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Abstract. We concern with the existence and global asymptotic stability of posi-
tive (componentwise) periodic solutions to a periodic integro-differential competition
system with infinite delays. The purpose of this paper is two-fold. One is to point
out that some existing results are/may be wrong. The other is to establish new sets
of sufficient conditions on the existence and global asymptotic stability of positive
periodic solutions by using the continuation theorem based on the coincidence degree
theory and Lyapunov functional. The obtained results greatly improve some existing
ones.
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1. Introduction

One of the celebrated population dynamics models on species interaction is the Lotka-
Volterra competition system, which is originally described by a system of autonomous
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ordinary differential equations. However, due to fluctuations of the environment and
delays arising from factors such as gestation and consumption of biomass, it is quite
natural to study nonautonomous Lotka-Volterra systems with delays, especially those
with periodic coefficients. Because of their theoretical and practical significance, these
systems have been studied extensively. One of the main concern is the existence and
stability of periodic solutions (see, for example, [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14]
and the references cited therein).

In this paper, we study the periodic nonautonomous integro-differential competi-
tion system with infinite delays,

dyi(t)

dt
= yi(t)







ri(t) −

n
∑

j=1

(

aij(t)yj(t) + bij(t)

∫ t

−∞

Kij(t − u)yj(u)du

)







, (1.1)

i = 1, 2, . . ., n, where aij , bij , ri are continuous ω-periodic functions with aij(t) ≥ 0,
bij(t) ≥ 0,

∫ ω

0
ri(t)dt > 0, and Kij : [0,∞) → [0,∞) are measurable, ω-periodic,

normalized functions such that
∫ ∞

0 Kij(t)dt = 1 and
∫ ∞

0 tKij(t)dt < ∞, i, j = 1,
2, . . ., n. From the point of mathematical biology, each individual competes with
all others for common resources and the intra- and inter-species competitions involve
time delays extending over the entire past as denoted by Kij in (1.1). Obviously, sys-
tem (1.1) includes most of the commonly studied Lotka-Volterra competition systems
as special cases.

System (1.1) was studied by Fan and Wang [5] and later by Chen [4]. To state
their main results, which are on existence of ω-periodic solution with strictly positive
components (hereafter referred to as positive periodic solution), we introduce some
notations. Let g : R → R be a continuous and bounded function. Then gl = inf

t∈R

g(t)

and gu = sup
t∈R

g(t). In addition, if g is also ω-periodic, then g = 1
ω

∫ ω

0
g(t)dt.

Theorem A (Theorem 2.1 of Fan and Wang [5]) If aii + bii > 0 and

ri >

n
∑

j=1,j 6=i

(aij + bij)rj

ajj + bjj

exp{(rj + |rj |)ω}, i = 1, 2, . . . , n, (1.2)

then (1.1) has at least one positive periodic solution.

Definition 1.1. (Definition 3.1 of Fan and Wang [5]) A positive periodic solu-
tion y∗(t) = (y∗

1(t), y∗
2(t), . . . , y∗

n(t))T of (1.1) is said to be globally asymptotically
stable if any other solution y(t) = (y1(t), y2(t), . . . , yn(t))T of (1.1) together with the
initial condition

yi(s) = ϕi(s), s ∈ (−∞, 0]; ϕi(0) > 0; sup
s≤0

ϕi(s) < ∞, i = 1, 2, . . . , n,

has the property

lim
t→∞

n
∑

i=1

|yi(t) − y∗
i (t)| = 0,

where ϕi ∈ C((−∞, 0], [0,∞)).
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Theorem B (Theorem 3.1 of Fan and Wang [5]) Assume that the conditions in

Theorem A hold. Furthermore, suppose that

n
∑

i=1

min
t∈[0,ω]

aij(t) >

n
∑

i=1

max
t∈[0,ω]

bij(t), j = 1, 2, . . . , n. (1.3)

Then there exists a unique positive periodic solution of (1.1) which is globally asymp-

totically stable.

Note that the explicit presence of ω in (1.2) may impose a very strict constraint
on the coefficients of (1.1). This inspired the following result of Chen [4], which was
also obtained by employing the continuation theorem based on the coincidence degree
theory. For comparison of this result with Theorem A, we refer the readers to Chen [4]
for detail.

Theorem C (Theorem 3 of Chen [4]) Assume that ri(t) > 0 and aii(t) > 0.
Furthermore, suppose that

rl
i >

n
∑

j=1,j 6=i

au
ijr

u
j

al
jj

+

n
∑

j=1

bu
ijr

u
j

al
jj

, i = 1, 2, . . . , n. (1.4)

Then system (1.1) has at least one positive periodic solution.

Recently, Tang and Zou [11] considered the following special case of (1.1),

ẋi(t) = xi(t)



ri(t) −

n
∑

j=1

aij(t)xj(t − τij(t))



 , i = 1, 2, . . . , n. (1.5)

Theorem D (Theorem 2.5 of Tang and Zou [11]) Assume that the linear system

n
∑

j=1

aijxj = ri, i = 1, 2, . . . , n, (1.6)

has a positive solution. Then (1.5) has at least one positive periodic solution.

Now, let us give some remarks on the above results.
First, the condition in Theorem D is a very nice one as it reduces exactly to that on

the existence of a positive equilibrium when (1.5) reduces to the autonomous system.
However, Theorem D is too wonderful to believe. A careful check reveals a gap in
Tang and Zou’s arguments: To derive (2.15), the authors used |xi|0 = (σ2Aω)−1x∗

i

for all i = 1, 2, . . ., n. Unfortunately, this is true only for at least one i but not
necessarily for all i. What worse is that even the gap can be filled Theorem D can
not be established by using the Krasnoselskii’s fixed point theorem. One can easily
see that a particular positive solution to system (1.6) did not play any special role in
their arguments. In fact, if x∗ = (x∗

1, x
∗
2, . . . , x

∗
n)T with x∗

i > 0 is a vector such that
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n
∑

j=1

aijx
∗
j > 0, then their arguments can still go through with A and B being replaced

with

A = min







Ai

n
∑

j=1

(aijx
∗
j ) : i = 1, 2, . . . , n







and

B = max







Bi

n
∑

j=1

(aijx
∗
j ) : i = 1, 2, . . . , n







,

respectively. In particular, the condition in Theorem D implies

n
∑

j=1

aij > 0, i = 1, 2, . . . , n, (1.7)

and we can pick x∗ = (1, 1, . . . , 1)n. Thus (1.5) has a positive periodic solution if (1.7)
holds. This contradicts with Theorem 2.6 of Tang and Zou [11] as condition (1.7) will
not necessarily guarantee system (1.6) has a positive solution. In other words, one
can reasonably doubt Theorem D.

Second, in Theorem C, we require ri(t) > 0 and aii(t) > 0. Though they are
reasonable, due to random fluctuation of environment, ri is unnecessary to remain
positive and aii may be zero for some time. Also, condition (1.4) only involves the
maxima and minima of the parameters, which may be undesirable for periodically
varying situation. This calls for more natural sufficient conditions like (1.2) which
involve averages of coefficients.

Finally, we mention that conditions (1.3) are not enough to guarantee the global
asymptotic stability of the positive periodic solution. Consider the following two
species competition system,

{

dy1

dt
= y1(2 − y1 − 3y2),

dy2

dt
= y2(2 − 2y1 − y2).

(1.8)

It is easy to see that (1.2) is satisfied (with ω = 0 or very small) and (1.8) admits a
unique positive periodic solution (equilibrium) (y1, y2) = (4

5 , 2
5 ). Moreover, one can

verify condition (1.3). However, the positive equilibrium is a saddle point which is
unstable. We should point out that Fan and Wang’s arguments are correct except
that they need the conditions,

n
∑

i=1

(

min
t∈[0,ω]

aij(t) − max
t∈[0,ω]

bij(t)

)

> 0, j = 1, 2, . . . , n. (1.9)

Theorem B′ Assume that the conditions in Theorem A and (1.9) hold. Then there

exists a unique positive periodic solution of (1.1) which is globally asymptotically

stable.
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Motivated by the above remarks, we further seek improvements of Theorem A
and Theorem C. To state our main results, we introduce another notation. For a
function g : R → R, we decompose g as g = g+ + g−, where g+(t) = max{g(t), 0} and
g−(t) = min{0, g(t)} for t ∈ R.

Theorem 1.1. Suppose ri > 0 and aii + bii > 0 for i = 1, 2, . . ., n. If

∆i
△
= ri −

n
∑

j=1,j 6=i

(aij + bij)rj

ajj + bjj

exp{r+
j ω} > 0, i = 1, 2, . . . , n, (1.10)

then (1.1) has at least one positive periodic solution.

Theorem 1.2. Suppose (1.1) has a positive periodic solution. If we further suppose

that there exist positive constants cj, j = 1, 2, . . ., n, such that

cjajj(t) >

n
∑

i=1,i6=j

ciaij(t) +
n

∑

i=1

ci

∫ ∞

0

Kij(s)bij(t + s)ds, j = 1, 2, . . . , n. (1.11)

Then this positive periodic solution is globally asymptotically stable.

Corollary 1.1. Assume that ri(t) > 0 and aii(t) > 0. If

rl
i >

n
∑

j=1,j 6=i

au
ij

(

rj

ajj

)u

+

n
∑

j=1

bu
ij

(

rj

ajj

)u

, i = 1, 2, . . . , n, (1.12)

and (1.1) admits a positive periodic solution then this positive periodic solution is

globally asymptotically stable.

Note that conditions (1.2) are, in fact,

ri >

n
∑

j=1,j 6=i

(aij + bij)rj

ajj + bjj

exp{2r+
j ω}, i = 1, 2, . . . , n.

Also note that
(

rj

ajj

)u

≤
ru

j

al
jj

, j = 1, 2, . . ., n. Obviously, Theorem 1.1, Theorem 1.2,

and Corollary 1.1 greatly improve Theorem A, Theorem B′, and Theorem C, respec-
tively. Nevertheless, there is still room to improve Theorem 1.1. But, to the best of
the authors’ knowledge, Theorem 1.1 is the best so far. Moreover, the technique in the
proof of Proposition 2.1 might be used to improve some other results on existence of
periodic solutions, which are obtained by employing the continuation theorem based
on coincidence degree theory.

The main results will be proved in the coming section. To conclude this section,
we just mention that Theorem 1.1 is proved again by using the continuation theorem
while Theorem 1.2 is proved by constructing a suitable Lyapunov functional.
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2. Proofs of the main results

Before proving Theorem 1.1, we first establish better estimations for bounds of positive
periodic solutions of (1.1). Indeed, we consider the following system with parameter,

dyi(t)

dt
= λyi(t)







ri(t) −
n

∑

j=1

(

aij(t)yj(t) + bij(t)

∫ t

−∞

Kij(t − u)yj(u)du

)







, (2.1)

i = 1, 2, . . ., n, λ ∈ (0, 1]. For i = 1, 2, . . ., n, denote

Ui =
ri

aii + bii

exp{r+
i ω}

and

Li =
∆i

aii + bii

exp







ω



r−i −

n
∑

j=1

(aij + bij)Uj











.

The following result will pave the way for employing the continuation theorem.

Proposition 2.1. Under the assumptions of Theorem 1.1, we have

Li ≤ y∗
i (t) ≤ Ui, i = 1, 2, . . . , n, t ∈ R,

where y∗(t)=(y∗
1(t), y∗

2(t), . . . , y∗
n(t))T is any positive periodic solution of (2.1).

Proof. Since λ > 0 and y∗(t) is a positive periodic solution, for each i, we have

dy∗
i (t)

dt
≤ λy∗

i (t){ri(t) − [aii(t) + bii(t)](y
∗
i )l},

or, equivalently,
d

dt
ln y∗

i (t) ≤ λ{ri(t) − [aii(t) + bii(t)](y
∗
i )l}.

Integrating the above differential inequality over [0, ω] immediately gives us

0 ≤ λω{ri − [aii + bii](y
∗
i )l},

which implies

(y∗
i )l ≤

ri

aii + bii

.

Choose tli ∈ [0, ω) such that y∗
i (tli) = (y∗

i )l. Then, for s ∈ [0, ω], it follows from the
differential inequality

dy∗
i (t)

dt
≤ λy∗

i (t)ri(t)

that

y∗
i (tli + s) ≤ (y∗

i )l exp
(

λ
∫ tl

i+s

tl
i

ri(u)du
)
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≤ (y∗
i )l exp

(

∫ tl
i+s

tl
i

r+
i (u)du

)

= (y∗
i )l exp(r+

i ω)

≤ Ui.

Here we used λ ∈ (0, 1]. By periodicity, we conclude that

y∗
i (t) ≤ Ui, i = 1, 2, . . . , n, t ∈ R. (2.2)

In the following we derive lower bounds for y∗
i (t), i = 1, 2, . . ., n. With the help

of (2.2), we have

dy∗
i (t)

dt
≥ λy∗

i (t)







ri(t) − [aii(t) + bii(t)](y
∗
i )u −

n
∑

j=1,j 6=i

[aij(t) + bij(t)]Uj







.

Similarly, integrating the above differential inequality over [0, ω] gives us

0 ≥ λω







ri − [aii + bii](y
∗
i )u −

n
∑

j=1,j 6=i

[aij + bij ]Uj







= λω{∆i − [aii + bii](y
∗
i )u}.

Since ∆i > 0, we get

(y∗
i )u ≥

∆i

aii + bii

.

Then similar argument as that for the upper bound of y∗
i (t) produces

Li ≤ y∗
i (t), i = 1, 2, . . . , n, t ∈ R.

This completes the proof. �

Proof of Theorem 1.1: Theorem 1.1 can be proved with slight modifications of the
proof of Theorem 3 of Chen [4]. We just mention the differences here. The interesting
readers can refer to [4] for the details. First, (1.10) also implies

ri >

n
∑

j=1,j 6=i

(aij + bij)rj

ajj + bjj

.

Second, Proposition 2.1 tells us that if x ∈ X is a solution to Lx = λNx, λ ∈ (0, 1),
then

max
t∈[0,ω]

|xi(t)| ≤ max{| lnLi|, | lnUi|} := Hi, i = 1, 2, . . . , n.

This completes the proof. �
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Proof of Theorem 1.2: The proof is similar to that of Theorem 3.1 of Chen and Xie [2].
Because of periodicity, it follows from (1.11) that there exists a positive constant A

such that

cjajj(t) −

n
∑

i=1,i6=j

ciaij(t) −

n
∑

i=1

ci

∫ ∞

0

Kij(s)bij(t + s)ds > A,

j = 1, 2, . . ., n. Let y∗(t) = (y∗
1(t), y∗

2(t), . . . , y∗
n(t))T be a positive periodic solution

of (1.1) and y(t) = (y1(t), y2(t), . . . , yn(t))T be any other solution of (1.1) with the
initial condition specified in Definition 1.1. Construct a Lyapunov functional V (t) as
follows,

V (t) =
n

∑

i=1

{

ci| ln yi(t) − ln y∗
i (t)|

+ ci

n
∑

j=1

∫ ∞

0

Kij(s)
(

∫ t

t−s

bij(s + u)|yj(u) − y∗
j (u)|du

)

ds
}

for all t ≥ 0. Obviously,

V (0) ≤

n
∑

i=1

ci| ln yi(0) − ln y∗
i (0)|

+

n
∑

i=1

(

n
∑

j=1

ci max
t∈[0,ω]

bij(t) sup
t∈(−∞,0]

|ϕi(t) − y∗
i (t)|

∫ ∞

0

sKij(s)ds
)

< ∞

and

V (t) ≥ V1(t) =
n

∑

i=1

ci| ln yi(t) − ln y∗
i (t)|, t ≥ 0.

Then a direct computation gives us

D+V (t) ≤ −

n
∑

i=1

ciaii(t)|yi(t) − y∗
i (t)| +

n
∑

i=1

n
∑

j=1,j 6=i

ciaij(t)|yj(t) − y∗
j (t)|

+

n
∑

i=1

n
∑

j=1

cibij(t)

∫ t

−∞

Kij(t − u)|yj(u) − y∗
j (u)|du

+

n
∑

i=1

n
∑

j=1

ci

∫ ∞

0

Kij(s)bij(t + s)|yj(t) − y∗
j (t)|d s

−

n
∑

i=1

n
∑

j=1

ci

∫ ∞

0

Kij(s)bij(t)|yj(t − s) − y∗
j (t − s)|d s

≤ −

n
∑

i=1

ciaii(t)|yi(t) − y∗
i (t)| +

n
∑

i=1

n
∑

j=1,j 6=i

cjaji(t)|yi(t) − y∗
i (t)|
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+
n

∑

i=1

n
∑

j=1

cj

∫ ∞

0

Kji(s)bji(t + s)|yi(t) − y∗
i (t)|ds

≤ −A

n
∑

i=1

|yi(t) − y∗
i (t)|.

The proof is completed by using the above differential inequality and similar argu-
ments as those to (3.8)–(3.13) of Fan and Wang [5]. �

Corollary 1.1 can be proved by adapting the ideas used by Ahmad and Lazer [1]
and Tineo and Alvarez [12].

Proof of Corollary 1.1: It suffices to show that (1.12) implies (1.11). For i = 1, 2, . . .,
n, note that

al
ii

( ri

aii

)u

= min
t∈[0,ω]

(

aii(t)
( ri

aii

)u)

≥ min
t∈[0,ω]

(

aii(t)
ri(t)

aii(t)

)

= rl
i.

It follows from (1.12) that

al
ii

( ri

aii

)u

>

n
∑

j=1,j 6=i

au
ij

( rj

ajj

)u

+

n
∑

j=1

bu
ij

( rj

ajj

)u

. (2.3)

For i, j = 1, 2, . . ., n, set

mij =







au
ij+bu

ij

al
ii

i 6= j
bu

ii

al
ii

, i = j

and

γi =
( ri

aii

)u

.

Then (2.3) is equivalent to

n
∑

j=1

mijγj < γi, i = 1, 2, . . . , n.

It follows that we can choose pij > mij , i, j = 1, 2, . . ., n, such that

n
∑

j=1

pijγj < γi, i = 1, 2, . . . , n. (2.4)

Let P = (pij)n×n. Since PT is a strictly positive (entrywise) matrix, by the Perron-
Frobenius theorem [8] there exist λ > 0, zi > 0, i = 1, 2, . . ., n, such that

PT (z1, z2, . . . , zn)T = λ(z1, z2, . . . , zn)T ,
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i.e.,
n

∑

i=1

pijzi = λzj , j = 1, 2, . . . , n. (2.5)

From (2.4) and (2.5), we have

λ

n
∑

j=1

γjzj =

n
∑

j=1

n
∑

i=1

pijγjzi =

n
∑

i=1





n
∑

j=1

pijγj



 zi <

n
∑

i=1

γizi.

It follows that λ < 1 and hence
n

∑

i=1

pijzi < zj, j = 1, 2, . . . , n.

This implies
n

∑

i=1

mijzi < zj , j = 1, 2, . . . , n,

as pij > mij , i, j = 1, 2, . . ., n. It follows from the definitions of mij ’s that

n
∑

i=1,i6=j

au
ij

al
ii

zi +

n
∑

i=1

bu
ij

al
ii

zi < zj , j = 1, 2, . . . , n. (2.6)

Denote
cj =

zj

al
jj

, j = 1, 2, . . . , n.

Then (2.6) can be rewritten as

cja
l
jj >

n
∑

i=1,i6=j

cia
u
ij +

n
∑

i=1

cib
u
ij , j = 1, 2, . . . , n.

Therefore, there exists δ > 0 such that

cja
l
jj −

n
∑

i=1,i6=j

cia
u
ij −

n
∑

i=1

cib
u
ij > δ, j = 1, 2, . . . , n,

from which one can easily see that (1.11) holds. This completes the proof. �
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