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Abstract. Consider the discrete Hamiltonian system,
{

∆x1(n) = −Hx2
(n, x1(n + 1), x2(n))

∆x2(n) = Hx1
(n, x1(n + 1), x2(n))

, n ∈ Z(0, m − 1),

with the boundary value conditions

x1(0) = A, x2(m) = B,

where m is a positive integer, x1, x2 ∈ R, H(n, x1, x2) ∈ C1(R × R, R) for each
n ∈ Z(0, m − 1). For the first time, results on the existence of solutions of such a
system are established by using the critical point theory.

AMS Subject Classifications: 39A11

Keywords: Boundary value problem; Discrete Hamiltonian systems; Saddle point
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1. Introduction

Let N, Z, and R be the sets of all natural numbers, integers, and real numbers respec-
tively. For a, b ∈ Z, define Z(a) = {a, a + 1, · · · }, Z(a, b) = {a, a + 1, · · · , b} when
a ≤ b.
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Recently, some scholars have investigated the discrete Hamiltonian system
{

∆x1(n) = −Hx2
(n, x1(n + 1), x2(n))

∆x2(n) = Hx1
(n, x1(n + 1), x2(n))

, n ∈ Z

for the disconjugacy, oscillations and asymptotic behavior [3, 5, 7, 8, 11]. There are
also few papers which deal with the existence of periodic and subharmonic solutions
of discrete Hamiltonian systems [9, 17] by using the critical point theory. As for
the existence of periodic solutions to the general difference equations, we refer to
[1, 2, 10, 16].

Unlike the discrete case, the corresponding continuous Hamiltonian system










dx

dt
= −Hy(t, x(t), y(t))

dy

dt
= Hx(t, x(t), y(t))

(1.1)

has been studied extensively by many scholars. In particular, using the critical point
theory, Benci, Chang, Mahwin, Rabinowitz and others have obtained some significant
results for the existence of periodic and subharmonic solutions of (1.1). We refer to
[4, 6, 12, 13, 14, 15] and the references therein for details.

In this paper, we shall consider the discrete Hamiltonian system,
{

∆x1(n) = −Hx2
(n, x1(n + 1), x2(n))

∆x2(n) = Hx1
(n, x1(n + 1), x2(n))

, n ∈ Z(0, m − 1), (1.2)

with boundary value conditions

x1(0) = A, x2(m) = B, (1.3)

where m ∈ N, x1, x2 ∈ R, H(n, x1, x2) ∈ C1(R × R, R) for each n ∈ Z(0, m − 1),
∆xi(n) = xi(n + 1) − xi(n), i = 1, 2. The main purpose of this paper is to establish
the existence of the boundary value problem (BVP for short) of (1.2) and (1.3) by
using the critical point theory. The main idea is to set up a suitable variational
framework for (1.2)—(1.3) such that the existence of solutions to (1.2) and (1.3) is
equivalent to the existence of critical points of the variational functional. This is the
first time in the literature that the critical point theory is used to deal with the BVP
of discrete Hamiltonian systems.

For BVP (1.2) and (1.3), define a functional F on R
2m by

F (x) =
m−1
∑

n=1
(∆x1(n), x2(n)) +

m−1
∑

n=0
H(n, x1(n + 1), x2(n))

+(x1(1) − A)x2(0) − Bx1(m),
(1.4)

where

x = (x1(1), x1(2), · · · , x1(m), x2(0), x2(1), · · · , x2(m − 1))T ∈ R
2m.

After a simple computation, we can prove the following result.
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Lemma 1.1. There is a one to one correspondence between the critical points of
the functional F and the solutions of BVP (1.2) and (1.3). More precisely, x =
(x1(1), x1(2), · · · , x1(m), x2(0), x2(1), · · · , x2(m − 1))T is a critical point of F if and
only if {x1(n), x2(n)}m

n=0 with x1(0) = A and x2(m) = B is a solution of BVP (1.2)
and (1.3).

From Lemma 1.1, the existence of solutions to BVP (1.2) and (1.3) is transferred
to the existence of critical points of the functional F .

Rewrite F as

F (x) =
1

2
(Dx, x) +

m−1
∑

n=0

H(n, x1(n + 1), x2(n)) − (η, x), (1.5)

where η = (η1, η2, · · · , η2m)T with ηi = 0 for i = 1, · · · , m − 1, m + 2, · · · , 2m and
ηm = B, ηm+1 = A,

D =

(

0 Q

QT 0

)

2m×2m

with Q =

















1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
0 0 1 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −1
0 0 0 · · · 0 1

















m×m

.

It is easy to see that λ is an eigenvalue of D if and only if λ2 is an eigenvalue of QT Q.
Since

QT Q =

















2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 2 −1
0 0 0 · · · −1 1

















m×m

is positive definite, QT Q has m positive eigenvalues denoted by λ2
1, λ

2
2, · · · , λ2

m, where
0 < λ1 ≤ λ2 ≤ · · · ≤ λm. Then the eigenvalues of D areλ±1, λ±2, · · · , λ±m, where
λ−j = −λj for j = 1, . . ., m.

Let X1, X2 denote the eigenspaces associated with all negative eigenvalues and
all positive eigenvalues of D, respectively. Then

R
2m = X1 ⊕ X2.

For any x = (x1, x2, · · · , x2m)T ∈ R
2m and r > 1, define

‖x‖r =

(

2m
∑

i=1

xr
i

)
1

r

.
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Then ‖ · ‖r is a norm in R
2m. Clearly, the usual Euclidean norm |x| = ‖x‖2. Since

R
2m is a finite dimensional space, ‖ · ‖2 and ‖ · ‖r are equivalent, i.e. there exist

positive constants C1r and C2r such that

C1r‖x‖r ≤ ‖x‖2 ≤ C2r‖x‖r, ∀x ∈ R
2m. (1.6)

Moreover, we have

−λm‖u‖2
2 ≤ (Du, u) ≤ −λ1‖u‖2

2, for u ∈ X1, (1.7)

λ1‖v‖2
2 ≤ (Dv, v) ≤ λm‖v‖2

2, for v ∈ X2. (1.8)

Here, (·, ·) denotes the inner product in R
2m.

Now we recall some basic conceptions and lemmas in the critical point theory.
Let X be a real Banach space, I ∈ C1(X, R), i.e. I is a continuously Fréchet

differentiable functional defined on X . I is said to satisfy the Palais-Smale condition
(P-S condition), if any sequence {un} ⊂ X for which {I(un)} is bounded and I ′(un) →
0(n → ∞) possesses a convergent subsequence in X .

Let Br denote the open ball in X about 0 of radius r and let ∂Br denote its
boundary.

Lemma 1.2. (Saddle Point Theorem) (see [15]): Let X be a real Banach space,
X = X1 ⊕ X2, where X1 6= {0} and is finite dimensional. Suppose I ∈ C1(X, R)
satisfies the P-S condition and

(I1) there exist constants σ, ρ > 0 such that I|∂Bρ∩X1
≤ σ, and

(I2) there is e ∈ Bρ ∩ X1 and a constant ω > σ such that I|e+X2
≥ ω.

Then I possesses a critical value c ≥ ω and

c = inf
h∈Γ

max
u∈Bρ∩X1

I(h(u)),

where Γ = {h ∈ C(B̄ρ ∩ X1, X) : h|∂Bρ∩X1
= id}.

Let
H(n, x1, x2) = H(n, z), n ∈ Z(0, m − 1),

where z = (x1, x2)
T ∈ R

2. The rest of this paper is organized as follows. In section 2,
we consider the case where H is subquadratic. Then in scetion 3, we discuss the case
where H is superquadratic. Finally, in section 4, we consider the case where Hz(n, z)
is Lipschitzian.

2. The Subquadratic Case

Theorem 2.1. Suppose H(n, z) satisfies the following two conditions.
(H1) There exist constants R1 > 0 and α ∈ (1, 2) such that for any (n, z) ∈

Z(0, m − 1) × R
2 with |z| ≥ R1,

0 < z · Hz(n, z) ≤ αH(n, z). (2.1)
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(H2) There exist constants a1 > 0, a2 ≥ 0 and γ ∈ (1, α] such that

H(n, z) ≥ a1|z|γ − a2, ∀(n, z) ∈ Z(0, m − 1) × R
2. (2.2)

Then the BVP (1.2) with (1.3) has at least one solution.

Remark 2.1 Integrating inequality (2.1) gives us

H(n, z) ≤ a3|z|α + a4 (2.3)

for some positive constants a3 and a4. It follows from 2.3 that

lim
|z|→∞

H(n, z)

z2
= 0.

Such H(n, z) is called subquadratic at infinity.

Proof of Theorem 2.1. First, we show that F satisfies the P-S condition.
Clearly, F ∈ C1(R2m, R). Let x(k) ∈ R

2m, k ∈ Z(1) be such that {F (x(k))} is
bounded and F ′(x(k)) → 0 as k → ∞. Then there exists a constant M1 > 0 and
k0 ∈ Z(1) such that

|F (x(k))| ≤ M1 for k ∈ Z(1), |(F ′(x(k)), x)| ≤ ‖x‖2 for k ∈ Z(k0), x ∈ R
2m.

Since

(F ′(x(k)), x(k)) = (Dx(k), x(k)) +

m−1
∑

n=0

Hz(n, Lx(k)(n + 1)) · Lx(k)(n + 1) − (η, x(k)),

where Lx(n) ∈ R
2 is defined as (x1(n), x2(n − 1))T , we see that, for k ∈ Z(k0),

M1 +
1

2
‖x(k)‖2

≥ F (x(k)) − 1

2
(F ′(x(k)), x(k))

=

m−1
∑

n=0

[

H(n, Lx(k)(n + 1)) − 1

2
Lx(k)(n + 1) · Hz(n, Lx(k)(n + 1))

]

− 1

2
(η, x(k))

For any k ∈ Z(k0), denote

Sk
1 = {n ∈ Z(1, m)| |Lx(k)(n)| ≥ R1}, Sk

2 = {n ∈ Z(1, m)| |Lx(k)(n)| < R1}.
Then Sk

1 ∪ Sk
2 = Z(1, m), and

M1 +
1

2
‖x(k)‖2

≥
m
∑

n=1

H(n − 1, Lx(k)(n)) − 1

2

∑

n∈Sk
1

Lx(k)(n) · Hz(n − 1, Lx(k)(n))

−1

2

∑

n∈Sk
2

Lx(k)(n) · Hz(n − 1, Lx(k)(n)) − 1

2
(η, x(k)).
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In view of (2.1), we have

M1 +
1

2
‖x(k)‖2

≥
m
∑

n=1

H(n − 1, Lx(k)(n)) − α

2

∑

n∈Sk
1

H(n − 1, Lx(k)(n))

−1

2

∑

n∈Sk
2

Lx(k)(n) · Hz(n − 1, Lx(k)(n)) − 1

2
(η, x(k))

= (1 − α

2
)

pm
∑

n=1

H(n − 1, Lx(k)(n)) − 1

2
(η, x(k))

+
1

2

∑

n∈Sk
2

[αH(n − 1, Lx(k)(n)) − Lx(k)(n) · Hz(n − 1, Lx(k)(n))].

Since αH(n − 1, z) − z · Hz(n − 1, z) is continuous with respect to z ∈ R
2 for each

n ∈ Z(1, m), there exists a constant M2 > 0 such that

|αH(n − 1, z)− z · Hz(n − 1, z)| ≤ M2, ∀z ∈ R
2 and |z| ≤ R1, n ∈ Z(1, m).

Thus,

M1 +
1

2
‖x(k)‖2 ≥ (1 − α

2
)

m
∑

n=1

H(n − 1, Lx(k)(n)) − 1

2
‖η‖2‖x(k)‖2 −

1

2
mM2.

By (2.2) and (1.6), we get

M1 +
1

2
‖x(k)‖2

≥ (1 − α

2
)a1

m
∑

n=1

|Lx(k)(n)|γ − (1 − α

2
)a2m − 1

2
‖η‖2‖x(k)‖2 −

1

2
mM2

≥ (1 − α

2
)a1

(

1

C2γ

)γ

‖x(k)‖γ
2 − 1

2
‖η‖2‖x(k)‖2 − M3,

where M3 = (1 − α
2 )a2m + 1

2mM2 and

‖Lx‖2
2 =

m
∑

n=1

|Lx(n)|2 =

m
∑

n=1

(|x1(n)|2 + |x2(n − 1)|2) = ‖x‖2
2.

Therefore,

(1 − α

2
)a1

(

1

C2γ

)γ

‖x(k)‖γ
2 − 1

2
(1 + ‖η‖2)‖x(k)‖2 ≤ M1 + M3.

Because γ ∈ (1, 2), we see that {‖x(k)‖2} is bounded. Since R
2m is finite dimensional,

{x(k)} has a subsequence which is convergent in R
2m. Therefore, F satisfies the P-S

condition.
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Now we prove F satisfies (I1) and (I2). To this end, let v ∈ X2. Then

F (v) =
1

2
(Dv, v) +

m
∑

n=1

H(n − 1, Lv(n)) − (η, v)

≥ 1

2
λ1‖v‖2

2 +

m
∑

n=1

(a1|Lv(n)|γ − a2) − ‖η‖2‖v‖2

≥ −a2m − ‖η‖2
2

2λ1
.

Let ω = −a2m− ‖η‖2

2

2λ1

, e = 0, σ = ω − 1. Then F satisfies (I2). By (1.7), for u ∈ X1,
it follows from (2.3) that

F (u) =
1

2
(Du, u) +

m
∑

n=1

H(n − 1, Lu(n)) − (η, u)

≤ −1

2
λ1‖u‖2

2 + a3

m
∑

n=1

|Lu(n)|α + a4m + ‖η‖2‖u‖2

≤ −1

2
λ1‖u‖2

2 + a3

(

1

C1α

)α

‖u‖α
2 + ‖η‖2‖u‖2 + a4m.

Since 1 < α < 2, there exists a sufficiently large constant ρ > 0 such that

F (u) ≤ σ, ∀u ∈ X1 with ‖u‖ = ρ.

Thus (I1) holds. By Lemma 1.2, there exists at least one critical point of F . This
completes the proof. �

3. The Superquadratic Case

Theorem 3.1. Assume the following condition,
(H3) There exist some constants R2 > 0, β > 2 such that for any (n, z) ∈ Z(0, m−

1) × R
2, |z| ≥ R2,

(z, Hz(n, z)) ≥ βH(n, z) > 0, (3.1)

holds. Then BVP (1.2) with (1.3) possesses at least one solution.

Remark 3.1. It follows from (3.1) easily that there exist positive constants a5 and
a6 such that

H(n, z) ≥ a5|z|β − a6, ∀(n, z) ∈ Z(0, m − 1) × R
2. (3.2)

Therefore the assumption (H3) implies that H(t, z) grows superquadratically at in-
finity.

In order to prove Theorem 3.1, we need the following lemma.
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Lemma 3.1. Suppose that H(n, z) satisfies (H3). Then F (x) defined in (1.4) is
bounded from below in R

2m.

Proof. For any x ∈ R
2m, let x = u + v ∈ X1 ⊕ X2. Then, in view of (1.5),

F (x)

= 1
2 [(Du, u) + (Dv, v)] +

m
∑

n=1
H(n − 1, x1(n), x2(n − 1)) − (η, x)

≥ − 1
2λm‖u‖2

2 + 1
2λ1‖v‖2

2 + a5

m
∑

n=1
|Lx(n)|β − a6m − ‖η‖2‖x‖2

≥ − 1
2λm‖u‖2

2 + a5

m
∑

n=1
|Lx(n)|β − ‖η‖2‖x‖2 − a6m

≥ − 1
2λm‖x‖2

2 + a5

(

1
C2β

)β

‖x‖β
2 − ‖η‖2‖x‖2 − a6m.

(3.3)

Since β > 2, it is clear that there exists a positive constant M4 such that

F (x) ≥ −M4, ∀x ∈ R
2m.

The proof is complete. �

Proof of Theorem 3.1. By Lemma 3.1, F (x) is bounded from below on R
2m. Let

c0 = inf
x∈R2m

F (x).

According to (3.3), we know that F (x) is coercive. Then, there must be a point
x̄ ∈ R

2m such that F (x̄) = c0 and thus x̄ ∈ R
2m is a critical point of F . The proof is

complete. �

4. The Lipschitz Case

In this section, we suppose that Hz(n, z) satisfies the Lipschitz condition.
(H4) H(n, z) is Lipschitizian in z, namely, there exists a positive constant L such

that
|Hz(n, z1) − Hz(n, z2)| ≤ L|z1 − z2| (4.1)

holds for n ∈ Z(0, m − 1), z1, z2 ∈ R
2.

By (H4), there exists a positive constant a7 such that

|Hz(n, z)| ≤ L|z|+ a7, ∀(n, z) ∈ Z(0, m − 1) × R
2. (4.2)

Theorem 4.1. Assume that L < λ1 and (4.2) holds. Then the BVP (1.2) with (1.3)
has at least one solution.
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Proof. In view of (4.2), there exists a constant a8 > 0 such that

|H(n, z)| ≤ 1

2
L|z|2 + a7|z| + a8, ∀(n, z) ∈ Z(0, m − 1) × R

2. (4.3)

We first show that F satisfies the P-S condition. In fact, suppose that {x(k)} is a
sequence in R

2m such that for any k ∈ Z(1), |F (x(k))| ≤ M5 for some positive constant
M5 and F ′(x(k)) → 0 as k → ∞. Then for sufficiently large k, ‖F ′(x(k))‖ ≤ 1. Since

(F ′(x(k)), x) = (Dx(k), x) +

m
∑

n=1

Hz(n − 1, Lx(k)(n)) · Lx(n) − (η, x), ∀x ∈ R
2m.

Then for sufficiently large k,

‖Dx(k)‖2 ≤
(

m
∑

n=1
|Hz(n − 1, Lx(k)(n))|2

)
1

2

+ ‖η‖2 + 1

≤
(

m
∑

n=1
(L|Lx(k)(n)| + a7)

2

)
1

2

+ ‖η‖2 + 1

≤ L‖x(k)‖2 + (a7
√

m + ‖η‖2 + 1).

(4.4)

On the other hand, let x(k) = u(k) + v(k) ∈ X1 ⊕ X2. Then

Dx(k) = Du(k) + Dv(k),

which implies that

‖Dx(k)‖2 = ‖Du(k)‖2 + ‖Dv(k)‖2 ≥ λ2
1(‖u(k)‖2

2 + ‖v(k)‖2
2) = λ2

1‖x(k)‖2
2.

From (4.4), we get

λ1‖x(k)‖2 ≤ L‖x(k)‖2 + (a7

√
m + ‖η‖2 + 1).

Noticing the fact that L < λ1, we have

‖x(k)‖2 ≤ a7
√

m + ‖η‖2 + 1

λ1 − L
.

So, {x(k)} is bounded.
Now we check that the conditions (I1) and (I2) in Lemma 1.2. For any v ∈ X2,

according to (4.3), we have

F (v) =
1

2
(Dv, v) +

m
∑

n=1

H(n − 1, Lv(n)) − (η, v)

≥ 1

2
λ1‖v‖2

2 −
m
∑

n=1

(
1

2
L|Lv(n)|2 + a7|Lv(n)| + a8) − ‖η‖2‖v‖2

≥ 1

2
(λ1 − L)‖v‖2

2 − (a7

√
m + ‖η‖2)‖v‖2 − a8m,
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which implies that
F (v) ≥ ω

holds for some negative constant ω. Let e = 0, then, (I2) holds.
For any u ∈ X1, according to (1.7) and (4.3), we have

F (u) =
1

2
(Du, u) +

m
∑

n=1

H(n − 1, Lu(n))− (η, u)

≤ −1

2
λ1‖u‖2

2 +

m
∑

n=1

(
1

2
L|Lu(n)|2 + a7|Lu(n)| + a8) + ‖η‖2‖u‖2

≤ 1

2
(−λ1 + L)‖u‖2

2 + (a7

√
m + ‖η‖2)‖u‖2 + a8m.

This implies F (u) → −∞ as ‖u‖2 → ∞. Let σ = ω−1. Then there exists a sufficiently
large ρ > 0 such that

F (u) ≤ σ, ∀u ∈ X1, with ‖u‖2 = ρ. (4.5)

Thus (I1) is satisfied. Now, the result follows directly from Lemma 1.2 and hence the
proof of Theorem 4.1 is complete. �

The following corollary is obvious.

Corollary 4.1. Assume that L < λ1 and (H4) holds. Then the BVP (1.2) with (1.3)
has at least one solution.
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