know when the ON (available) and OFF (unavailable) periods will start and end. When the inventory level reaches the reorder point of zero and the status is ON, the order is received; otherwise the decision maker must wait until the product becomes available. Parlar and Perry (1996) developed inventory model for non deteriorating items with future supply uncertainty considering demand rate d=1 for two suppliers. Kandpal and Gujarati (2003,2006) has extended the model of Parlar and Perry(1996) by considering demand rate greater than one and for deteriorating items for single supplier. Kandpal and Tinani (2009) developed inventory model for deteriorating items with future supply uncertainty under inflation and permissible delay in payment for single supplier.

In this paper it is assumed that the inventory manager may place his order with any one of two suppliers who are randomly available. Here we assume that the decision maker deals with two suppliers who may be ON or OFF. Here there are three states that correspond to the availability of at least one supplier that is states 0, 1 and 2 whereas state 3 denotes the non-availability of either of them. State 0 indicates that supplier 1 and supplier 2 both are available. Here it is assumed that one may place order to either one of the two suppliers or partly to both. State 1 represents that supplier 1 is available but supplier 2 is not available. State 2 represents that supplier 1 is not available but supplier 2 is available.

2. Notations, assumptions and model

The inventory model here is developed on the basis of following assumptions.

- (a) Demand rate d is deterministic and it is d > 1.
- (b) We define Xi and Yi to be the random variables corresponding to the length of ON and OFF period respectively for i^{th} supplier where i=1, 2. We specifically assume that $Xi \sim exp(\lambda_i)$ and $Yi \sim exp(\mu_i)$. Further X_i and Y_i are independently distributed
- (c) $q_i = \text{order up to level i=0, 1, 2.}$
- (d) r = reorder up to level ; q_i and r are decision variables.
- (e) T_{0i} is a credit period allowed by i^{th} supplier where i=1, 2 which is a known constant.
- (f) T_{00} is cycle period which is a decision variable.
- (g) ie_i =Interest rate earned when purchase made from i^{th} supplier where i= 1, 2.

 ic_i =Interest rate charged by i^{th} supplier where i = 1, 2.

(h) α_i = Indicator variable for i^{th} supplier where i = 1, 2.

 $\alpha_i = 0$ if account is settled completely at T_{0i}

 $\alpha_i = 1$ otherwise.

- (i) r_1 = discount rate representing the time value of money.
- (j) f = inflation rate.
- (k) $R = f r_1$ = present value of the nominal inflation rate.
- (l) $t_1 = \text{time period with inflation.}$
- (m) c_0 = present value of the inflated price of an item Rs./unit = $ce^{(f-r_1)t_1}$ $=ce^{Rt_1}$
- (n) $I_e(1_i) =$ Interest earned over period (0 to $T_{0i}) = dce^{Rt_1}T_{00}T_{0i}ie_i$
- (o) $I_e(2_i)$ =Interest earned over period $(T_{0i} \text{ to} T_{00})$ upon interest earned previously.

 $I_e(2_i) = (dce^{Rt_1}T_{00} + I_e(1_i))(T_{00} - T_{0i})ie_i$ (p) Interest charged by the *i*th supplier clearly $(ic_i > ie_i)$ i= 1, 2. $Ic_i = \alpha_i dce^{Rt_1}ic_i(T_{00} - T_{0i})$

A Supplier allows a fixed period T_{0i} to settle the account. During this fixed period no interest is charged by the i^{th} supplier but beyond this period, interest is charged by the i^{th} supplier under the terms and conditions agreed upon. Interest charged is usually higher than interest earned. The account is settled completely either at the end of the credit period or at the end of the cycle. During the fixed credit period T_{0i} , revenue from sales is deposited in an interest bearing account.

For inflation rate f, the continuous time inflation factor for the time period t_1 is e^{ft_1} which means that an item that costs Rs. c at time $t_1 = 0$, will cost ce^{ft_1} at time t_1 . For discount rate r_1 , representing the time value of money, the present value factor of an amount at time t_1 is $e^{-r_1t_1}$. Hence the present value of the inflated amount ce^{ft_1} (net inflation factor) is $ce^{ft_1}e^{-r_1t_1}$. For an item with initial price c (Rs. per unit) at time $t_1 = 0$ the present value of the inflated price of an item is given by $c_0 = ce^{(f-r_1)t_1} = ce^{Rt_1}$, $R = f - r_1$ in which c is inflated through time t_1 to ce^{ft_1} , $e^{-r_1t_1}$ is the factor deflating the future worth to its present value and R is the present value of the inflation rate.

3. Optimal policy decision for the model

The policy we have chosen is denoted by (q_0, q_1, q_2, r) . An order is placed for q_i units i = 0, 1, 2, whenever inventory drops to the reorder point r and the state found is i = 0, 1, 2. When both suppliers are available, q_0 is the total ordered from either one or both suppliers. If the process is found in state 3 that is both the suppliers are not available nothing can be ordered in which case the buffer stock of r units is reduced. If the process stays in state 3 for longer time then the shortages start accumulating at rate of d units/time. When the process leaves state 3 and supplier becomes available, enough units are ordered to increase the inventory to $q_i + r$ units where i = 0, 1, 2. The cycle of this process start when the inventory goes up to a level of $q_0 + r$ units. Once the cycle is identified, we construct the average cost objective function as a ratio of the expected cost per cycle to the expected cycle length.

 $Ac(q_0, q_1, q_2, r) = \frac{C_{00}}{T_{00}}$ where, $C_{00} = E(\text{cost per cycle})$ and $T_{00} = E(\text{length of a cycle})$. Analysis of the average cost function requires the exact determination of the transition probabilities $P_{ij}(t)$, i, j = 0, 1, 2, 3 for the four state CTMC. The solution is provided in the lemma (refer Parlar and Perry [1996]).

 $A(q_i, r) = \text{cost of ordering} + \text{cost of holding inventory during a single interval that starts with an inventory of <math>(q_i + r)$ units and ends with r units.

$$A(q_i, r) = k + \frac{hq_i^2 e^{Rt_1}}{2d} + \frac{hrq_i e^{Rt_1}}{d}, i = 0, 1, 2.$$

 $P_{ij}(t)=P~(\mbox{Being in state }j$ at time $t/\mbox{starting in state }i$ at time 0) , i,j=0,1,2,3 ;

 $p_i =$ long run probabilities, i = 0, 1, 2, 3

Lemma 3.1.

$$C_{i0} = P_{i0}(\frac{q_i}{d})A(q_i, r) + \sum_{j=1}^3 P_{ij}(\frac{q_i}{d})[A(q_i, r) + C_{j0}]i = 0, 1, 2$$

and

$$C_{30} = \overline{C} + \sum_{i=1}^{2} \rho_i C_{i0}$$

where
$$\rho_i = \frac{\mu_i}{\delta}$$
 with $\delta = \mu_1 + \mu_2$
$$\overline{C} = \frac{e^{\frac{-r\delta}{d}}e^{Rt_1}}{\delta^2} [he^{\frac{\delta r}{d}}(\delta r - d) + (\pi\delta d + hd) + \hat{\pi}) - c\delta]$$

(refer Parlar and Perry[1996])

Theorem 3.2. The Average cost objective function for two suppliers under inflation and permissible delay in payments for non deteriorating items is given by

$$Ac = \frac{C_{00}}{T_{00}}$$

where

$$C_{00} = A(q_0, r) + P_{01}(C_{10} - (I_e(11) + I_e(21) + Ic_1) + P_{02}(C_{20} - (I_e(12) + I_e(22) + Ic_2)) + Ic_2)$$

$$+P_{03}(\overline{C} + \rho_1(C_{10} - (I_e(11) + I_e(21) + Ic_1) + \rho_2(C_{20} - (I_e(12) + I_e(22) + Ic_2))$$

and

$$T_{00} = \frac{q_0}{d} + P_{01}T_{10} + P_{02}T_{20} + P_{03}(\overline{T} + \rho_1 T_{10} + \rho_2 T_{20})$$

Proof. Proof follows using Renewal reward theorem (RRT). The optimal solution for q_0, q_1, q_2 and r is obtained by using Newton Rapson method in R programming.

4. Numerical Examples

Case-I: inflation rate is less than interest charged.

In this section we verify the results by a numerical example. We assume that

- (i) k = Rs. 5/order, c = Rs.1/unit, d = 20/units, h = Rs. 5/unit/time, $\pi = Rs.350/unit/time$, $\hat{\pi} = Rs.25/unit/time$, $ic_1 = 0.11$, $ie_1 = 0.02$, $ic_2 = 0.13$, $ie_2 = 0.04$, R = 0.05, $t_1 = 6$, $T_{01} = 0.6$, $T_{02} = 0.8$, $(\alpha_1 = 1 \text{ and } \alpha_2 = 1)$ that is businessmen do not settle the account at the respective credit time given by both the suppliers, $\lambda_1 = 0.58$, $\lambda_2 = 0.45$, $\mu_1 = 3.4$, $\mu_2 = 2.5$. The last four parameters indicate that the expected lengths of the ON and OFF periods for first and second supplier are $1/\lambda_1 = 1.72413794$, $1/\lambda_2 = 2.2222$, $1/\mu_1 = .2941176$ and $1/\mu_2 = .4$ respectively. The long run probabilities are obtained as $p_0 = 0.7239588$, $p_1 = 0.1303126$, $p_2 = 0.1234989$ and $p_3 = 0.02222$. The optimal solution is obtained as $q_0 = 3.10667$, $q_1 = 30.1287$, $q_2 = 29.56780$, r = 0.81358 and Ac = 6.2456.
- (ii) Keeping other parameters as it is, we consider $(\alpha_1 = 0 \text{ and } \alpha_2 = 0)$ that is businessmen settle the account at the respective credit time given by both the suppliers. The optimal solution is obtained as $q_0 = 5.10684$, $q_1 = 34.9777$, $q_2 = 33.8575$, r = 1.026170 and Ac = 4.35071.
- (iii) Keeping other parameters as it is, we consider $(\alpha_1 = 1 \text{ and } \alpha_2 = 0)$ that is businessmen do not settle the account at the credit time given by the 1^{st} supplier but they settle the account at the credit time given by the 2^{nd} supplier. The optimal solution is obtained as $q_0 = 4.12907$, $q_1 = 30.8006$, $q_2 = 0.92594 \ r = 0.95295$ and Ac = 5.59943.
- (iv) Keeping other parameters as it is, we consider ($\alpha_1 = 0$ and $\alpha_2 = 1$) that is when the account is settled by businessmen at the credit time given by the 1st supplier but they do not settle the account at the credit time given by the 2nd supplier. The optimal solution is obtained as $q_0 = 4.384242$, $q_1 = 31.17162$, $q_2 = 30.78432$, r = 0.95295 and Ac = 6.15795.

Conclusion: From the above numerical example, we conclude that the cost is minimum when account is settled at the credit time given by the i^{th} supplier. So in this situation businessmen are advised to settle the account at the credit time given by the respective suppliers.

Case-II: Inflation rate is greater than interest charged.

In this section we verify the results by a numerical example. We assume that

(i) k = Rs. 5/order, c=Rs.1/unit, d=20/units, h=Rs. 5/unit/time, $\pi = Rs.350/\text{unit}/\text{time}$, $\hat{\pi} = Rs.25\text{unit}/\text{time}$, $ic_1 = 0.11$, $ie_1 = 0.02$, $ic_2 = 0.13$, $ie_2 = 0.04$, R = 0.35, $t_1 = 6$, $T_{01} = 0.6$, $T_{02} = 0.8$, $(\alpha_1 = 1 \text{ and } \alpha_2 = 1)$ that is businessmen do not settle the account at the respective credit time given by both the suppliers, $\lambda_1 = 0.58$, $\lambda_2 = 0.45$, $\mu_1 = 3.4$, $\mu_2 = 2.5$. The last four parameters indicate that the expected lengths of the ON and OFF periods for first and second supplier are $1/\lambda_1 = 1.72413794$, $1/\lambda_2 = 2.2222$, $1/\mu_1 = .2941176$ and $1/\mu_2 = .4$ respectively. The long run probabilities are obtained as $p_0 = 0.7239588$, $p_1 = 0.1303126$, $p_2 = 0.1234989$ and $p_3 = 0.02222$. The optimal solution

is obtained as $q_0 = 3.1656$, $q_1 = 31.6287$, $q_2 = 30.8431$, r = 0.41932 and Ac = 19.8167.

- (ii) Keeping other parameters as it is, we consider ($\alpha_1 = 0$ and $\alpha_2 = 0$) that is businessmen settle the account at the respective credit time given by both the suppliers. The optimal solution is obtained as $q_0 = 4.3952$, $q_1 = 29.6213$, $q_2 = 29.8712$, r = 0.4178 and Ac = 26.7916.
- (iii) Keeping other parameters as it is, we consider $(\alpha_1 = 1 \text{ and } \alpha_2 = 0)$ that is businessmen do not settle the account at the credit time given by the 1^{st} supplier but they settle the account at the credit time given by the 2^{nd} supplier. The optimal solution is obtained as $q_0 = 4.3981$, $q_1 = 29.7651$, $q_2 = 29.6190 \ r = 0.48170$ and Ac = 22.4671.
- (iv) Keeping other parameters as it is, we consider ($\alpha_1 = 0$ and $\alpha_2 = 1$) that is when the account is settled by businessmen at the credit time given by the 1st supplier but they do not settle the account at the credit time given by the 2nd supplier. The optimal solution is obtained as $q_0 = 3.9831$, $q_1 = 29.9820$, $q_2 = 29.8329$, r = 0.4175 and Ac = 21.8953.

Conclusion: From the above numerical example, we conclude that the cost is minimum when account is not settled at the credit time given by the i^{th} supplier. So in this situation businessmen are advised not to settle the account at the end of the credit period but settle the account at the end of the cycle period. The reason for this is once the inflation rate is greater than the interest rates charged, we actually see our debt wiped out by inflation.

5. Sensitivity Analysis

Case-I: Inflation rate is less than interest charged.

Sensitivity $\alpha_2 = 1$)

0.12

0.15

2.2585

2.05473

(i) To observe the effect of varying parameter values on the optimal solution, we have conducted sensitivity analysis by varying the value of inflation rate R keeping other parameter values fixed where ($\alpha_1 = 1$ and $\alpha_2 = 1$). Inflation rate R is assumed to take values 0.05, 0.08, 0.1, 0.12, 0.15. We resolve the problem to find optimal values of q_0 , q_1 , q_2 , r and Ac.

A	nalysis	s Table b	y varying	the para	meter valı	ues of R	$(\alpha_1 = 1)$	and
	R	q_0	q_1	q_2	r	Ac]	
	0.05	3.10667	30.1287	29.5678	0.81888	6.2456		
	0.08	2.77982	29.0031	28.2686	0.7625	7.18984		
	0.1	2.59919	28.3961	27.5549	0.72583	8.5173		

27.8708

27.1996

m 11	۲	1	- 1
Lanie	n		- 1
Table	<u> </u>		• •

We see that as inflation rate R increases values of q_0 , q_1 , q_2 and value of reorder quantity r decreases and hence average cost increases.

(ii) To observe the effect of varying parameter values on the optimal solution, we have conducted sensitivity analysis by varying the value of inflation

26.9295

26.1194

0.69054

0.64053

9.2590

11.2162

rate R keeping other parameter values fixed where ($\alpha_1 = 0$ and $\alpha_2 = 0$). Inflation rate R is assumed to take values 0.05, 0.08, 0.1, 0.12, 0.15. We resolve the problem to find optimal values of q_0 , q_1 , q_2 , r and Ac.

Table 5.1.2

Sensitivity Analysis Table by varying the parameter values of R ($\alpha_1 = 0$ and $\alpha_2 = 0$)

R	q_0	q_1	q_2	r	Ac
0.05	5.10684	34.9777	36.8578	1.02617	4.35071
0.08	4.46811	30.6747	34.2617	1.01785	6.60664
0.1	3.80797	29.4459	28.8683	0.97442	8.1315
0.12	3.32578	28.5693	27.8497	0.92544	9.13682
0.15	2.79119	27.6076	26.7053	0.85213	10.1168

We see that as inflation rate R increases values of q_0 , q_1 , q_2 and value of reorder quantity r decreases and hence average cost increases.

(iii) To observe the effect of varying parameter values on the optimal solution, we have conducted sensitivity analysis by varying the value of inflation rate R keeping other parameter values fixed where ($\alpha_1 = 1$ and $\alpha_2 = 0$). Inflation rate R is assumed to take values 0.05, 0.08, 0.1, 0.12, 0.15. We resolve the problem to find optimal values of q_0 , q_1 , q_2 , r and Ac.

Table	5.1.3
-------	-------

Sensitivity Analysis Table by varying the parameter values of R ($\alpha_1 = 1$ and $\alpha_2 = 0$)

R	q_0	q_1	q_2	r	Ac
0.05	4.12907	30.8006	30.3623	0.92594	5.59943
0.08	3.39002	29.3407	28.6986	0.86341	7.34255
0.1	3.02527	28.6195	27.8568	0.82053	9.3676
0.12	2.72496	28.0219	27.1484	0.7788	10.5063
0.15	2.35853	27.286	26.2617	0.7198	11.4583

We see that as inflation rate R increases values of q_0 , q_1 , q_2 and value of reorder quantity r decreases and hence average cost increases.

(iv) To observe the effect of varying parameter values on the optimal solution, we have conducted sensitivity analysis by varying the value of inflation rate R keeping other parameter values fixed where ($\alpha_1 = 0$ and $\alpha_2 = 1$). Inflation rate R is assumed to take values 0.05, 0.08, 0.1, 0.12, 0.15. We resolve the problem to find optimal values of q_0 , q_1 , q_2 , r and Ac.

ROLE OF INFLATION AND TRADE CREDIT

Table 5.1.4

Sensitivity Analysis Table by varying the parameter values of R ($\alpha_1 = 0$ and $\alpha_2 = 1$)

R	q_0	q_1	q_2	r	Ac
0.05	4.38424	31.17162	30.78432	0.95295	6.15795
0.08	3.57047	29.5611	28.9627	0.8954	7.28645
0.1	3.17314	28.7834	28.0601	0.85285	9.3106
0.12	2.84871	28.1486	27.3108	0.8104	10.4489
0.15	2.45606	27.3774	26.3844	0.74903	11.4003

We see that as inflation rate R increases values of q_0 , q_1 , q_2 and value of reorder quantity r decreases and hence average cost increases.

Case-II: Inflation rate is greater than interest charged.

(i) To observe the effect of varying parameter values on the optimal solution, we have conducted sensitivity analysis by varying the value of inflation rate R keeping other parameter values fixed where ($\alpha_1 = 1$ and $\alpha_2 = 1$). Inflation rate R is assumed to take values 0.2, 0.25, 0.27, 0.3, 0.35. We resolve the problem to find optimal values of q_0 , q_1 , q_2 , r and Ac.

Ζ.	Τ
	Ζ.

Sensitivity Analysis Table by varying the parameter values of R ($\alpha_1 = 1$ and $\alpha_2 = 1$)

R	q_0	q_1	q_2	r	Ac
0.2	6.9874	40.3471	38.6431	0.61732	9.1453
0.25	4.6983	39.7219	36.8327	0.5872	11.9874
0.27	4.1832	35.7301	34.7651	0.5328	13.5613
0.3	3.6321	33.7328	32.8732	0.4705	16.2565
0.35	3.1656	31.6287	30.8431	0.41932	19.8167

We see that as inflation rate R increases values of q_0 , q_1 , q_2 and value of reorder quantity r decreases and hence average cost increases.

(ii) To observe the effect of varying parameter values on the optimal solution, we have conducted sensitivity analysis by varying the value of inflation rate R keeping other parameter values fixed where ($\alpha_1 = 0$ and $\alpha_2 = 0$). Inflation rate R is assumed to take values 0.2, 0.25, 0.27, 0.3, 0.35. We resolve the problem to find optimal values of q_0 , q_1 , q_2 , r and Ac.

Table 5.2.2

Sensitivity Analysis Table by varying the parameter values of R ($\alpha_1 = 0$ and $\alpha_2 = 0$)

R	q_0	q_1	q_2	r	Ac
0.2	7.10684	39.8721	39.6548	0.7541	11.75073
0.25	6.1819	37.6431	36.2326	0.6326	15.8066
0.27	5.6078	35.3789	34.9081	0.5793	17.1456
0.3	5.32431	32.9863	31.0431	0.4943	20.7651
0.35	4.3952	29.6213	29.8712	0.4178	26.7916

We see that as inflation rate R increases values of q_0 , q_1 , q_2 and value of reorder quantity r decreases and hence average cost increases.

(iii) To observe the effect of varying parameter values on the optimal solution, we have conducted sensitivity analysis by varying the value of inflation rate R keeping other parameter values fixed where ($\alpha_1 = 1$ and $\alpha_2 = 0$). Inflation rate R is assumed to take values 0.2, 0.25, 0.27, 0.3, 0.35. We resolve the problem to find optimal values of q_0 , q_1 , q_2 , r and Ac.

Tabl	e 5	.2.3

Sensitivity Analysis Table by varying the parameter values of R ($\alpha_1 = 1$ and $\alpha_2 = 0$)

-					
R	q_0	q_1	q_2	r	Ac
0.2	7.1569	38.8006	37.8328	0.7931	10.3491
0.25	5.9543	36.2059	35.9327	0.6839	13.3476
0.27	5.2783	34.7194	33.8501	0.6182	15.3676
0.3	4.7821	31.9831	31.8471	0.5910	17.8729
0.35	4.3981	29.7651	29.6190	0.4817	22.4671

We see that as inflation rate R increases values of q_0 , q_1 , q_2 and value of reorder quantity r decreases and hence average cost increases.

(iv) To observe the effect of varying parameter values on the optimal solution, we have conducted sensitivity analysis by varying the value of inflation rate R keeping other parameter values fixed where ($\alpha_1 = 0$ and $\alpha_2 = 1$). Inflation rate R is assumed to take values 0.2, 0.25, 0.27, 0.3, 0.35. We resolve the problem to find optimal values of q_0 , q_1 , q_2 , r and Ac.

R	q_0	q_1	q_2	r	Ac
0.2	7.9361	37.4821	36.6301	0.7391	10.9795
0.25	5.8270	35.8218	34.8276	0.6930	12.8647
0.27	4.9591	33.9831	33.9921	0.6173	14.3109
0.3	4.1081	31.9484	31.7620	0.5929	18.4484
0.35	3.9831	29.9820	29.8320	0.4175	21.8953

Table 5.2.4 Sensitivity Analysis Table by varying the parameter values of R ($\alpha_1 = 0$ and

 $\alpha_2 = 1$)

We see that as inflation rate R increases values of q_0 , q_1 , q_2 and value of reorder quantity r decreases and hence average cost increases.

6. Conclusion

By comparing two cases that is when inflation rate is less than interest charged we conclude that the cost is minimum when account is settled at the credit time given by the i^{th} supplier. So in this situation also businessmen are advised to settle the account at the credit time given by the respective suppliers. However when inflation rate is higher than interest charged we conclude that the cost is minimum when account is not settled at the credit time given by the i^{th} supplier. So in this situation businessmen are advised not to settle the account at the end of the credit period but settle the account at the end of the cycle period. The reason for this is that once the inflation rate is greater than the interest rates charged, we actually see our debt wiped out by inflation. Debtors are benefitted by inflation due to the reduction of real value of debt burden.

References

- 1. Aggarwal, S. P., and C. K. Jaggi. "Ordering policies of deteriorating items under permissible delay in payments." Journal of the operational Research Society 46.5 (1995): 658-662.
- Sarker, Bhaba R., A. M. M. Jamal, and Shaojun Wang. "Supply chain models for perishable products under inflation and permissible delay in payment." Computers and Operations Research 27.1 (2000): 59-75.
- Buzacott, J. A. "Economic order quantities with inflation." Journal of the Operational Research Society 26.3 (1975): 553-558.
- Chand, Suresh, and James Ward. "A note on Economic order quantity under conditions of permissible delay in payments." Journal of the Operational Research Society 38.1 (1987): 83-84.
- Chandra, M. Jeya, and Michael L. Bahner. "The effects of inflation and the time value of money on some inventory systems." International Journal of Production Research 23.4 (1985): 723-730.
- Datta, T. K., and A. K. Pal. "Effects of inflation and time-value of money on an inventory model with linear time-dependent demand rate and shortages." European Journal of Operational Research 52.3 (1991): 326-333.
- Goyal, Suresh Kumar. "Economic order quantity under conditions of permissible delay in payments." Journal of the operational research society 36.4 (1985): 335-338.
- Guria, A., et al. "Inventory policy for an item with inflation induced purchasing price, selling price and demand with immediate part payment." Applied Mathematical Modelling 37.1 (2013): 240-257.
- Hou, K-L., and L-C. Lin. "An EOQ model for deteriorating items with price-and stockdependent selling rates under inflation and time value of money." International journal of systems science 37.15 (2006): 1131-1139.
- Jaggi, Chandra K., K. K. Aggarwal, and S. K. Goel. "Optimal order policy for deteriorating items with inflation induced demand." International Journal of Production Economics 103.2 (2006): 707-714.
- Kandpal, D. H., and C. C. Gujarathi. "Inventory Models of Future Supply Uncertainty. Journal of Decision and Mathematical Science 8 (2003): 79-91.
- Kandpal, D. H., and C. C. Gujarathi. "Deteriorating items Inventory Model with Future Supply Uncertainty for Single Supplier." Industrial Engineering Journal 35.9 (2006): 23-28.
- Kandpal, D. H., and K. S. Tinani. Future supply uncertainty model for deteriorating items under inflation and permissible delay in payment for single supplier. Journal of Probability and Statistical Science 7(2) (2009):245-259.
- Liao, Hung-Chang, Chih-Hung Tsai, and Chao-Ton Su. "An inventory model with deteriorating items under inflation when a delay in payment is permissible." International Journal of Production Economics 63.2 (2000): 207-214.
- Mishra, R. B. "A study of inflation effects on inventory system." Logistic Spectrum 9 (1979): 260-268.
- Parlar, Mahmut, and Defne Berkin. "Future supply uncertainty in EOQ models." Naval Research Logistics (NRL) 38.1 (1991): 107-121.
- Parlar, Mahmut, and David Perry. "Inventory models of future supply uncertainty with single and multiple suppliers." Naval Research Logistics (NRL) 43.2 (1996): 191-210.
- Ray, J., and K. S. Chaudhuri. "An EOQ model with stock-dependent demand, shortage, inflation and time discounting." International Journal of Production Economics 53.2 (1997): 171-180.
- Shah, Nita H. "A lot-size model for exponentially decaying inventory when delay in payments is permissible." Cahiers du Centre d'tudes de recherche oprationnelle 35.1-2 (1993): 115-123.

KHIMYA S TINANI AND DEEPA KANDPAL

- Silver, Edward A. "Operations research in inventory management: A review and critique." Operations Research 29.4 (1981): 628-645.
- Tripathi, R. P., S. S. Misra, and H. S. Shukla. "A cash flow oriented EOQ model under permissible delay in payments." International Journal of Engineering, Science and Technology 2.11 (2010): 123-133.

Department of statistics, The Maharaja Sayajirao University of Baroda, Vadodara, India

 $E\text{-}mail\ address:\ khimya27@yahoo.com$

Department of statistics, The Maharaja Sayajirao University of Baroda, Vadodara, India

E-mail address: dhk052000@yahoo.com