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Abstract. Consider the first-order linear delay differential equation

x′(t) + p(t)x(τ(t)) = 0, t ≥ t0, (1)

where p, τ ∈ C([t0,∞), R
+), τ(t) is nondecreasing, τ(t) < t for t ≥ t0, limt→∞ τ(t) =

∞, and the (discrete analogue) difference equation

∆x(n) + p(n)x(τ(n)) = 0, n = 0, 1, 2, ..., (1)′

where ∆x(n) = x(n + 1) − x(n), p(n) is a sequence of nonnegative real numbers and
τ(n) is a nondecreasing sequence of integers such that τ(n) ≤ n− 1 for all n ≥ 0 and
limn→∞ τ(n) = ∞. Optimal conditions for the oscillation of all solutions to the above
equations are presented.

AMS Subject Classifications: 39A11, 39A12

Keywords: Oscillation; Difference; Discrete; Variable delay

1. Introduction

The problem of establishing sufficient conditions for the oscillation of all solutions to
the differential equation

x′(t) + p(t)x(τ(t)) = 0, t ≥ t0, (1)

where the functions p, τ ∈ C([t0,∞), R+) (here R
+ = [0,∞)), τ(t) is nondecreasing,

τ(t) < t for t ≥ t0 and limt→∞ τ(t) = ∞, has been the subject of many investigations.
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224 I. P. Stavroulakis

See, for example, [11, 15, 17, 21–26, 28, 29–32, 33-42, 44, 47-52, 54, 55, 59, 60, 66,
73–80, 82-84, 90] and the references cited therein.

By a solution of Eq.(1) we understand a continuously differentiable function de-
fined on [τ(T0),∞) for some T0 ≥ t0 and such that Eq.(1) is satisfied for t ≥ T0.
Such a solution is called oscillatory if it has arbitrarily large zeros, and otherwise it
is called nonoscillatory.

The oscillation theory of the (discrete analogue) delay difference equation

∆x(n) + p(n)x(τ(n)) = 0, n = 0, 1, 2, ..., (1)′

where ∆x(n) = x(n + 1) − x(n), p(n) is a sequence of nonnegative real numbers and
τ(n) is a nondecreasing sequence of integers such that τ(n) ≤ n− 1 for all n ≥ 0 and
limn→∞ τ(n) = ∞, has also attracted growing attention in the last decades, especially
in the case where the delay n − τ(n) is a constant, that is, in the special case of the
difference equation,

∆x(n) + p(n)x(n − k) = 0, n = 0, 1, 2, .... (1)′′

where k is a positive integer. The reader is referred to [5–10, 12, 13, 16, 18-20, 43,
46, 53, 56, 57, 61, 62, 63-65, 67-72, 81, 85-89] and the references cited therein.

By a solution of Eq.(1)′ we mean a sequence x(n) which is defined for n ≥ −k and
which satisfies (1)′ for n ≥ 0. A solution x(n) of Eq.(1)′ is said to be oscillatory if the
terms x(n) of the sequence are neither eventually positive nor eventually negative,
and otherwise the solution is said to be nonoscillatory. (Analogously for Eq.(1)′′.)

In this paper our main purpose is to present the state of the art on the oscillation
of all solutions to Eq.(1) especially in the case where

0 < lim inf
t→∞

∫ t

τ(t)

p(s)ds ≤
1

e
and lim sup

t→∞

∫ t

t−τ

p(s)ds < 1,

and (the discrete analogues) for Eq.(1)′ when

lim inf
n→∞

n−1
∑

i=τ(n)

p(i) ≤
1

e
and lim sup

n→∞

n
∑

i=τ(n)

p(i) < 1.

2. Oscillation Criteria for Eq. (1)

In this section we study the delay equation

x′(t) + p(t)x(τ(t)) = 0, t ≥ t0. (1)

where the functions p, τ ∈ C([t0,∞), R+), τ(t) is nondecreasing, τ(t) < t for t ≥ t0
and limt→∞ τ(t) = ∞.

56



Oscillation of Delay and Difference Equations with Variable Delay 225

The first systematic study for the oscillation of all solutions to Eq.(1) was made
by Myshkis. In 1950 [58] he proved that every solution of Eq.(1) oscillates if

lim sup
t→∞

[t − τ(t)] < ∞ and lim inf
t→∞

[t − τ(t)] lim inf
t→∞

p(t) >
1

e
. (C1)

In 1972, Ladas, Lakshmikantham and Papadakis [44] proved that the same con-
clusion holds if

A := lim sup
t→∞

∫ t

τ(t)

p(s)ds > 1. (C2)

In 1979, Ladas [42] established integral conditions for the oscillation of Eq.(1)
with constant delay. Tomaras [77-79] extended this result to Eq.(1) with variable
delay. For related results see Ladde [49-51]. The following most general result is due
to Koplatadze and Canturija [37].

If

a := lim inf
t→∞

∫ t

τ(t)

p(s)ds >
1

e
, (C3)

then all solutions of Eq.(1) oscillate; If

lim sup
t→∞

∫ t

τ(t)

p(s)ds <
1

e
, (N1)

then Eq.(1) has a nonoscillatory solution.

It is obvious that there is a gap between the conditions (C2) and (C3) when the

limit lim
t→∞

∫ t

τ(t)
p(s)ds does not exist. How to fill this gap is an interesting problem

which has been recently investigated by several authors.

In 1988, Erbe and Zhang [26] developed new oscillation criteria by employing the
upper bound of the ratio x(τ(t))/x(t) for possible nonoscillatory solutions x(t) of
Eq.(1). Their result says that all the solutions of Eq.(1) are oscillatory, if 0 < a ≤ 1

e

and

A > 1 −
a
2

4
. (C4)

Since then several authors tried to obtain better results by improving the upper bound
for x(τ(t))/x(t).

In 1991, Jian [35] derived the condition

A > 1 −
a
2

2(1 − a)
, (C5)

while in 1992, Yu and Wang [83] and Yu, Wang, Zhang and Qian [84] obtained the
condition

A > 1 −
1 − a −

√
1 − 2a − a

2

2
. (C6)
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In 1990, Elbert and Stavroulakis [23] and in 1991 Kwong [41], using different
techniques, improved (C4), in the case where 0 < a ≤ 1

e
, to the conditions

A > 1 − (1 −
1

√
λ1

)2 (C7)

and

A >
lnλ1 + 1

λ1
, (C8)

respectively, where λ1 is the smaller real root of the equation λ = eaλ.

In 1994, Koplatadze and Kvinikadze [38] improved (C6), while in 1998, Philos and
Sficas [59] and in 1999, Zhou and Yu [90] and Jaroš and Stavroulakis [34] derived the
conditions

A > 1 −
a
2

2(1 − a)
−

a
2

2
λ1, (C9)

A > 1 −
1 − a −

√
1 − 2a − a

2

2
− (1 −

1
√

λ1

)2, (C10)

and

A >
lnλ1 + 1

λ1
−

1 − a −
√

1 − 2a − a
2

2
, (C11)

respectively.

Consider Eq.(1) and assume that τ(t) is continuously differentiable and that there
exists θ > 0 such that p(τ(t))τ ′(t) ≥ θp(t) eventually for all t. Under this addi-
tional condition, in 2000, Kon, Sficas and Stavroulakis [36] and in 2003, Sficas and
Stavroulakis [60] established the conditions

A >
lnλ1 + 1

λ1
−

1 − a −
√

(1 − a)2 − 4Θ

2
(2.1)

and

A >
lnλ1

λ1
−

1 +
√

1 + 2θ − 2θλ1M

θλ1
(2.2)

respectively, where Θ = eλ1θa
−λ1θa−1

(λ1θ)2 and M =
1−a−

√
(1−a)2−4Θ

2 .

Remark 2.1. ([36], [60]) Observe that when θ = 1, then Θ = λ1−λ1a−1
λ1

2 , and (2.1)
reduces to

A > 2a +
2

λ1
− 1, (C12)

while in this case it follows that M = 1 − a − 1
λ1

and (2.2) reduces to

A >
lnλ1 − 1 +

√
5 − 2λ1 + 2aλ1

λ1
. (C13)
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Oscillation of Delay and Difference Equations with Variable Delay 227

In the case where a = 1
e
, then λ1 = e, and (C13) leads to

A >

√
7 − 2e

e
≈ 0.459987065.

It is to be noted that as a → 0, then all the previous conditions (C4) − (C12)
reduce to the condition (C2), i.e. A > 1. However, the condition (C13) leads to

A >
√

3 − 1 ≈ 0.732,

which is an essential improvement. Moreover (C13) improves all the above conditions
when 0 < a ≤ 1

e
as well. Note that the value of the lower bound on A can not be

less than 1
e

≈ 0.367879441. Thus the aim is to establish a condition which leads to
a value as close as possible to 1

e
. For illustrative purpose, we give the values of the

lower bound on A under these conditions when a = 1
e
.

(C4): 0.966166179
(C5): 0.892951367
(C6): 0.863457014
(C7): 0.845181878
(C8): 0.735758882
(C9): 0.709011646
(C10): 0.708638892
(C11): 0.599215896
(C12): 0.471517764
(C13): 0.459987065

We see that the condition (C13) essentially improves all the known results in the
literature.

Example 2.1. ([60]) Consider the delay differential equation

x′(t) + px

(

t − q sin2
√

t −
1

pe

)

= 0,

where p > 0, q > 0 and pq = 0.46 − 1
e
. Then

a = lim inf
t→∞

∫ t

τ(t)

pds = lim inf
t→∞

p(q sin2
√

t +
1

pe
) =

1

e

and

A = lim sup
t→∞

∫ t

τ(t)

pds = lim sup
t→∞

p(q sin2
√

t +
1

pe
) = pq +

1

e
= 0.46.

Thus, according to Remark 2.1, all solutions of this equation oscillate. Observe that
none of the conditions (C4)-(C12) apply to this equation.
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Following this historical (and chronological) review we also mention that in the
case where

∫ t

τ(t)

p(s)ds ≥
1

e
and lim

t→∞

∫ t

τ(t)

p(s)ds =
1

e

this problem has been studied in 1995, by Elbert and Stavroulakis [24], by Kozakiewicz
[39], Li [54, 55] and in 1996, by Domshlak and Stavroulakis [22].

3. Oscillation Criteria for Eq. (1)′

In this section we study the difference equation

∆x(n) + p(n)x(τ(n)) = 0, n = 0, 1, 2, ..., (1)′

where ∆x(n) = x(n + 1) − x(n), p(n) is a sequence of nonnegative real numbers and
τ(n) is a nondecreasing sequence of integers such that τ(n) ≤ n− 1 for all n ≥ 0 and
limn→∞ τ(n) = ∞.

In the special case where the delay n − τ(n) is a constant, the delay difference
equation (1)′ becomes

∆x(n) + p(n)x(n − k) = 0, n = 0, 1, 2, .... (1)′′

where k is a positive integer.
In 1981, Domshlak [12 ]was the first who studied this problem in the case where

k = 1.Then, in 1989, Erbe and Zhang [27] established that all solutions of Eq.(1)′′

are oscillatory if

lim inf
n→∞

p(n) >
kk

(k + 1)k+1
(3.1)

or

lim sup
n→∞

n
∑

i=n−k

p(i) > 1. (C2)
′′

In the same year, 1989, Ladas, Philos and Sficas [46] proved that a sufficient condition
for all solutions of Eq.(1)′′ to be oscillatory is that

lim inf
n→∞

n−1
∑

i=n−k

p(i) >

(

k

k + 1

)k+1

(C3)
′′

Therefore they improved the condition (3.1) by replacing the p(n) of (3.1) by the
arithmetic mean of p(n − k), ..., p(n − 1) in (C3)

′′.

Concerning the constant kk

(k+1)k+1 in (3.1) it should be emphasized that, as it is

shown in [27], if

sup p(n) <
kk

(k + 1)k+1
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Oscillation of Delay and Difference Equations with Variable Delay 229

then Eq.(1)′′ has a nonoscillatory solution.
In 1990, Ladas [43] conjectured that Eq.(1)′′ has a nonoscillatory solution if

n−1
∑

i=n−k

p(i) <

(

k

k + 1

)k+1

holds eventually. However, a counterexample to this conjecture was given in 1994, by
Yu, Zhang and Wang [86].

It is interesting to establish sufficient oscillation conditions for the equation (1)′′

in the case where neither (C2)
′′ nor (C3)

′′ is satisfied.
In 1995, the following oscillation criterion was established by Stavroulakis [63]:

If 0 < α0 ≤
(

k
k+1

)k+1

, where

α0 = lim inf
n→∞

n−1
∑

i=n−k

p(i)

then the condition

lim sup
n→∞

p(n) > 1 −
α2

0

4
(3.2)

implies that all solutions of Eq.(1)′′ oscillate. In 2004, the same author [64] improved
the condition (3.2) to the following

lim sup
n→∞

n−1
∑

i=n−k

p(i) > 1 −
α2

0

4
(C4)

′′

or

lim sup
n→∞

n−1
∑

i=n−k

p(i) > 1 − αk
0 , (3.3)

while in 2006, Chatzarakis and Stavroulakis [5], established the condition

lim sup
n→∞

n−1
∑

i=n−k

p(i) > 1 −
α2

0

2(2 − α0)
. (3.4)

Also, Chen and Yu [6] obtained the following oscillation condition

lim sup
n→∞

n
∑

i=n−k

p (i) > 1 −
1 − α0 −

√

1 − 2α0 − α2
0

2
. (C6)

′′

Remark 3.1. Observe that the conditions (C2)
′′, (C3)

′′, (C4)
′′ and (C6)

′′ are the
discrete analogues of the conditions (C2), (C3), (C4) and (C6) respectively for Eq.(1)′′

.
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230 I. P. Stavroulakis

In the case of Eq.(1)′ with a general delay argument τ(n), from Chatzarakis,
Koplatadze and Stavroulakis [2], it follows the following

Theorem 3.1. ([2]) If

lim sup
n→∞

n
∑

i=τ(n)

p(i) > 1 (C2)
′

then all solutions of Eq. (1)′ oscillate.

This result generalizes the oscillation criterion (C2)
′′. Also Chatzarakis,Koplatadze

and Stavroulakis [3] extended the oscillation criterion (C3)
′′ to the general case of Eq.

(1)′. More precisely, the following theorem has been established in [3].

Theorem 3.2. ([3]) Assume that

lim sup
n→∞

n−1
∑

i=τ(n)

p(i) < +∞ (3.5)

and

α := lim inf
n→∞

n−1
∑

i=τ(n)

p(i) >
1

e
. (C3)

′

Then all solutions of Eq.(1)′ oscillate.

Remark 3.2. It is to be pointed out that the conditions (C2)
′ and (C3)

′ are
the discrete analogues of the conditions (C2) and (C3) and also the analogues of the
conditions (C2)

′′ and (C3)
′′ for Eq.(1)′ in the case of a general delay argument τ(n).

Remark 3.3. ([3]). The condition (C3)
′ is optimal for Eq.(1)′ under the assumption

that lim
n→+∞

(n − τ(n)) = ∞, since in this case the set of natural numbers increases

infinitely in the interval [τ(n), n − 1] for n → ∞.

Now, we are going to present an example to show that the condition (C3)
′ is

optimal, in the sense that it cannot be replaced by the non-strong inequality.

Example 3.1. ([3]) Consider Eq.(1)′, where

τ(n) = [βn], p(n) =
(

n−λ − (n + 1)−λ
)

([βn])
λ

, β ∈ (0, 1), λ = − ln−1 β (3.6)

and [βn] denotes the integer part of βn.
It is obvious that

n1+λ
(

n−λ − (n + 1)−λ
)

→ λ for n → ∞.

Therefore

n
(

n−λ − (n + 1)−λ
)

([βn])λ →
λ

e
for n → ∞. (3.7)
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Oscillation of Delay and Difference Equations with Variable Delay 231

Hence, in view of (3.6) and (3.7), we have

lim inf
n→∞

n−1
∑

i=τ(n)

p(i) =
λ

e
lim inf
n→∞

n−1
∑

i=[βn]

e

λ
i
(

i−λ − (i + 1)−λ
)

([βi])λ .
1

i

=
λ

e
lim inf
n→∞

n−1
∑

i=[βn]

1

i
=

λ

e
ln

1

β
=

1

e

or

lim inf
n→∞

n−1
∑

i=τ(n)

p(i) =
1

e
. (3.8)

Observe that all the conditions of Theorem 3.2 are satisfied except the condition (C3)
′.

In this case it is not guaranteed that all solutions of Eq.(1)′ oscillate. Indeed, it is
easy to see that the function u = n−λ is a positive solution of Eq.(1)′.

As it has been mentioned above, it is an interesting problem to find new sufficient
conditions for the oscillation of all solutions of the delay difference equation (1)′, in
the case where neither (C2)

′ nor (C3)
′ is satisfied.

In 2007, Chatzarakis, Koplatadze and Stavroulakis [2] investigated for the first
time this question for the difference equation (1)′ in the case of a general delay
argument τ(n) and derived the following theorem.

Theorem 3.3. ([2]) Assume that 0 < α ≤ 1
e
. Then we have:

(I) If

lim sup
n→∞

n
∑

j=τ(n)

p (j) > 1 −
(

1 −
√

1 − α
)2

(3.9)

then all solutions of Eq.(1)′ oscillate.

(II) If in addition,

p(n) ≥ 1 −
√

1 − α for all large n, (3.10)

and

lim sup
n→∞

n
∑

j=τ(n)

p (j) > 1 − α
1 −

√
1 − α

√
1 − α

(3.11)

then all solutions of Eq.(1)′ oscillate.

Recently the above result was improved in [4] as follows.

Theorem 3.4. ([4]) (I) If 0 < α ≤ 1
e

and

lim sup
n→∞

n
∑

j=τ(n)

p (j) > 1 −
1

2

(

1 − α −
√

1 − 2α
)

(3.12)

then all solutions of Eq.(1)′ oscillate.
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(II) If 0 < α ≤ 6 − 4
√

2 and in addition,

p(n) ≥
α

2
for all large n, (3.13)

and

lim sup
n→∞

n
∑

j=τ(n)

p (j) > 1 −
1

4

(

2 − 3α −
√

4 − 12α + α2
)

(3.14)

then all solutions of Eq.(1)′ are oscillatory.

Remark 3.4. Observe the following:
(i) When 0 < α ≤ 1

e
, it is easy to verify that

1

2

(

1 − α −
√

1 − 2α
)

>
(

1 −
√

1 − α
)2

,

and therefore the inequality (3.12) improves the inequality (3.9).

(ii) When 0 < α ≤ 6 − 4
√

2, because

1 −
√

1 − α >
α

2
,

we see that the assumption (3.13) is weaker than the assumption (3.10), and moreover,
we can show that

1

4

(

2 − 3α −
√

4 − 12α + α2
)

> α
1 −

√
1 − α

√
1 − α

and so the inequality (3.14) is an improvement of the inequality (3.11).

(iii) When 0 < α ≤ 1
e
, it is easy to see that

1

2

(

1 − α −
√

1 − 2α − α2
)

>
1

2

(

1 − α −
√

1 − 2α
)

and therefore, in the case of Eq.(1)′′, the condition (C6)
′′ is weaker than the condition

(3.12).
Observe, however, that when 0 < α ≤ 6 − 4

√
2, it is easy to show that

1

4

(

2 − 3α −
√

4 − 12α + α2
)

>
1

2

(

1 − α −
√

1 − 2α − α2
)

,

and therefore in this case and when (3.13) holds, inequality (3.14) improves the in-
equality (C6)

′′ and especially, when α = 6 − 4
√

2 ≃ 0.3431457, the lower bound in
(C6)

′′ is 0.8929094 while in (3.14) is 0.7573593.

We illustrate by the following example.
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Example 3.2. ([4]) Consider the equation

∆x(n) + p(n)x(n − 2) = 0,

where

p(3n) =
1474

10000
, p(3n + 1) =

1488

10000
, p(3n + 2) =

6715

10000
, n = 0, 1, 2, ....

Here k = 2 and it is easy to see that

α0 = lim inf
n→∞

n−1
∑

j=n−2

p(j) =
1474

10000
+

1488

10000
= 0.2962 <

(

2

3

)3

≃ 0.2962963,

and

lim sup
n→∞

n
∑

j=n−2

p(j) =
1474

10000
+

1488

10000
+

6715

10000
= 0.9677.

Observe that

0.9677 > 1 −
1

2

(

1 − α0 −
√

1 − 2α0

)

≃ 0.967317794,

that is, condition (3.12) of Theorem 3.4 is satisfied and therefore all solutions oscillate.
Also, condition (C6)

′′ is satisfied. Observe, however, that

0.9677 < 1,

α0 = 0.2962 <

(

2

3

)3

≃ 0.2962963,

0.9677 < 1 −
(

1 −
√

1 − α0

)2 ≃ 0.974055774,

and therefore none of the conditions (C2)
′′, (C3)

′′ and (3.9) is satisfied.
If, on the other hand, in the above equation

p(3n) = p(3n + 1) =
1481

10000
, p(3n + 2) =

6138

10000
, n = 0, 1, 2, ...,

it is easy to see that

α0 = lim inf
n→∞

n−1
∑

j=n−2

p(j) =
1481

10000
+

1481

10000
= 0.2962 <

(

2

3

)3

≃ 0.2962963,

and

lim sup
n→∞

n
∑

j=n−2

p(j) =
1481

10000
+

1481

10000
+

6138

10000
= 0.91.

Furthermore, it is clear that

p(n) ≥
α0

2
for all large n.
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In this case

0.91 > 1 −
1

4

(

2 − 3α0 −
√

4 − 12α0 + α2
0

)

≃ 0.904724375,

that is, condition (3.14) of Theorem 3.4 is satisfied and therefore all solutions oscillate.
Observe, however, that

0.91 < 1,

α0 = 0.2962 <

(

2

3

)3

≃ 0.2962963,

0.91 < 1 −
(

1 −
√

1 − α0

)2
≃ 0.974055774,

0.91 < 1 −
1

2

(

1 − α0 −
√

1 − 2α0 − α2
0

)

≃ 0.930883291,

and therefore none of the conditions (C2)
′′, (C3)

′′, (3.9) and (C6)
′′ is satisfied.
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