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Abstract. In this paper we give a sufficient condition to imply local and global
asymptotic attractivity of the equilibrium of the Cohen-Grossberg neural network
with time-dependent delays of the form

ẋi(t) = ci(x(t))



−di(xi(t)) +

n
∑

j=1

aijfj(xj(t)) +

n
∑

j=1

bijfj(xj(t− τij(t))) − Ii





t ≥ 0 (i = 1, . . . , n) independently of the delays.
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1. Introduction

The notion of cellular neural networks (CNNs) was introduced by Chua and Yang ([6]),
and since then, CNN models have been used in many engineering applications, e.g.,
in signal processing and especially in static image treatment [7]. As a generalization
of CNNs, cellular neural networks with delays (DCNNs) were introduced by Roska
and Chua [15].
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In [8] Cohen and Grossberg proposed a neural network model (CGNN) described
by the following system of ordinary differential equations

ẋi(t) = ci(xi(t))



−di(xi(t)) +
n
∑

j=1

aijfj(xj(t)) − Ii



 , t ≥ 0 (1.1)

(i = 1, . . . , n). Here n is the number of neurons in the network; xi(t) is the potential
of the ith neuron; ci(xi(t)) represents the amplification function; di(xi(t)) is an ap-
propriately behaved function such that the solution remains bounded; fj(xj) is the
activation function of the ith neuron; aij denotes the strengths of the jth unit on the
ith unit at time t; and Ii is an external input to the ith neuron.

In this paper we study the asymptotic stability of the CGNN model with time-
dependent delays of the form

ẋi(t)=ci(xi(t))



−di(xi(t)) +
n
∑

j=1

aijfj(xj(t)) +
n
∑

j=1

bijfj(xj(t− τij(t))) − Ii





(1.2)
for t ≥ 0 (i = 1, . . . , n). Here τij(t) corresponds to delay of signals from the ith neuron
to the jth neuron. We associate the initial conditions

xi(t) = ϕi(t), t ∈ [−r, 0], i = 1, . . . , n, (1.3)

to (1.2), where r = max{supt≥0 τij(t) : i, j = 1, . . . , n}.
The delayed CGNN model (1.2) includes as a special case (using ci(x) = 1, di(x) =

γix) the delayed Hopfield CNN model

ẋi(t) = −γixi(t) +

n
∑

j=1

aijfj(xj(t)) +

n
∑

j=1

bijfj(xj(t− τij(t))) − Ii, (1.4)

t ≥ 0, (i = 1, . . . , n).
We assume throughout this paper that

(H1) ci : R → (0,∞) is continuous for i = 1, . . . , n;

(H2) di : R → R is continuous and increasing for i = 1, . . . , n;

(H3) fi : R → R is continuous and increasing, and |fi(x)| ≤M for i = 1, . . . , n.

A typical, widely used activation function is the Hopfield output function f : R →
R defined by

f(t) =
1

2
(|t+ 1| − |t− 1|) =







1, t > 1,
t, −1 ≤ t ≤ 1,
−1, t < −1

(1.5)

satisfies (H3). Another frequently used activation function in applications is a sigmoid-
type smooth function, like f(x) = tanhx.
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The stability of (1.2) and more general classes of CGNNs has been intensively
studied, see, e.g., [1], [3]–[5], [10]–[11], [16]–[20], and the references therein. Note that
in these references (H1)–(H3) (together with some additional conditions) are used as
standard assumptions on the parameters of (1.2).

Arik and Orman in [1] proved that if (H1)–(H3) holds and

0 < αi ≤ ci(x) ≤ αi (x ∈ R) (1.6)

di(x) − di(y)

x− y
≥ γi > 0, |gi(x) − gi(y)| ≤ Li|x− y|, (x 6= y, x, y ∈ R), (1.7)

‖A‖1 + ‖B‖1 <
γmαm

αMLM

, (1.8)

where γm = min{γ1, . . . , γn}, αm = min{α1, . . . , αn}, αM = max{α1, . . . , αn}, LM =
max{L1, . . . , Ln}, ‖ · ‖1 is the matrix norm generated by the ‖x‖1 =

∑n

k=1 |xi| vector
norm, then (1.2) has a unique equilibrium, which is globally exponentially stable.
Hwang, Cheng and Liao [11] proved a similar result, but instead of (1.8) they assumed

‖A‖2 + ‖B‖2 <
γmαm

αMLM

.

Wang, Zou [17] showed that under (H1)–(H3), (1.6), (1.7), aij = 0 (i, j =
1, . . . , n), and

αiγi > Li

n
∑

j=1

|bij |αj , i = 1, . . . , n (1.9)

yields that (1.2) has a unique equilibrium, which is globally exponentially stable.
Liao, Yang and Guo [14] and also Li and Yang [13] proved the same result (for a
slightly more general equation).

In Section 2 we give a sufficient condition which implies global attractivity of
the unique equilibrium of the delayed CGNN (1.2). In our results we do not assume
boundedness of the functions c1, . . . , cn, so (1.6) is not necessarily satisfied. We also
present some other sufficient conditions, where, instead of the global Lipschitz type
condition (1.7), we assume nonlinear estimates, which imply local attractivity of the
equilibrium. We also present sufficient conditions implying global attractivity of the
equilibrium. In Section 3 we give examples which illustrate that our main results are
applicable to a larger class of CGNNs than the existing ones cited above. Section 4
contains the proofs of the main results.

First we introduce some notations. Let R+ be the set of nonnegative real numbers.
We use the relation x ≤ y (x ≪ y, respectively) for vectors x,y ∈ R

n, if xi ≤ yi (xi <

yi, respectively) for all i = 1, . . . , n, where x = (x1, . . . , xn)T and y = (y1, . . . , yn)T .
We introduce the vectors 0 = (0, 0, . . . , 0)T ∈ R

n and 1 = (1, 1, . . . , 1)T ∈ R
n. Any

fixed norm on R
n is denoted by ‖ · ‖. The positive part of a real number a is denoted

by a+, i.e., a+ = max(a, 0).
We say that an n × n matrix H is an M-matrix, if all of its diagonal elements

are nonnegative, and its off-diagonal elements are nonpositive, and all of its principal
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minors are nonnegative (see, e.g., [2]). It is known (see, e.g., [2]) that if H is a
nonsingular M-matrix, then it is monotone, i.e., Hx ≥ 0 implies x ≥ 0.

Remark 1.1. Let K be a matrix such that the diagonal elements of K are all pos-
itive and the off-diagonal elements are all nonpositive. Then it is known (see, e.g.,
Theorem 2.3 in [2]) that if K is diagonally dominant, then it is a nonsingular M-
matrix, as well. Moreover, K is a nonsingular M-matrix, if and only if, there exists
a positive diagonal matrix D such that KD is a diagonally dominant matrix. This
yields that the diagonal elements of a nonsingular M-matrix are all positive. We note
that there are 50 conditions listed in [2] which are all equivalent to that a matrix is
a nonsingular M-matrix.

2. Main results

The positivity of the functions ci yields that x∗ = (x∗1, . . . , x
∗
n)T is an equilibrium of

(1.2), if and only if it satisfies

di(x
∗
i ) −

n
∑

j=1

aijfj(x
∗
j ) −

n
∑

j=1

bijfj(x
∗
j ) + Ii = 0, i = 1, . . . , n.

It follows from the assumptions that (1.2) has at least one equilibrium. For the
proof see, e.g., [16] or [17].

Lemma 2.1. Suppose (H1)–(H3). Then there exists at least one equilibrium of (1.2).

Let x∗ = (x∗1, . . . , x
∗
n)T be any equilibrium of (1.2), which will be fixed throughout

this paper. Substituting the new functions yi(t) = xi(t) − x∗i in (1.2) leads to the
system

ẏi(t) = αi(yi(t))



−βi(yi(t)) +

n
∑

j=1

aijgj(yj(t)) +

n
∑

j=1

bijgj(yj(t− τij(t)))



 (2.1)

for t ≥ 0 (i = 1, . . . , n) αi(y) = ci(y + x∗i ), βi(y) = di(y + x∗i ) − di(x
∗
i ), and gi(y) =

fi(y + x∗i ) − fi(x
∗
i ), (i = 1, . . . , n).

It is easy to check that assumptions (H1)-(H3) yield the following properties for
the new parameters:

(P1) αi(y) > 0 (y ∈ R) for i = 1, . . . , n;

(P2) βi(0) = 0, and βi(y) sign y > 0, (y 6= 0, y ∈ R), βi is increasing, for
i = 1, . . . , n;

(P3) gi(0) = 0, gi is increasing, and 0 ≤ gi(y) sign y ≤ 2Mi (y ∈ R) for i =
1, . . . , n.
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In addition to (H1)–(H3), we asume that the fixed equilibrium x∗ satisfies

(H4) there exists a function ηi : R+ → R+ such that ηi(0) = 0 and 0 < ηi(|y|) ≤
βi(y) sign y, (y 6= 0, y ∈ R) for i = 1, . . . , n;

(H5) there exists a function ωi : R+ → R+ such that ωi(0) = 0, ωi(y) > 0 for
y > 0, ωi is increasing, and 0 ≤ gi(y) sign y ≤ ωi(|y|) ≤ M̃i (y ∈ R) for
i = 1, . . . , n.

We note that the dependence of the functions αi, βi, ηi and ωi on x∗ is omitted
in their notations, but always should be kept in mind.

Theorem 2.1. Assume (H1)–(H3), the equilibrium x∗ satisfies (H4)–(H5), more-
over, there exist positive numbers R1, . . . , Rn such that

ηi(Ri) > a+
iiωi(Ri) +

n
∑

j=1,

j 6=i

|aij |ωj(Rj) +

n
∑

j=1

|bij |ωj(Rj), i = 1, . . . , n, (2.2)

ηi(y) ≥ eiωi(y), 0 ≤ y ≤ Ri, i = 1, . . . , n, (2.3)

and the n× n matrix H = (hij) defined by

hij =

{

ei − a+
ii − |bii|, i = j,

−|aij | − |bij |, i 6= j
(2.4)

is a nonsingular M-matrix. Then the equilibrium x∗ is locally attractive, i.e., for any
initial functions ϕ1, . . . , ϕn satisfying |ϕi(s) − x∗i | < Ri, s ∈ [−r, 0] (i = 1, . . . , n) it
follows that the corresponding solution x = (x1, . . . xn)T of (1.2)-(1.3) satisfies

lim
t→∞

x(t) = x∗.

Under slightly more restrictive conditions we get global attractivity of the equi-
librium, which yields the uniqueness of the equilibrium.

Theorem 2.2. Assume (H1)–(H3), the equilibrium x∗ satisfies (H4)–(H5), more-
over,

lim
y→∞

ηi(y) > a+
iiM̃i +

n
∑

j=1,

j 6=i

|aij |M̃j +

n
∑

j=1

|bij |M̃j , i = 1, . . . , n, (2.5)

ηi(y) ≥ eiωi(y), y ≥ 0, i = 1, . . . , n, (2.6)

and the n × n matrix H = (hij) defined by (2.4) is a nonsingular M-matrix. Then
x∗ is the only equilibrium of (1.2), and it is globally attractive, i.e., any solution
x = (x1, . . . xn)T of (1.2)-(1.3) satisfies

lim
t→∞

x(t) = x∗.
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Now we consider a special class of (1.2), where ηi and ωi are linear.

Theorem 2.3. Assume (H1)–(H3), the equilibrium x∗ satisfies (H4)–(H5), more-
over,

ηi(y) = γiy and ωi(y) = Liy, y ≥ 0, i = 1, . . . , n, (2.7)

and the n× n matrix H̃ = (h̃ij) defined by

h̃ij =

{

γi − a+
iiLi − |bii|Li, i = j,

−|aij |Lj − |bij |Lj , i 6= j
(2.8)

is a nonsingular M-matrix. Then x∗ is the only equilibrium of (1.2), and it is globally
attractive.

Next we consider the special case of (1.2), the Hopfield DCNN (1.4). Theorem 2.3
has the following immediate consequence.

Theorem 2.4. Suppose γ1, . . . , γn > 0, f1(x1), . . . , fn(xn) satisfy (H3), they are Lip-
schitz continuous with Lipschitz constants L1, . . . , Ln, respecitvely, and the matrix
Ĥ = (ĥij) defined by

ĥij =

{

γi − a+
iiLi − |bii|Li, i = j,

−|aij |Lj − |bij |Lj , i 6= j
(2.9)

is a nonsingular M-matrix. Then (1.4) has a unique equilibrium, which is globally
attractive.

Note that a similar result was proved in [9], where it was shown that if all activa-
tion functions are equal to the Hopfield function (1.5), the matrix K with elements

kij =

{

γi − aii − |bii|, i = j,

−|aij | − |bij |, i 6= j

is diaginally dominant, and

|Ii| ≤ γi − aii −
n
∑

j=1,

j 6=i

|aij | −
n
∑

j=1

|bij |, i = 1, . . . , n,

then (1.4) has a unique equilibrium, which is globally attractive. Theorem 2.4 im-
proves this result in the case when A has only nonnegative diagonal elements.
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3. Examples

Example 3.1. To illustrate our results, consider first the two-dimensional delayed
CGNN model equations

ẋ1(t) =
(

sin(x1(t)) + 1.5
)(

−2x1(t) − 0.5 tanh(x1(t− 1))

+ 0.5 tanh(x2(t− 2)) − I1

)

(3.1)

ẋ2(t) =
(

cos(x2(t)) + 1.25
)(

−3x2(t) + tanh(x1(t− 1))

− tanh(x2(t− 2)) − I2

)

, (3.2)

for t ≥ 0. It is easy to see that in this example α1 = 0.5, α1 = 2.5, α2 = 0.25,
α2 = 2.25, γ1 = 2, γ2 = 3, L1 = L2 = 1, and for any equilibrium x∗, (H4) and
(H5) are satisfied with η1(x) = γ1x = 2x, η2(x) = γ2x = 3x, ω1(x) = L1x = x,
ω2(x) = L2x = x. Therefore the matrix H̃ defined by (2.8) equals to

H̃ =

(

1.5 −0.5
−1 2

)

,

and it is a nonsingular M-matrix. Hence Theorem 2.3 yields that for any input
(I1, I2)

T , (3.1)-(3.2) has a unique equilibrium, which is globally attractive.
We can check that ‖B‖1 = 1.5, ‖B‖2 = 1.5811,

γmαm

αMLM
= 2·0.25

2.5·1 = 0.2, therefore
the results of [1], [11], [13], [14] and [17] can not be applied.

Example 3.2. Consider now the following two dimensional CGNN model.

ẋ1(t) =
1

x2
1(t) + 1

(

−d(x1(t)) − 0.4f(x1(t− 1 + 0.1 sin(t)))

+ 0.5f(x2(t− 2)) − I1

)

(3.3)

ẋ2(t) = (x2
2(t) + 1)

(

−2d(x2(t)) + f(x1(t− 1))

− 0.5f(x2(t− 3 + cos t)) − I2

)

, (3.4)

where

d(x) =

{ √
x, x ≥ 0,

−
√
−x, x < 0,

and f is the Hopfield activation function defined by (1.5). If we select I1 = I2 = 0
inputs, then x∗ = 0 is an equilibrium of (3.3)-(3.4). Around this equilibrium (H4)
and (H5) hold with η1(x) =

√
x, η2(x) = 2

√
x and ωi(x) = x for i = 1, 2. Select
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R1 = R2 = 1. Then (2.2) is satisfied, and (2.3) also holds with e1 = 1 and e2 = 2,
the matrix H defined by (2.4) is

H =

(

0.6 −0.5
−1 1.5

)

,

and it is a nonsingular M-matrix. Therefore Theorem 2.1 yields that 0 is locally
attractive, all solutions starting from initial functions satisfying |ϕi(s)| < 1, s ∈
[−4, 0], i = 1, 2 will tend to 0 as t→ ∞.

Example 3.3. Finally, consider

ẋ1(t) = ex1(t)
(

−3x1(t) − 6f(x1(t)) + 0.5f(x2(t)) − 0.4f(x1(t− 2))

+ 0.5f(x2(t− 2)) − I1

)

(3.5)

ẋ2(t) =
1

x2
2(t) + 1

(

−2x2(t) − 0.5f(x1(t)) + f(x2(t)) + 0.7f(x1(t− 3))

− 0.5f(x2(t− 1)) − I2

)

, (3.6)

t ≥ 0, where f is the Hopfield activation function defined by (1.5). For this equation
we can apply Theorem 2.3, since the matrix

H̃ =

(

2.6 −1
−1.2 0.5

)

,

defined by (2.4) is a nonsingular M-matrix, and we get that (3.5)-(3.6) has a unique
globally attractive equilibrium for all inputs.

Note the importance of taking the positive part of aii in the definition of H̃ in (1.5)
instead of using |aii|, since otherwise the condition would be false for our equation.
We also comment that α1 and α2 do not satisfy (1.6) in this example, therefore the
results of [1], [11], [13], [14] and [17] can not be applied.

4. Proofs

Let y be a fixed solution y of (2.1) and v1, . . . , vn be positive numbers. Then consider
the associated auxiliary system

żi(t) = αi(yi(t))

(

−ηi(zi(t)) + a+
iiωi(zi(t)) +

n
∑

j=1,

j 6=i

|aij |ωj(zj(t))

+
n
∑

j=1

|bij |ωj(zj(t− τij(t))) + vi

)

, t ≥ 0 (i = 1, . . . , n), (4.1)
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and the initial condition

zi(t) = ψi(t) t ∈ [−r, 0], i = 1, . . . , n. (4.2)

The proof of our main results will be based on the following lemmas, which collect
some properties of the solutions of (4.1)-(4.2).

Lemma 4.1. Suppose (H1)–(H5), and there exist positive numbers R1, . . . , Rn such
that (2.2) holds. Let v = (v1, . . . , vn)T be such that 0 ≪ v and

ηi(Ri) > a+
iiωi(Ri) +

n
∑

j=1,

j 6=i

|aij |ωj(Rj) +

n
∑

j=1

|bij |ωj(Rj) + vi, i = 1, . . . , n. (4.3)

Let ψi : [−r, 0] → R+ satisfying 0 < ψi(s) < Ri, s ∈ [−r, 0] (i = 1, . . . , n), and let
z1, . . . , zn be the corresponding solution of (4.1)-(4.2). Then

0 < zi(t) < Ri, t ≥ 0, i = 1, . . . , n.

Proof. Since zi(0) > 0 and zi is continuous on [0,∞) for all i = 1, . . . , n, zi(t) > 0
for small enough t ≥ 0. Suppose there exist i and T > 0 such that

zi(T ) = 0 and zj(t) > 0 for t ∈ [−r, T ), j = 1, . . . , n.

Then żi(T ) ≤ 0. On the other hand, the positivity of vi implies

żi(T ) = αi(yi(T ))

(

−ηi(zi(T )) + a+
iiωi(zi(T )) +

n
∑

j=1,

j 6=i

|aij |ωj(zj(T ))

+

n
∑

j=1

|bij |ωj(zj(T − τij(T ))) + vi

)

= αi(yi(T ))

( n
∑

j=1,

j 6=i

|aij |ωj(zj(T )) +

n
∑

j=1

|bij |ωj(zj(T − τij(T ))) + vi

)

> 0,

which is a contradiction. Therefore zi(t) > 0 for all t > 0 and i = 1, . . . , n.
To prove that zi(t) < Ri for all i = 1, . . . , n, suppose there exists t∗ > 0 and i

such that

zi(t
∗) = Ri, and zj(t) < Rj , t ∈ [−r, t∗), j = 1, . . . , n.
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Then żi(t
∗) ≥ 0. On the other hand, the monotonicity of ωj yields

0 ≤ żi(t
∗)

= αi(yi(t
∗))

(

−ηi(zi(t
∗)) + a+

iiωi(zi(t
∗)) +

n
∑

j=1,

j 6=i

|aij |ωj(zj(t
∗))

+

n
∑

j=1

|bij |ωj(zj(t
∗ − τij(t

∗))) + vi

)

≤ αi(yi(t
∗))

(

−ηi(Ri) + a+
iiωi(Ri) +

n
∑

j=1,

j 6=i

|aij |ωj(Rj) +

n
∑

j=1

|bij |ωj(Rj) + vi

)

< 0

This contradiction concludes the proof. �

Lemma 4.2. Assume (H1)–(H5), and suppose there exist positive numbers R1, . . . , Rn

and e1, . . . , en such that (2.2) and (2.3) hold, and the matrix H = (hij) defined by
(2.4) is a nonsingular M-matrix. Let v = (v1, . . . , vn)T be such that 0 ≪ v and (4.3)
hold. Let ψi : [−r, 0] → R+ satisfying 0 < ψi(s) < Ri, s ∈ [−r, 0] (i = 1, . . . , n), and
let z(t) = (z1(t), . . . , zn(t))T be the corresponding solution of (4.1)-(4.2). Then

ω(lim sup
t→∞

z(t)) ≤ H−1v, (4.4)

where ω(z) = (ω1(z1), . . . , ωn(zn))T .

Proof. It follows from Lemma 4.1 that

mi = lim sup
t→∞

zi(t) and mi = lim inf
t→∞

zi(t)

satisfy 0 ≤ mi ≤ mi ≤ Ri. Consider first the case when mi = mi, i.e., limt→∞ zi(t) =

mi. Then let t
(i)
k be an arbitrary sequence such that t

(i)
k → ∞ as k → ∞. We may

also assume that

lim
k→∞

zj(t
(i)
k ) = m∗

ij and lim
k→∞

zj(tk − τij(t
(i)
k )) = m∗∗

ij (4.5)

for all j = 1, . . . , n for some m∗
ij ,m

∗∗
ij ∈ [mj ,mj ], since otherwise we can select a

subsequence of t
(i)
k with this property. Then we get

0 = lim
k→∞

żi(t
(i)
k )

= αi(mi)

(

−ηi(mi) + a+
iiωi(mi) +

n
∑

j=1,

j 6=i

|aij |ωj(m
∗
ij) +

n
∑

j=1

|bij |ωj(m
∗∗
ij ) + vi

)

,
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and therefore

0 = −ηi(mi) + a+
iiωi(mi) +

n
∑

j=1,

j 6=i

|aij |ωj(m
∗
ij) +

n
∑

j=1

|bij |ωj(m
∗∗
ij ) + vi

≤ −ηi(mi) + a+
iiωi(mi) +

n
∑

j=1,

j 6=i

|aij |ωj(mj) +

n
∑

j=1

|bij |ωj(mj) + vi.

Now consider the case when mi < mi. Then there exists a sequence t
(i)
k such that

lim
k→∞

t
(i)
k = ∞, żi(t

(i)
k ) ≥ 0, k = 1, 2 . . . , and lim

k→∞
zi(t

(i)
k ) = mi.

We may again assume that (4.5) holds. It is easy to argue that in this case

0 ≤ −ηi(mi) + a+
iiωi(mi) +

n
∑

j=1,

j 6=i

|aij |ωj(m
∗
ij) +

n
∑

j=1

|bij |ωj(m
∗∗
j ) + vi (4.6)

≤ −eiωi(mi) + a+
iiωi(mi) +

n
∑

j=1,

j 6=i

|aij |ωj(mj) +

n
∑

j=1

|bij |ωj(mj) + vi (4.7)

is satisfied, as well. Therefore (4.6) and (4.7) hold for all i = 1, . . . , n. We can rewrite
(4.7) as

HΩ(m)1 ≤ v,

Ω(m) = diag(ω1(m1), . . . , ωn(mn)), 1 = (1, . . . , 1)T . Since H is a nonsingular M-
matrix, it is monotone (see, e.g., [2]), therefore it implies Ω(m)1 ≤ H−1v, or equiva-
lently, ω(m) ≤ H−1v, and the proof of the lemma is complete. �

Now we are ready to prove Theorem 2.1.
Proof of Theorem 2.1. Let x∗ = (x∗1, . . . , x

∗
n)T be any fixed equilibrium of (1.2),

ϕ1, . . . ϕn be given initial functions satisfying |ϕi(s) − x∗i | < Ri for s ∈ [−r, 0], x =
(x1, . . . , xn)T be the corresponding solution of (1.2)-(1.3), and y(t) = x(t)−x∗. Then
fix initial functions ψi : [−r, 0] → R+ such that

|ϕi(s) − x∗i | < ψi(s) < Ri, s ∈ [−r, 0], i = 1, . . . , n.

Let 0 ≪ v = (v1, . . . , vn)T be such that (4.3) is satisfied. Let z = (z1, . . . , zn)T denote
the solution of the corresponding IVP (4.1)-(4.2). Since zi(0) > |yi(0)|, relation
|yi(t)| < zi(t) holds for sufficiently small t > 0 and i = 1, . . . , n. Suppose there exists
i and T > 0 such that

|yi(T )| = zi(T ), and |yj(t)| < zj(t), t ∈ [−τ, T ), j = 1, . . . , n. (4.8)
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It follows from Lemma 4.1 that |yi(T )| = zi(T ) 6= 0, therefore d
dt
|yi(t)| exists at T ,

and d
dt

(|yi(t)|)|t=T = ẏi(T ) sign yi(T ). Hence

d

dt
(|yi(t)|)|t=T = αi(yi(T ))

(

−βi(yi(T )) +

n
∑

j=1

aijgj(yj(T ))

+

n
∑

j=1

bijgj(yj(T − τij(T )))

)

sign yi(T ).

Since βi(yi(T )) sign yi(T ) ≥ 0 it follows from (P1) and (P2) that

βi(yi(T )) sign yi(T ) ≥ ηi(|yi(T )|).
If aii ≥ 0, then (P3) yields

0 ≤ aiigi(yi(T )) sign yi(T ) ≤ aiiωi(|yi(T )|).
If aii < 0, then (P3) yields

aiigi(yi(T )) sign yi(T ) ≤ 0. (4.9)

Consequently,

d

dt
(|yi(t)|)|t=T < αi(yi(T ))

(

−ηi(|yi(T )|) + a+
iiωi(|yi(T )|)

+

n
∑

j=1,

j 6=i

|aij |ωj(|yj(T )|) +

n
∑

j=1

|bij |ωj(|yj(T − τij(T ))|) + vi

)

≤ αi(yi(T ))

(

−ηi(zi(T )) + a+
iiωi(zi(T )) +

n
∑

j=1,

j 6=i

|aij |ωj(zj(T ))

+
n
∑

j=1

|bij |ωj(zj(T − τij(T ))) + vi

)

= żi(T ).

This contradicts to assumption (4.8), therefore |yi(t)| < zi(t) holds for all t > 0 and
i = 1, . . . , n. Moreover, Lemma 4.2 yields

ω(lim sup
t→∞

z(t)) ≤ H−1v.

Since v can be arbitraly close to 0, it imples

ω(lim sup
t→∞

z(t)) ≤ 0,

which yields
lim

t→∞
z(t) = lim sup

t→∞
z(t) = 0.

This concludes the proof. �
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Proof of Theorem 2.2. Let ϕ1, . . . , ϕn be given initial functions, Ri be such that
sup{ϕi(s) : s ∈ [−r, 0]} < Ri and

ηi(Ri) > a+
iiM̃i +

n
∑

j=1,

j 6=i

|aij |M̃j +

n
∑

j=1

|bij |M̃j , (4.10)

for i = 1, . . . , n. Then (2.2) holds, and so Theorem 2.1 yields that the solution x of
(1.2) corresponding to these initial functions satisfies

lim
t→∞

x(t) = x∗.

�

The proof of Theorem 2.3 is based on the following version of Lemma 4.2.

Lemma 4.3. Assume (H1)–(H5), (2.7) holds, and the matrix H̃ = (hij) defined
by (2.8) is a nonsingular M-matrix. Let v = (v1, . . . , vn)T be such that 0 ≪ v.
Let ψi : [−r, 0] → R+ satisfying 0 < ψi(s), s ∈ [−r, 0] (i = 1, . . . , n). Then the
corresponding solution z of (4.1)-(4.2) satisfies

ω(lim sup
t→∞

z(t)) ≤ H−1v.

Proof. Let Ri be such that sup{ψi(s) : s ∈ [−r, 0]} < Ri and

ηi(Ri) > a+
iiM̃i +

n
∑

j=1,

j 6=i

|aij |M̃j +

n
∑

j=1

|bij |M̃j + vi

holds for i = 1, . . . , n. Then (2.2) is also satisfied.
It follows from (4.6) and (2.7)

0 ≤ −γimi + a+
iiLimi +

n
∑

j=1,

j 6=i

|aij |Ljmj +
n
∑

j=1

|bij |Ljmj + vi. (4.11)

We can rewrite (4.11) as
H̃M1 ≤ v,

where M = diag(m1, . . . ,mn)T . Since H̃ is a nonsingular M-matrix, it implies M1 ≤
H−1v, which yields the statement of the lemma, since v can be arbitrary close to 0.

�

Proof of Theorem 2.3. The result follows from Lemma 4.3 and the proof of
Theorem 2.1 using the fact that (2.2) holds with any large enough R1, . . . , Rn, as it
was argued in the proof of Lemma 4.3. The global attractivity clearly implies the
uniqueness of the equilibrium. �

Proof of Theorem 2.4. We apply Theorem 2.3 with ci(x) = 1 and di(x) = γix

(i = 1, . . . , n). �
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