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Abstract. In this paper, we introduce a new class of fuzzy numbers called

the linear fuzzy numbers, which is a generalization of the classical triangular,

trapezoidal fuzzy numbers and some recent numbers like octagonal, hexago-
nal, pentagonal fuzzy numbers. Due to this representation, it is convenient

to the study the common properties of these piecewise linear fuzzy numbers.

The various cone properties of this class is studied. We also discuss the
projection of any element from the base space Rn to the class of linear fuzzy

numbers. The interest in the subject of projection arises in several situations,

having a wide range of applications in pure and applied mathematics such as
Convex Analysis, Numerical Linear Algebra, Statistics, Computer Graphics

and so on.

1. Introduction

The concept of fuzzy numbers was introduced by Chang and Zadeh in 1972
[5]. Henceforth the research on fuzzy numbers has received considerable attention,
and many theoretical[6], [12], [21] and practical achievements[4], [7], [13], [15],
[15], [20], [19] have emerged. Fuzzy numbers have found useful in many research
fields, such as programming problems, control systems, neural networks, system
analysis, signal processing, expert system, regression analysis, decision making
and so on. Triangular and trapezoidal fuzzy numbers are two important kinds of
fuzzy numbers that have been thoroughly studied by researchers in interval fuzzy
analysis. An extensive survey and bibliography on fuzzy intervals can be found in
[8]. Recently many scholars have tried to define new fuzzy numbers as basic tools
to deal with their respective problems with vagueness and uncertainty. Most of
the new classes have piecewise linear membership function. Thus all these fuzzy
numbers with piecewise linear membership function can be considered under one
class of linear fuzzy numbers and the properties common to all these numbers can
be dealt together.

In this paper, we deal linear fuzzy numbers as a subset of Rn with a closed,
convex cone structure. In section 2, we discuss some of the familiar fuzzy numbers
in literature and we see that n = 3 and n = 4 respectively denotes the familiar
triangular and trapezoidal fuzzy numbers. In section 3, we prove that addition
and scalar multiplication on linear fuzzy numbers is same as that performed in
Rn. In section 4, basic concepts and results on covex cones are discussed. Also we
introduce a new class of positive linear fuzzy numbers, denoted LFN and discuss
the various cone properties that this class satisfies. In section 5, we show that
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2 FELBIN C KENNEDY AND DHANALAKSHMI V

the linear complementarity problem on the cone LFN reduces to a classical linear
complementarity problem. In section 6, we discuss the projection of any element
of Rn to the class of positive linear fuzzy number.

2. Preliminaries

Definition 2.1 (Fuzzy Sets). The characteristic function χA of a crisp set A ⊆ X
assigns a value either 0 or 1 to each member in X. This function can be generalized
to a function µÃ such that the value assigned to the element of the universal set
X fall within a specified range i.e. µÃ : X → [0, 1]. The assigned value indicates

the membership grade of the element in the set Ã. The function µÃ is called the

membership function and the set Ã = {(x, µÃ(x)) : x ∈ X} is called a fuzzy set.

Definition 2.2 (Fuzzy Numbers). A fuzzy set Ã, defined on the universal set of
real numbers R, is said to be a fuzzy number if its membership function has the
following characteristics:

i. Ã is convex i.e. µÃ(λx1 + (1 − λ)x2) ≥ min(µÃ(x1), µÃ(x2)) ∀ x1, x2 ∈
R, ∀ λ ∈ [0, 1]

ii. Ã is normal i.e. ∃x0 ∈ R such that µÃ(x0) = 1
iii. µÃ is piecewise continuous

Definition 2.3 (Linear Fuzzy Number). A fuzzy number is said to be linear fuzzy
number if its membership function is piece-wise linear.

Remark 2.4. Some of the familiar and most applied fuzzy numbers, like triangular,
trapezoidal fuzzy numbers are linear.

Definition 2.5 (Triangular Fuzzy Number). A linear fuzzy number Ã is said to

be a triangular fuzzy number denoted by Ã = (a1, a2, a3) where a1 ≤ a2 ≤ a3 are
real numbers and its membership function µÃis given by

µÃ(x) =


0 x ≤ a1

m1(x) a1 ≤ x ≤ a2

w x = a2

m3(x) a2 ≤ x ≤ a3

0 x ≥ a3

where w = height(Ã), y = m1(x) is the line joining the points (a1, 0) and
(a2, w), y = m3(x) is that of (a2, w) and (a3, 0).

Definition 2.6 (Trapezoidal Fuzzy Number). A fuzzy number Ã is said to be a

trapezoidal fuzzy number denoted by Ã = (a1, a2, a3, a4) where a1 ≤ a2 ≤ a3 ≤ a4

are real numbers and its membership function µÃis given by

µÃ(x) =


0 x ≤ a1

m1(x) a1 ≤ x ≤ a2

w a2 ≤ x ≤ a3

m3(x) a3 ≤ x ≤ a4

0 x ≥ a4
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Figure 1. Graphical representation of triangular fuzzy number
Ã = (2, 4, 7)

where w = height(Ã), y = m1(x) is the line joining the points (a1, 0) and (a2, w),
y = m3(x) is that of (a2, w), and (a3, 0).
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Figure 2. Graphical representation of trapezoidal fuzzy number
Ã = (2, 4, 5, 7)

Definition 2.7 (Octagonal Fuzzy Number). [14] A fuzzy number Ã is said to be

an octagonal fuzzy number denoted by Ã = (a1, a2, a3, a4, a5, a6, a7, a8; k,w) where
a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 ≤ a6 ≤ a7 ≤ a8are real numbers and its membership
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4 FELBIN C KENNEDY AND DHANALAKSHMI V

function µÃis given by

µÃ(x) =



0 x ≤ a1

m1(x) a1 ≤ x ≤ a2

k a2 ≤ x ≤ a3

m3(x) a3 ≤ x ≤ a4

w a4 ≤ x ≤ a5

m5(x) a5 ≤ x ≤ a6

k a6 ≤ x ≤ a7

m7(x) a7 ≤ x ≤ a8

0 x ≥ a8

where 0 < k < w, w = height(Ã) (w > k), y = m1(x) is the line joining the
points (a1, 0) and (a2, k), y = m3(x) is that of (a3, k) and (a4, w), y = m5(x) is
that of (a5, w) and (a6, k), y = m7(x) is that of (a7, k) and (a8, 0).
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Figure 3. Graphical representation of octagonal fuzzy number
Ã = (1, 2, 3, 4, 5, 6, 7, 8; 0.5, 1)

3. Addition and Scalar Multiplication

Let Ã = (a1, a2, ..., an) and B̃ = (b1, b2, ..., bn) be two linear fuzzy numbers,

then there are two ways of defining the arithmetic operations on Ã and B̃:

(1) α− cut approach, where the interval arithmetic is used on the α-cuts of Ã

and B̃
(2) co-ordinate wise approach, where the operations are performed on the

co-ordinates of Ã and B̃

Definition 3.1. Let Ã = (a1, a2, ..., an) and B̃ = (b1, b2, ..., bn) be two linear fuzzy
numbers and λ be any real number, then the co-ordinate wise addition and scalar
multiplication are defined as follows:
(i) Ã+ B̃ = (a1 + b1, a2 + b2, ..., an + bn)
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CONE PROPERTIES OF LFN 5

(ii) λÃ =

{
(λa1, λa2, ..., λan) λ ≥ 0

(λan, λan−1, ..., λa1) λ < 0

Proposition 3.2. The α-cut approach and co-ordinate wise approach of the ad-
dition and scalar multiplication of the octagonal fuzzy numbers yields the same
octagonal fuzzy number.

Proof. Addition: Let Ã = (a1, a2, ..., a8; k,w) and B̃ = (b1, b2, ..., b8; k,w) be the

two octagonal fuzzy numbers, then the α− cut of Ã+ B̃ is as follows:
[Ã+ B̃]α

= [Ã]α + [B̃]α

= [ALα, A
R
α ] + [BLα , B

R
α ]

=

{
[(ALα)1, (A

R
α )1] α ∈ [0, k]

[(ALα)2, (A
R
α )2] α ∈ (k,w]

+

{
[(BLα )1, (B

R
α )1] α ∈ [0, k]

[(BLα )2, (B
R
α )2] α ∈ (k,w]

=

{
[(ALα)1 + (BLα )1, (A

R
α )1 + (BRα )1] α ∈ [0, k]

[(ALα)2 + (BLα )2, (A
R
α )2 + (BRα )2] α ∈ (k,w]

=

{
[a1 + α

k (a2 − a1) + b1 + α
k (b2 − b1), a8 − α

k (a8 − a7) + b8 − α
k (b8 − b7)] α ∈ [0, k]

[a3 + α−k
w−k (a4 − a3) + b3 + α−k

w−k (b4 − b3), a5 + α−w
k−w (a6 − a5) + b5 + α−w

k−w (b6 − b5)] α ∈ (k,w]

=

{
[a1 + b1 + α

k (a2 + b2 − a1 − b1), a8 + b8 − α
k (a8 + b8 − a7 − b7)] α ∈ [0, k]

[a3 + b3 + α−k
w−k (a4 + b4 − a3 − b3), a5 + b5 + α−w

k−w (a6 + b6 − a5 − b5)] α ∈ (k,w]

= [(a1 + b1, a2 + b2, ..., a8 + b8; k,w)]α

Scalar Multiplication: Let Ã = (a1, a2, ..., a8; k,w) and λ ∈ R, then according
to the interval arithmetic, the scalar multiplication on the interval [A]α is

λ[A]α =

{
[λALα, λA

R
α ] λ ≥ 0

[λARα , λA
L
α] λ < 0

=


{

[λ(ALα)1, λ(ARα )1] α ∈ [0, k]
[λ(ALα)2, λ(ARα )2] α ∈ (k,w]

λ ≥ 0{
[λ(ARα )1, λ(ALα)1] α ∈ [0, k]
[λ(ARα )2, λ(ALα)2] α ∈ (k,w]

λ < 0

=


{

[λa1 + α
k (λa2 − λa1), λa8 − α

k (λa8 − λa7)] α ∈ [0, k]
[λa3 + α−k

w−k (λa4 − λa3), λa5 + α−w
k−w (λa6 − λa5)] α ∈ (k,w]

λ ≥ 0{
[λa8 − α

k (λa8 − λa7), λa1 + α
k (λa2 − λa1)] α ∈ [0, k]

[λa5 + α−w
k−w (λa6 − λa5), λa3 + α−k

w−k (λa4 − λa3)] α ∈ (k,w]
λ < 0

=

{
[(λa1, λa2, ..., λa8; k,w)]α λ ≥ 0
[(λa8, λa7, ..., λa1; k,w)]α λ < 0

= [λA]α

Hence, the resultant of addition and scalar multiplication performed by α-cut
approach or co-ordinate wise approach yield the same octagonal fuzzy number.

�
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6 FELBIN C KENNEDY AND DHANALAKSHMI V

Remark 3.3. Proposition 3.2 holds good for any linear fuzzy number, whose
membership function can be determined by the n−tuple (a1, a2, ..., an), where
a1 ≤ a2 ≤ ... ≤ an

Remark 3.4. Proposition 3.2 implies that the addition and non-negative scalar
multiplication on the collection of linear fuzzy numbers is similar to that in Rn
and hence the collection of linear fuzzy numbers can be considered as a subset of
Rn.

4. Convex Cones

Some basic definitions of cones are as follows:

Definition 4.1 (cone). The set C ⊆ Rn is a cone if λy ∈ C for all y ∈ C and
0 ≤ λ ∈ R.

Definition 4.2 (Convex Cone). A cone C is said to be a convex cone if y1+y2 ∈ C,
∀y1, y2 ∈ C.

Definition 4.3 (Pointed Cone). A cone C is said to be pointed if C ∩−C = {0}.

Definition 4.4 (Order w.r.t. a cone). For a pointed cone C, we write y1 ≤C y2

if y2 − y1 ∈ C and y1 <C y2 if y2 − y1 ∈ C − {0}.

Definition 4.5. Let C ⊂ Rn be a closed convex cone. The polar cone and the
dual cone of C are respectively, the sets,

C⊥ = {x ∈ Rn | 〈x, y〉 ≤ 0,∀y ∈ C}
C∗ = {x ∈ Rn | 〈x, y〉 ≥ 0,∀y ∈ C}

where 〈. , .〉 is the inner product defined on Rn.

Definition 4.6 (Polyhedral Cone). A polyhedral cone is an intersection of finitely
many linear halfspaces, defined by an m × n matrix A such that C = {x ∈ Rn |
Ax � 0}

Definition 4.7 (Finitely Generated Cones).

cone{v1, v2, ..., vm} = {λ1v1 + λ2v2 + ...+ λmvm | λ1, λ2, ..., λm ≥ 0}

is called a finitely generated cone generated by {v1, v2, ..., vm}

Definition 4.8 (Miniedral). [11] The convex cone C ⊆ Rn is said to be a miniedral
when C = cone{v1, v2, ..., vn} with v1, v2, ..., vn linearly independent elements in
Rn

Definition 4.9. Denote Rn+ = {x = (x1, x2, ..., xn) ∈ Rn|xi ≥ 0, i = 1, 2, ..., n}
the nonnegative orthant. Let A ∈ Rn×n be a non-singular matrix. Then the cone

K = ARn+ = {Ax|x = (x1, x2, ..., xn) ∈ Rn+}

is called a simplicial cone.

100



CONE PROPERTIES OF LFN 7

4.1. Linear Fuzzy Numbers as cones. From remark 3.4 the collection of non-
negative linear fuzzy numbers can be considered as a subset of Rn+ defined by

LFN = {x ∈ Rn | 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn}

which is closed under addition and non-negative scalar multiplication and hence
forms a convex cone in Rn.
Also,

LFN = {x ∈ Rn | 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn}
= {x ∈ Rn | Px � 0}
= {x ∈ Rn | Qx � 0}

where the columns of P are given by P.,i = ei − ei+1 for i = 1, 2, ..., n − 1 and
P.,n = en and the matrix Q is obtained by transposing P and letting Qn,n = −1.
Here e1, e2, ..., en are the standard unit vectors of Rn. The above gives the half-
space description for LFN , which shows that LFN forms a polyhedral cone.
For example, for the collection of octagonal fuzzy number with same k and w, we
get

P =



1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 1



Q =



1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 −1


For u1 = (1, 1, ..., 1), u2 = (0, 1, ..., 1), ..., un = (0, 0, ..., 1), we see that LFN =
cone{u1, u2, ..., un} that is, collection of linear fuzzy numbers form a finitely gen-
erated cone. Also, since the vectors u1, u2, ..., un are linearly independent in Rn,
LFN forms a miniedral.
Arrange these vectors in the columns of a matrix A and we see that LFN = ARn+,
a simplicial cone.

Proposition 4.10. The convex cone LFN is closed.
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8 FELBIN C KENNEDY AND DHANALAKSHMI V

Proof. Let {x̃k} be a sequence such that x̃k ∈ LFN, k = 1, 2, .... Then each x̃k

can be represented by

x̃k =

n∑
i=1

λki ui

as LFN is a finitely generated cone. The convergence of x̃k in LFN is guaranteed
as the convergence of each {λki } to some λi which is non-negative as each {λki } is
non-negative. �

Problem
Obtain the dual cone and polar cone of the cone LFN .
Solution
The dual cone and the polar cone of the cone LFN are given by

LFN∗ = {y ∈ Rn | 〈y, x〉 ≥ 0,∀x ∈ LFN}
LFN⊥ = {y ∈ Rn | 〈y, x〉 ≤ 0,∀x ∈ LFN}

Since LFN is finitely generated, any element of the cone LFN is a conic combi-
nation of the finite number of vectors u1, u2, ..., un and hence,

LFN∗ = {y ∈ Rn | 〈y, ui〉 ≥ 0, i = 1, 2, ..., n}
LFN⊥ = {y ∈ Rn | 〈y, ui〉 ≤ 0, i = 1, 2, ..., n}

Let y = (y1, y2, ..., yn) then 〈y, ui〉 =

n∑
j=i

yj for i = 1, 2, ..., n. Thus,

LFN∗ = {y ∈ Rn |
n∑
j=i

yj ≥ 0, i = 1, 2, ..., n} (4.1)

LFN⊥ = {y ∈ Rn |
n∑
j=i

yj ≤ 0, i = 1, 2, ..., n} (4.2)

Lemma 4.11. [16] Let W ⊂ Rn be a cone and A ∈ Rn×n be a non-singular
matrix. Then K = AW is a cone whose dual is K∗ = (A−1)TW ∗.

Lemma 4.12. [3] Let A ∈ Rn×n be a non-singular matrix. Then (ARn+)⊥ =

−(AT )−1Rn+.

From the above argument, we see that LFN is a simplicial cone given by LFN =
ARn+, where

A =


1 0 0 ... 0
1 1 0 ... 0
1 1 1 ... 0
...

...
...

. . .
...

1 1 1 ... 1

 (4.3)

Let W = Rn+, W ∗ = Rn+ as Rn+ is self-dual, then from Lemma 4.11, the dual cone

of LFN is given by LFN∗ = (A−1)TRn+ and from Lemma 4.12 the polar cone is

given by LFN⊥ = −(A−1)TRn+ which are same as Equations 4.1 and 4.2.
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CONE PROPERTIES OF LFN 9

5. Linear Complementarity Problem on LFN

For the mapping F : Rn → Rn and the cone K, the complementarity problem
CP (F,K) is to find x ∈ Rn such that

x ∈ K,F (x) ∈ K∗, 〈x, F (x)〉 = 0

The solution set of CP (F,K) is denoted by sol(F,K).
Using Lemma 4.11 the following results are obtained in [16]:

Proposition 5.1. If W is a cone, A ∈ GL(m,R) and K = AW , then sol(F,K) =
A(sol(ATFA,W )).

The complementarity problem CP (F,K) with F (x) = Mx + q, where M ∈
Rn×n and q ∈ R is denoted by LCP (K,M, q) called linear complementarity prob-
lem.
The solution set of LCP (K,M, q) is denoted by sol(K,M, q). In this case, Propo-
sition 5.1 becomes

Proposition 5.2. [16] If W is a cone, A ∈ GL(n,R) and K = AW , then
sol(K,M, q) = A(sol(W,ATMA,AT q)).

For simplicial cone, Proposition 5.2 reduces to

Proposition 5.3. If K = ARn+ is a simplicial cone, then

sol(K,M, q) = A(sol(Rn+, ATMA,AT q))

Remark 5.4. Using Proposition 5.3, we see that the linear complementarity prob-
lem on LFN is equivalent to the linear complementarity problem on Rn+. To be
more precise, the linear complementarity problem on the collection of non-negative
linear fuzzy numbers is equivalent to the classical linear complementarity problem.
Given the linear transformation M : Rn → Rn and q ∈ Rn, the problem of finding
x ∈ Rn such that

x ∈ LFN, y = Mx+ q ∈ LFN∗, 〈x, y〉 = 0

is simply equal to the classical linear complementarity problem of finding x′ ∈ Rn
such that

x′ ≥ 0, y′ = ATMAx′ +AT q ≥ 0, 〈x′, y′〉 = 0

and thus x = Ax′, where A is as given in equation 4.3.

6. Projection onto the LFN

Definition 6.1. The operator P : Rn → LFN is said to be a projection operator
if

‖x̄− Px̄‖ = inf
ỹ∈LFN

‖x̄− ỹ‖

where ‖.‖ is the usual Euclidean norm.

Theorem 6.2. Let P be the projection operator on LFN , then P satisfies:

(1) P ỹ = ỹ
(2) 〈x̄− ȳ, P x̄− P ȳ〉 ≥ ‖Px̄− P ȳ‖2, ∀ x̄, ȳ ∈ Rn
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10 FELBIN C KENNEDY AND DHANALAKSHMI V

(3) 〈x̄− ȳ, P x̄− P ȳ〉 ≥ 0, ∀ x̄, ȳ ∈ Rn
(4) ‖x̄− ȳ‖2 ≥ ‖Px̄− P ȳ‖2 + ‖(x̄− ȳ)− (Px̄− P ȳ)‖2, ∀ x̄, ȳ ∈ Rn
(5) ‖Px̄− P ȳ‖ ≤ ‖x̄− ȳ‖, ∀ x̄, ȳ ∈ Rn

Proof. (1) This follows because each ỹ ∈ LFN is its best approximation in
LFN , so that P ỹ = ỹ.

(2) We have

〈x̄− ȳ, P x̄− P ȳ〉 = 〈x̄− Px̄, P x̄− P ȳ〉
+〈Px̄− P ȳ, P x̄− P ȳ〉
+〈P ȳ − ȳ, P x̄− P ȳ〉

The first and third term on the right hand side are nonnegative by eq. (6.1)
and the second term is ‖Px̄− P ȳ, P x̄− P ȳ‖2. Hence (2).

(3) An immediate consequence of (2).
(4) Using (2), we obtain for each x̄, ȳ ∈ Rn that

‖x̄− ȳ‖2 = ‖[x̄− Px̄] + [Px̄− P ȳ] + [P ȳ − ȳ]‖2

= ‖Px̄− P ȳ‖2 + ‖[x̄− Px̄]− [ȳ − P ȳ]‖2

+2〈Px̄− P ȳ, [x̄− Px̄]− [ȳ − P ȳ]〉
= ‖Px̄− P ȳ‖2 + ‖[x̄− Px̄]− [ȳ − P ȳ]‖2

+2〈Px̄− P ȳ, x̄− ȳ〉 − 2‖Px̄− P ȳ‖2

≥ ‖Px̄− P ȳ‖2 + ‖[x̄− Px̄]− [ȳ − P ȳ]‖2

This proves (4).
(5) Follows immediately from (4).

�

Theorem 6.3. A point ỹx̄ ∈ LFN is the projection of x̄ ∈ Rn if and only if

〈ỹx̄x̄, ỹ − ỹx̄〉 ≤ 0, ∀ỹ ∈ LFN (6.1)

Proof. Let ỹx̄ be the solution of

inf{1

2
‖ỹ − x̄‖2 | ỹ ∈ LFN} (6.2)

i.e. ỹx̄ is a point of LFN closest to x̄ ∈ Rn for the Euclidean distance.
Let fx̄ : LFN → R be the function defined by

fx̄(ỹ) =
1

2
‖ỹ − x̄‖2 (6.3)
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CONE PROPERTIES OF LFN 11

Let ỹ ∈ LFN be an arbitrary point. Since, LFN is a closed(proposition 4.10),
convex cone, we have ỹx̄ +α(ỹ− ỹx̄) ∈ LFN for any α ∈ (0, 1). Then, by eq. (6.3)

fx̄(ỹx̄) ≤ fx̄(ỹx̄ + α(ỹ − ỹx̄))

=
1

2
‖ỹx̄ − x̄+ α(ỹ − ỹx̄)‖2

=
1

2
〈ỹx̄ − x̄+ α(ỹ − ỹx̄), ỹx̄ − x̄+ α(ỹ − ỹx̄)〉

=
1

2

{
‖ỹx̄ − x̄‖2 + ‖α(ỹ − ỹx̄)‖2 + 2〈ỹx̄ − x̄, α(ỹ − ỹx̄)〉

}
= α〈ỹx̄ − x̄, ỹ − ỹx̄〉+

1

2
‖ỹx̄ − x̄‖2 +

1

2
α2‖ỹ − ỹx̄‖2

= α〈ỹx̄ − x̄, ỹ − ỹx̄〉+ fx̄(ỹx̄) +
1

2
α2‖ỹ − ỹx̄‖2

⇒ 0 ≤ α〈ỹx̄ − x̄, ỹ − ỹx̄〉+
1

2
α2‖ỹ − ỹx̄‖

Dividing by α and let α→ 0, we get

〈ỹx̄ − x̄, ỹ − ỹx̄〉 ≥ 0

Conversely, suppose that ỹx̄ ∈ LFN satisfies eq. (6.1).
If ỹx̄ = x̄, then ỹx̄ obviously solves eq. (6.2). Now consider ỹx̄ 6= x̄, then

0 ≤ 〈ỹx̄ − x̄, ỹ − ỹx̄〉
=⇒ 0 ≥ 〈x̄− ỹx̄, ỹ − ỹx̄〉

= 〈x̄− ỹx̄, ỹ − x̄+ x̄− ỹx̄〉
= ‖x̄− ỹx̄‖2 + 〈x̄− ỹx̄, ỹ − x̄〉
= ‖x̄− ỹx̄‖2 − 〈x̄− ỹx̄, x̄− ỹ〉
≥ ‖x̄− ỹx̄‖2 − ‖x̄− ỹ‖‖x̄− ỹx̄‖

using Cauchy-Schwarz inequality

Dividing by ‖x̄− ỹx̄‖, we see that

0 ≥ ‖x̄− ỹx̄‖ − ‖x̄− ỹ‖

⇒ ‖x̄− ỹx̄‖ ≤ ‖x̄− ỹ‖ ∀ỹ ∈ LFN
⇒ ‖ỹx̄ − x̄‖ ≤ ‖x̄− ỹ‖ ∀ỹ ∈ LFN

implies ỹx̄ is the solution to eq. (6.2).
�

Theorem 6.4. A point ỹx̄ ∈ LFN is the projection of x̄ ∈ Rn if and only if

ỹx̄ ∈ LFN, z̃ = ỹx̄ − x̄ ∈ LFN∗, 〈z̃, ỹx̄〉 = 0 (6.4)

Proof. From theorem 6.3 we know that ỹx̄ = Px̄ satisfies

〈x̄− ỹx̄, ỹ − ỹx̄〉 ≤ 0, ∀ỹ ∈ LFN (6.5)

Let ỹ = αỹx̄, with arbitrary α ≥ 0, then eq. (6.5) implies (α − 1)〈x̄ − ỹx̄, ỹx̄〉 ≤
0, ∀α ≥ 0. Since α − 1 can have either sign, we have 〈x̄ − ỹx̄, ỹx̄〉 = 0 =⇒
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〈ỹx̄ − x̄, ỹx̄〉 = 0, that is 〈z̃, ỹx̄〉 = 0.
Also,

〈x̄− ỹx̄, ỹ − ỹx̄〉 ≤ 0
⇒ 〈x̄− ỹx̄, ỹ〉 − 〈x̄− ỹx̄, ỹx̄〉 ≤ 0
⇒ 〈x̄− ỹx̄, ỹ〉 ≤ 0 ∀y ∈ LFN
⇒ 〈ỹ, ỹx̄ − x̄〉 ≥ 0 ∀y ∈ LFN
⇒ ỹx̄ − x̄ ∈ LFN∗

Conversely, let ỹx̄ satisfy eq. (6.4). Using eq. (6.3),

fx̄(ỹ) =
1

2
‖ỹ − x̄‖2

=
1

2
‖x̄− ỹ‖2

=
1

2
‖x̄− ỹx̄ + ỹx̄ − ỹ‖2

≥ 1

2
‖x̄− ỹx̄‖2 +

1

2
‖ỹx̄ − ỹ‖2 + 〈x̄− ỹx̄, ỹx̄ − ỹ〉

≥ 1

2
‖x̄− ỹx̄‖2 + 〈x̄− ỹx̄, ỹx̄ − ỹ〉

= fx̄(ỹx̄) + 〈x̄− ỹx̄, ỹx̄ − ỹ〉
= fx̄(ỹx̄) + 〈x̄− ỹx̄, ỹx̄〉 − 〈x̄− ỹx̄, ỹ〉
= fx̄(ỹx̄)− 〈x̄− ỹx̄, ỹ〉 as 〈x̄− ỹx̄, ỹx̄〉 = 0

= fx̄(ỹx̄) + 〈ỹx̄ − x̄, ỹ〉
≥ fx̄(ỹx̄) as ỹx̄ − x̄ ∈ LFN∗

⇒ ỹx̄ = Px̄

�

Remark 6.5. Theorem 6.4 shows that the problem of projection onto LFN is same
as solving the linear complementarity problem on the convex cone LFN given by:
Given any x̄ ∈ Rn find ỹ ∈ Rn such that

ỹ ∈ LFN, z̃ = Iỹ − x̄ ∈ LFN∗, 〈z̃, ỹ〉 = 0 (6.6)

and by Remark 5.4 this reduces the classical linear complementarity problem of
finding ỹ′ ∈ Rn such that

ỹ′ ≥ 0, z̃′ = AT IAỹ′ +AT (−x̄) ≥ 0, 〈z̃′, ỹ′〉 = 0 (6.7)

and ỹ = Aỹ′, where A is as given in equation 4.3.

7. Subtraction in Fuzzy Numbers

According to the definition 3.1 and the following proposition 3.2 and remark
3.3, the spread of the difference of two fuzzy numbers is more than the given fuzzy
numbers. Also this type of subtraction yields B̃ 6= (B̃ − Ã) + Ã. For example, let
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us consider two trapezoidal fuzzy numbers Ã and B̃, then

Ã = (2, 4, 5, 7)

B̃ = (3, 5, 7, 8)

B̃ − Ã = (−4, 0, 3, 6)

(B̃ − Ã) + Ã = (−2, 4, 8, 13)

Graphically, the representation of these numbers are as follows:

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.25

0.5

0.75

1

x

α
Ã
B̃

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.25

0.5

0.75

1

x

α

B̃ − Ã

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.25

0.5

0.75

1

x

α
(B̃ − Ã) + Ã

B̃
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In this paper, we propose a new subtraction on linear fuzzy numbers using pro-
jection and LCP.

Definition 7.1. Let Ã, B̃ ∈ LFN , where LFN is a cone in Rn and let Ã =
(a1, a2, ..., an) and B̃ = (b1, b2, ..., bn), then C̃ = B̃	Ã is defined as C̃ = P (B̃−Ã).

Remark 7.2. The projection involved in the above definition is obtained by solving
the classical LCP:
Given B̃ − Ã ∈ Rn finding C̃ ∈ LFN(equivalently finding c̃ ∈ Rn) such that

c̃ ≥ 0, d̃ = AT IAc̃+AT (Ã− B̃) ≥ 0, 〈d̃, c̃〉 = 0

and C̃ = Ac̃, where the matrix A is as given in equation 4.3

For the above problem, B̃ − Ã = (1, 1, 2, 1) considered with usual subtraction

in R4 which is not a trapezoidal fuzzy number. Hence C̃ = B̃ 	 Ã which is
C̃ = P (B̃ − Ã) = (1, 1, 1.5, 1.5). Also, (B̃ 	 Ã) + Ã = (3, 5, 6.5, 8.5)

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.25

0.5

0.75

1

x

α
(B̃ − Ã) + Ã

B̃

8. Conclusion

In this paper, we generalized some of the well-known fuzzy numbers as a subset
of Rn with a closed, convex cone structure. We proved that the operations of
addition and scalar multiplication on linear fuzzy numbers is same as that per-
formed in Rn, which simplifies the computation for problems invloving only these
operations. Various cone forms, such as polyhedral cone, minidrel, dual and polar
cone, simplicial cone, of LFN were discussed. We have derived a classical linear
complementarity problem for the linear complementarity problem on the convex
cone LFN . We have discussed the projection of any element in Rn on the cone
LFN of order n as a LCP problem on LFN .
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