
International Journal of Qualitative Theory of Differential Equations and Applications
Vol. 1, No. 1 (2007), pp. 59–75

http://www.serialspub.com
Copyright c© 2007 Serials Publications

Stability Conditions for Differential-Difference Systems of

Retarded- and Neutral-Type: The Single Delay Case

R. H. Fabianoa,∗, J. Turib,†

aDepartment of Mathematical Sciences, 323 Bryan Building, University of North
Carolina at Greensboro, Greensboro, NC 27412.

bPrograms in Mathematical Sciences, University of Texas at Dallas, Richardson,

TX 75083-0688.

Received December 11, 2006; accepted March 19, 2007
Communicated by Ferenc Hartung

Abstract. Sufficient conditions are given for exponential stability of the solu-
tion semigroup associated with certain systems of retarded and neutral differential-
difference equations. The conditions also provide for an estimate of the exponential
decay rate.
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1. Introduction

We consider systems of linear differential-difference equations of retarded ( C = 0 ) -
and neutral ( C 6= 0 ) -type

d

dt
[x(t) + Cx(t− r)] = Ax(t) +Bx(t− r), (1.1)

where A, B, C are n× n matrices with complex entries, and r ∈ R. In recent years
there has been a considerable interest in obtaining conditions on the matrices A, B,
and C which guarantee exponential stability of the solution semigroup associated with
(1.1). With regard to this question, sufficient conditions which depend only on the
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matrices A, B and C are called delay independent, while those which also depend
on the delay r are called delay dependent. Here we consider only delay independent
conditions. Associated with (1.1) is the characteristic equation

∆(λ) = det(A− λI +Be−λr − λCe−λr) = 0. (1.2)

It is known that exponential stability of (1.1)) is equivalent to the condition that

sup {Reλ : ∆(λ) = 0} = α < 0. (1.3)

Roughly speaking, results in the literature on the question of sufficient conditions
for exponential stability follow two distinct approaches. The first approach involves
direct analyis of the characteristic equation ∆(λ) = 0 to show that certain conditions
(ideally, conditions which are easy to check) on the matrices A, B, and C, usually
involving the matrix norm or matrix measure, are sufficient for α < 0. One of the
earliest results in this direction is [1] for the somewhat restrictive case when A, B,
and C are real and symmetric. Other results in this direction are found in [3], [7],
[9], [11], [12], [13], [14], [15], [17], and [18]. The second approach uses Liapunov-like
or Razumikhin type theorems (see [10]), and this usually leads to a linear matrix
inequality as a sufficient condition (see [8] and [16] for further discussion and refer-
ences). We shall proceed instead by renorming the underlying state space in order
to obtain a dissipative inequality for the infinitesimal generator of the solution semi-
group, which will imply its exponential stability. Our work here is motivated by the
fact that for scalar retarded and neutral equations the renormed state space provided
the right setting for the construction of semidiscrete approximation schemes which
are preserving exponential stability uniformly in the discretization parameter (see [5]
and [6] for details). We note that the renorming idea is closely related to the second
approach, since a new norm can be viewed as a quadratic Liapunov function in the
original norm. The sufficient conditions we obtain directly lead to stability preserving
semidiscrete approximation schemes which is not the case with those derived using
the first approach. Furthermore, in some cases, our results give sharper stability
results, at least in the ‖(·)‖2 matrix norm, and in the µ2(·) matrix measure, than
to those found in [11], [14], and [15] (see (2.17), (3.2), and (3.3) below). Note that
the conditions (2.17), (3.2), and (3.3) are valid in any matrix norm, although from a
practical perspective the matrix measure µ(·) is only easy to check in the 1, 2, and
∞ norms. We stress that our most general new sufficient condition (3.18) below is an
improvement over some other sufficient conditions, and it is easy to check - one need
only verify that the eigenvalues of the symmetric matrix in (3.18) are all positive. An
additional significant feature of our approach is that we also get an estimate of the
rate of exponential decay, which is lacking in other results.

The paper is organized as follows. We first obtain a new sufficient condition for
exponential stability of the retarded system (1.1) with C = 0 and show how this
improves previous results. Then we obtain new sufficient conditions for exponential
stability of the neutral system (1.1) with C 6= 0 and compare with other sufficient
conditions. We include a result for the special case in which the matrix A is self-
adjoint because this yields a sufficient condition which is a significant improvement
compared to the case of general A.
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2. Retarded Systems

In this section we consider (1.1) with C = 0, commonly referred to as a retarded
delay-differential equation. In particular, consider

d

dt
x(t) = Ax(t) +Bx(t− r), (2.1)

x(0) = η0, x(θ) = ϕ0(θ) for − r ≤ θ < 0,

where r > 0, η0 ∈ Cn, ϕ0 ∈ L2(−r, 0; Cn), and A and B are n × n matrices with
complex entries.

In a standard fashion (2.1) can be reformulated as an abstract Cauchy problem on
a Hilbert space, and it will be in the Hilbert space setting that we conduct the stability
analysis. To proceed, define the Hilbert space Z = Cn × L2(−r, 0; Cn) endowed with
the norm

‖(η, ϕ)‖2
Z = ‖η‖2

n +

∫ 0

−r

‖ϕ(θ)‖2
n dθ, (2.2)

and compatible inner product

〈(η, ϕ), (ξ, ψ)〉Z = ξT η +

∫ 0

−r

ψ(θ)Tϕ(θ) dθ. (2.3)

In (2.2), ‖·‖n represents the usual Euclidean norm on Cn. Next define the linear
operator A : domA ⊂ Z → Z on the domain

domA = {(η, ϕ) ∈ Z : ϕ ∈ H1(−r, 0; Cn), ϕ(0) = η}, (2.4)

by
A(η, ϕ) = (Aη +Bϕ(−r), ϕ′). (2.5)

It is well known that A is the infinitesimal generator of a strongly continuous semi-
group T (t) on Z, and that (2.1) can be reformulated as the Cauchy problem

d

dt
z(t) = Az(t) (2.6)

z(0) = (η0, ϕ0). (2.7)

Our approach will be to define a new norm ‖·‖e on Z, with compatible inner product
〈·, ·〉e, which is equivalent to the norm ‖·‖Z (two norms on Z are equivalent if there
are positive constants c1, c2 for which c1‖z‖

2
Z ≤ ‖z‖2

e ≤ c2‖z‖
2
Z for all z ∈ Z)

and for which there is a constant α < 0 such that Re 〈Az, z〉e ≤ α‖z‖2
e for all z ∈

domA. It then follows from linear semigroup theory and the Lumer-Phillips theorem
in particular that

‖T (t)z‖e ≤ eαt‖z‖e for all z ∈ Z, (2.8)

and it further follows from the equivalence of norms that

‖T (t)z‖Z ≤Meαt‖z‖Z for all z ∈ Z, (2.9)
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where M =
√
c2/c1. We note that due to the equivalence of norms it is sufficient to

show that there is a constant α < 0 such that Re 〈Az, z〉e ≤ α‖z‖2
Z for all z ∈ domA

in order to conclude
‖T (t)z‖e ≤ eαt/c2‖z‖e for all z ∈ Z. (2.10)

Let us introduce the following condition, which we will show is a sufficient condi-
tion for exponential stability of the solution semigroup T (t) associated with (2.1).

(C1) There exist matrices Ã = diag(a1, . . . , an) and B̃ = diag(b1, . . . , bn) for which
the following hold.

1. Re xTAx ≤ xTÃ x for all x ∈ Cn,

2. Re xTB y ≤ 1
2x

TB̃ x+ 1
2y

TB̃ y for all x, y ∈ C
n,

3. ai < −|bi| for i = 1, . . . , n.

Theorem 2.1 If (C1) holds, then the semigroup T (t) associated with (2.1) is expo-
nentially stable.

Proof. Observe that if a < −|b| then the function f(x) = a+ |b|e−rx−x has a unique
negative real root, since f(0) < 0, f(−∞) = +∞, and f ′(x) < 0 for x < 0. Thus for
i = 1, . . . , n let γi be the unique negative real root of

ai + |bi|e
−γr − γ = 0. (2.11)

Set γ = max{γ1, . . . , γn} < 0 and define the n× n matrix function

G(θ) = diag
(
|bi|e

−γre−2γθ
)
.

Let us now define a norm on Z by

‖(η, ϕ)‖2
e = ‖η‖2

n +

∫ 0

−r

ϕ(θ)TG(θ)ϕ(θ) dθ, (2.12)

=

n∑

i=1

{
|ηi|

2 +

∫ 0

−r

|bi|e
−γre−2γθ|ϕi(θ)|

2 dθ

}
(2.13)

with a compatible inner product given by

〈(η, ϕ), (ξ, ψ)〉e = ξT η +

∫ 0

−r

ψ(θ)TG(θ)ϕ(θ) dθ, (2.14)

for all (η, ϕ), (ξ, ψ) in Z. It is straightforward to check that ‖·‖e is equivalent to the
original norm ‖·‖Z on Z. We claim that Re〈Az, z〉e ≤ γ‖z‖2

e for all z ∈ domA, from
which the result will follow. To verify this claim, for z = (η, ϕ) ∈ domA we have
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Re 〈A(η, ϕ), (η, ϕ)〉e = Re

{
ηTAη + ηTBϕ(−r) +

∫ 0

−r

ϕ(θ)TG(θ)ϕ(θ)′ dθ

}

= Re
{
ηTAη + (e−γr/2η)TB(eγr/2ϕ(−r))

+

∫ 0

−r

ϕ(θ)TG(θ)ϕ(θ)′ dθ

}

≤ ηT Ãη +
1

2
eγrϕ(−r)T B̃ϕ(−r) +

1

2
e−γrηT B̃η

+Re

{∫ 0

−r

ϕ(θ)TG(θ)ϕ(θ)′ dθ

}

=

n∑

i=1

{
ai|ηi|

2 +
1

2
bie

γr|ϕi(−r)|
2 +

1

2
bie

−γr|ηi|
2

}
.

+Re

{∫ 0

−r

|bi|e
−γre−2γθϕi(θ)ϕi(θ)′ dθ

}
. (2.15)

Now use the integration by parts formula

Re

∫ 0

−r

g(θ)ϕ(θ)ϕ(θ)′ dθ =
1

2
g(0)|ϕ(0)|2 −

1

2
g(−r)|ϕ(−r)|2

−
1

2

∫ 0

−r

g′(θ)|ϕ(θ)|2 dθ

and continue from (2.15) to get

Re 〈A(η, ϕ), (η, ϕ)〉e ≤

n∑

i=1

{
(ai +

1

2
(bi + |bi|)e

−γr)|ηi|
2

+
1

2
(bi − |bi|)e

γr|ϕi(−r)|
2

+ γ

∫ 0

−r

|bi|e
−γre−2γθ|ϕi(θ)|

2 dθ

}
. (2.16)

Now (bi + |bi|)e
−γr/2 ≤ |bi|e

−γr ≤ |bi|e
−γir and (bi − |bi|) ≤ 0, so it follows from

(2.16) that

Re 〈Az, z〉e ≤

n∑

i=1

{
(ai + |bi|e

−γir)|ηi|
2 + γ

∫ 0

−r

|bi|e
−γre−2γθ|ϕi(θ)|

2 dθ

}

=
n∑

i=1

{
γi|ηi|

2 + γ

∫ 0

−r

|bi|e
−γre−2γθ|ϕi(θ)|

2 dθ

}

≤ γ‖(η, ϕ)‖2
e.
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It follows from the discussion surrounding (2.8)-(2.10) that ‖T (t)‖e ≤ eγt and that
‖T (t)‖Z ≤Meγt for some M ≥ 1. The result follows. 2

Next we recall Mori’s result in [15], where it was shown that a sufficient condition
for exponential stability is

µ(A) + ‖B‖ < 0. (2.17)

In (2.17) µ(A) refers to the measure of the matrix A, which is defined by

µ(A) ≡ lim
θց0

‖I + θA‖ − 1

θ
.

See [4] for properties of the matrix measure. It turns out that it is only easy to
compute µ(A) in the 1, 2, and ∞ norms, and

µ1(A) = max
j

[
Re (ajj) +

∑

i6=j

|aij |

]
, µ2(A) = max

i
[λi(A+A∗)/2],

µ∞(A) = max
i

[
Re (aii) +

∑

j 6=i

|aij |

]
.

Here λi(A +A∗) represents the ith eigenvalue of the Hermitian matrix A+A∗. Our
condition (C1) is an improvement over Mori’s result in the 2-norm, as the next result
verifies.

Lemma 2.1 Inequality (2.17) implies (C1) in the ‖·‖2 norm.

Proof. Assume that µ(A) < −‖B‖ in the 2-norm. Set B̃ = ‖B‖I and Ã = µ(A)I.
Then ai = µ(A) < −‖B‖ = −bi for each i = 1, . . . , n, so part 3 from (C1) holds. The
Cauchy-Schwarz inequality yields that part 2 from (C1) is true. To see that part 1
from (C1) is true, recall that in the 2-norm

µ(A) = max
i

{λi(A+A
T
)}/2,

so we have
RexTAx ≤ µ(A)‖x‖2 = xT Ãx

for all x ∈ C
n. The result follows. 2

Thus our condition is sharper than Mori’s in the 2-norm, and in some particular
cases it becomes possible to take advantage of the structure of the matrices to obtain
significant improvements over Mori’s result, even in other norms.
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Example. Consider (2.1) with

A =

[
−3.1 0

0 −1.6

]
B =

[
−2.1 −1
−1 −.6

]
δ

This is similar to an example in [15], where the idea is to determine the range of δ ≥ 0
for which the system is exponentially stable. It is easy to calculate that

‖B‖1 = 3.1δ, ‖B‖2 = 2.6δ, ‖B‖∞ = 3.1δ,

and that
µ1(A) = µ2(A) = µ∞(A) = −1.6.

If we apply Mori’s condition with the 1 or ∞ norm, stability is guaranteed for δ <
1.6
3.1 ≈ .516, and with the 2-norm stability is guaranteed for δ < 1.6

2.6 ≈ .6154. However
if we apply the Cauchy-Schwarz inequality appropriately we can obtain

RexTBy ≤
1

2

{
(2.1 + ε)|x1|

2 + (.6 +
1

ε
)|x2|

2 + (2.1 + ε)|y1|
2 + (.6 +

1

ε
)|y2|

2

}
δ

for any ε > 0. Thus we can choose

B̃ =

[
2.1 + ε 0

0 .6 + 1
ε

]
δ

and for ε = 1 condition (C1) guarantees stability for δ < 1, a significant improvement
over Mori’s condition for this example.

One advantage of Mori’s result is that exponential stability follows if µ(A) < −‖B‖
in any matrix norm, although as previously noted it is only easy to compute µ(A)
in the 1, 2, and ∞ norms. As the above lemma indicates, in the 2 norm our result
is an improvement over Mori’s result, and as the example indicates, in some cases
our result provides an improvement in any norm. An important point is that our
result gives an estimate of the exponential decay rate (the number γ < 0), whereas
the results of Mori and others do not.

3. Neutral Systems

Consider the system of linear delay-differential equations

d

dt
[x(t) + Cx(t − r)] = Ax(t) +Bx(t− r), (3.1)

x(0) + Cx(−r) = η0, x(θ) = ϕ0(θ), −r ≤ θ < 0,

where A, B, C are n×n matrices with complex entries, and r > 0. We are interested
in conditions on A, B, C which are sufficient for exponential stability of (3.1) for all
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r. Let us recall two recent noteworthy conditions. In [14] Li proved that exponential
stability follows if

µ(A) +
‖C‖‖A‖ + ‖B‖

1 − ‖C‖
< 0 and ‖C‖ < 1. (3.2)

In [11] Hu and Hu improved Li’s result and showed that exponential stability follows
if

µ(A) + ‖B‖ +
‖CA‖ + ‖CB‖

1 − ‖C‖
< 0 and ‖C‖ < 1. (3.3)

In this section we shall derive new sufficient conditions for exponential stability, in-
cluding the special case in which A is Hermitian, and our conditions will be com-
pared with (3.2) and (3.3). As we did for retarded systems, we conduct our stability
analysis in a Hilbert space setting with the tools of linear semigroup theory. To
proceed, consider the previously defined Hilbert space Z = Cn × L2(−r, 0; Cn) with
the norm and inner product given by (2.2) and (2.3). If we make the identification
z(t) = (x(t) + Cx(t − r), x(t + θ)), then as introduced in [2] equation (3.1) can be
reformulated as the Cauchy problem

d

dt
z(t) = Az(t) (3.4)

z(0) = (η0, ϕ0), (3.5)

on Z. Here the operator A : domA ⊂ Z → Z is defined on the domain

domA = {(η, ϕ) ∈ Z : ϕ ∈ H1(−r, 0; Cn), η = ϕ(0) + Cϕ(−r)}, (3.6)

by
A(η, ϕ) = (Aϕ(0) +Bϕ(−r), ϕ′). (3.7)

It is well known from [2] that A is the infinitesimal generator of a strongly continuous
semigroup T (t) on Z.

3.1. The case A is Hermitian

We first restrict our attention to the case in which the matrix A is Hermitian (equiv-
alently, A is self-adjoint). We note that for a self-adjoint matrix, A < 0 means that
A is negative definite.

Theorem 3.1 In the case in which the matrix A is self-adjoint, if µ(A) < 0 and

1 − ‖C‖2 −
1

|µ(A)|2
‖B‖2 > 0, (3.8)

then the semigroup T (t) associated with (3.1) is exponentially stable.
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Proof. In the statement of the theorem, ‖·‖ refers to the usual matrix norm induced
by the Euclidean vector norm ‖·‖n. Assume that µ(A) < 0 and (3.8) is true. Since
µ(A) < 0 the matrix A is negative definite, and so Λ ≡ (−A)−1 is a positive definite,
self-adjoint matrix. Furthermore, ‖Λ‖ = 1/|µ(A)|. Let us define a norm on Z by

‖(η, ϕ)‖2
e = ηT Λη +

∫ 0

−r

e−2γθϕ(θ)Tϕ(θ) dθ

for all (η, ϕ) ∈ Z, with a compatible inner product given by

〈(η, ϕ), (ξ, ψ)〉e = ξT Λη +

∫ 0

−r

e−2γθψ(θ)Tϕ(θ) dθ, (3.9)

for all (η, ϕ), (ξ, ψ) ∈ Z. It is straightforward to check that ‖·‖e is equivalent to the
original norm ‖·‖Z on Z for any choice of γ. For any z = (η, ϕ) ∈ domA we have

Re 〈Az, z〉e = Re
{
ηT Λ[Aη −ACϕ(−r)] + ηT ΛBϕ(−r)

+

∫ 0

−r

e−2γθϕT (θ)ϕ(θ)′ dθ

}

= −‖η‖2
n + Re

{
ηT [Cϕ(−r)]

}
+

1

2
‖η − Cϕ(−r)‖2

n

−
1

2
‖ϕ(−r)‖2

ne
2γr + Re

{
ηT ΛBϕ(−r)

}

+γ

∫ 0

−r

e−2γr‖ϕ(θ)‖2
n dθ

= −
1

2
‖η‖2

n +
1

2
ϕ(−r)T [CTC − e2γrI]ϕ(−r)

+Re
{
ηT ΛBϕ(−r)

}
+ γ

∫ 0

−r

e−2γr‖ϕ(θ)‖2
n dθ. (3.10)

Now

Re ηT ΛBϕ(−r) ≤
k

2
‖Λη‖2

n +
1

2k
‖Bϕ(−r)‖2

n

for any k > 0, so from (3.10) we have

Re 〈Az, z〉e ≤ −
1

2
‖η‖2

n(1 −
k

|µ(A)|2
) + γ

∫ 0

−r

e−2γr‖ϕ(θ)‖2
n dθ

+
1

2
ϕ(−r)T [CTC − e2γrI +

1

k
BTB]ϕ(−r). (3.11)

If for 0 < k < |µ(A)|2 we can choose γ < 0 such that

e2γrI − CTC −
1

k
BTB ≥ 0, (3.12)
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then we get
Re 〈Az, z〉e ≤ α‖z‖2

Z, (3.13)

for all z ∈ domA, where α = max{− 1
2 (1 − k

|µ(A)|2 ), γ}. A sufficient condition for

(3.12) is (3.8), and the result follows from the discussion surrounding (2.8)-(2.10). 2

In order to get a more refined estimate of the decay rate, observe that

−
1

2
(1 −

k

|µ(A)|2
)‖η‖2

n ≤ −
1

2
(1 −

k

|µ(A)|2
)|µ(A)|ηT Λη

= −
1

2
(|µ(A)| −

k

|µ(A)|
)ηT Λη.

Thus from (3.11) and (3.12) we see that (3.13) can be modified to

Re 〈Az, z〉e ≤ α‖z‖2
e, (3.14)

for all z ∈ domA, where α = max{− 1
2 (|µ(A)| − k

|µ(A)| ), γ} < 0. The optimal decay

rate is obtained by choosing k and γ (satisfying 0 < k < |µ(A)|2, γ < 0 and (3.12))
to minimize α < 0. Observe that if for k satisfying 0 < k < |µ(A)|2 we can choose
γ < 0 such that

e2γr − ‖C‖2 −
1

k
‖B‖2 ≥ 0, (3.15)

then (3.14) holds, and also observe that (3.8) implies (3.15) which in turn implies
(3.12). For any feasible choice of k, γ must satisfy (from (3.15))

1

2r
ln(‖C‖2 +

1

k
‖B‖2) ≤ γ < 0,

and so our optimal decay rate satisfies

α = min
k

max

{
−

1

2
(|µ(A)| −

k

|µ(A)|
),

1

2r
ln(‖C‖2 +

1

k
‖B‖2)

}

= min
k

max{f(k), g(k)}.

Notice that for k > 0, f(k) = − 1
2 (|µ(A)| − k

|µ(A)| ) is an increasing function of k

and g(k) = 1
2r ln(‖C‖2 + 1

k‖B‖2) is a decreasing function of k. Also f(|µ(A)|
2
) = 0,

g(|µ(A)|
2
) < 0, and if (3.8) holds then

0 <
‖B‖2|µ(A)|

2

‖B‖2 + |µ(A)|
2
(1 − ‖C‖2 − ‖B‖2/|µ(A)|

2
)
< |µ(A)|

2

and

g

(
‖B‖2|µ(A)|

2

‖B‖2 + |µ(A)|2(1 − ‖C‖2 − ‖B‖2/|µ(A)|2)

)
= 0.
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Thus (3.8) implies that there is a unique k satisfying

0 <
‖B‖2|µ(A)|

2

‖B‖2 + |µ(A)|
2
(1 − ‖C‖2 − ‖B‖2/|µ(A)|

2
)
< k < |µ(A)|

2

which is a solution of

−
1

2
(|µ(A)| −

k

|µ(A)|
) =

1

2r
ln(‖C‖2 +

1

k
‖B‖2), (3.16)

and for this k the optimal decay rate is given by

α = −
1

2
(|µ(A)| −

k

|µ(A)|
). (3.17)

Therefore we may use (3.16) and (3.17) to get an estimate of the decay rate. Next
we shall consider the general neutral equation, in which A is not restricted to be
Hermitian, but before doing so we show that our condition (3.8) is sharper than Li’s
condition (3.2).

Theorem 3.2 In the case in which the matrix A is self-adjoint, (3.2) implies (3.8).

Proof. Assume that (3.2) is true. Then µ(A) < 0, and also ‖C‖ < 1 implies that
(1 − ‖C‖)2 < 1 − ‖C‖2. We have

|µ(A)|
2
(1 − ‖C‖2) > |µ(A)|

2
(1 − ‖C‖)2 > (‖B‖ + ‖C‖ ‖A‖)2 > ‖B‖2

and the result follows. 2

3.2. The general neutral equation

We provide a sufficient condition for exponential stability of the linear neutral system
(3.1).

Theorem 3.3 Consider the neutral system (3.1). Define the matrices G = −(A +
AT )/2 and H = G+A = (A− AT )/2. If µ(A) < 0 and

G− CTGC −
1

k
CTHTHC −

1

|µ(A)| − k
BTB > 0 (3.18)

for some constant 0 < k < |µ(A)|, then the semigroup T (t) associated with (3.1) is
exponentially stable. In the special case B ≡ 0 it is sufficient that

G− CTGC −
1

|µ(A)|
CTHTHC > 0. (3.19)
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Proof. Observe that G is a positive-definite, self-adjoint matrix. With this matrix
define a norm on Z by

‖(η, ϕ)‖2
e = ηT η +

∫ 0

−r

e−2γθϕ(θ)TGϕ(θ) dθ (3.20)

for all (η, ϕ) ∈ Z, with a compatible inner product given by

〈(η, ϕ), (ξ, ψ)〉e = ξT η +

∫ 0

−r

e−2γθψ(θ)TGϕ(θ) dθ, (3.21)

for all (η, ϕ), (ξ, ψ) ∈ Z. It is straightforward to check that ‖·‖e is equivalent to the
original norm ‖·‖Z on Z for any choice of γ. We will make use of the integration by
parts formula

Re

∫ 0

−r

e−2γθϕT (θ)Gϕ(θ)′ dθ =
1

2
ϕ(0)TGϕ(0) −

1

2
ϕ(−r)TGe2γrϕ(−r)

+γ

∫ 0

−r

e−2γθϕT (θ)Gϕ(θ) dθ (3.22)

For any z = (η, ϕ) ∈ domA we have

Re 〈Az, z〉e = Re

{
ηT [Aη −ACϕ(−r)] + ηTBϕ(−r) +

∫ 0

−r

e−2γθϕT (θ)Gϕ(θ)′ dθ

}

= Re

{
ηTAη − ηT [ACϕ(−r)] −

1

2
ϕ(−r)TGe2γrϕ(−r)

+
1

2
[η − Cϕ(−r)]TG[η − Cϕ(−r)] + ηTBϕ(−r)

+γ

∫ 0

−r

e−2γθϕT (θ)Gϕ(θ) dθ

}

= Re

{
1

2
ηT [(A+AT ) +G]η − ηT [A+G]Cϕ(−r)

−
1

2
ϕ(−r)T [Ge2γr − CTGC]ϕ(−r) + ηTBϕ(−r)

+γ

∫ 0

−r

e−2γθϕT (θ)Gϕ(θ) dθ

}
. (3.23)

Now
1

2
Re ηT [(A+AT ) +G]η =

1

2
Re ηT [

1

2
(A+AT )]η ≤

1

2
µ(A)‖η‖2

n,

−Re ηT [A+G]Cϕ(−r) = −Re ηTHCϕ(−r)

≤
k1

2
‖η‖2

n +
1

2k1
ϕ(−r)TCTHTHCϕ(−r)
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and

Re ηTBϕ(−r) ≤
k2

2
‖η‖2

n +
1

2k2
ϕ(−r)TBTBϕ(−r)

for any k1, k2 > 0. We continue from (3.23) to get

Re 〈Az, z〉e ≤
1

2
(µ(A) + k1 + k2)‖η‖

2
n + γ

∫ 0

−r

e−2γθϕ(θ)Gϕ(θ) dθ (3.24)

−
1

2
ϕ(−r)T [e2γrG− CTGC −

1

k1
CTHTHC −

1

k2
BTB]ϕ(−r).

If for k1, k2 > 0 satisfying 0 < k1 + k2 < |µ(A)| we can choose γ < 0 such that

e2γrG− CTGC −
1

k1
CTHTHC −

1

k2
BTB > 0 (3.25)

then we get
Re 〈Az, z〉e ≤ α‖z‖2

e, (3.26)

for all z ∈ domA, where

α = max

{
µ(A) + k1 + k2

2
, γ

}
. (3.27)

A sufficient condition for (3.25) is (3.18), so the result follows. In the special case
that B ≡ 0 a very similar argument can be used to show that (3.19) is sufficient for
exponential stability. 2

Since the matrix G − CTGC − 1
kC

THTHC − 1
|µ(A)|−kB

TB is Hermitian, the

condition (3.18) (or (3.19) in the case B ≡ 0) is easy to check. Also the decay rate is
given by α. One measure of the sharpness of a sufficient condition is what it reduces
to in the scalar case (n = 1), where sharp conditions for stability are known. In
particular, when B = 0 and A, C are scalars, a necessary and sufficient condition for
exponential stability of T (t) is

A < 0 and |C| < 1. (3.28)

When our sufficient conditions (3.8) and (3.18) are applied to this case we obtain
exactly (3.28), meaning that our conditions are sharp. However if we apply the
stability conditions of [14] and [11] in this case, we see that both (3.2) and (3.3) require
A < 0 and |C| < 1/2. The condition |C| < 1/2 may be considered significantly more
restrictive than |C| < 1, and so by this measure our sufficient conditions are quite
satisfactory.

Next we show that our condition (3.18) is sharper than Li’s condition (3.2) and
independent of Hu and Hu’s condition (3.3). We have the following result.

Lemma 3.1 The sufficient condition (3.2)) implies (3.18) (and (3.19) when B ≡ 0).
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Proof. Assume that (3.2) is true and that A is not Hermitian (when A is Hermitian
we can use Theorem 3.1 and Theorem 3.2). We shall assume that B 6≡ 0 and show
that (3.18) holds, and remark that when B ≡ 0 a similar argument can be used to
show that (3.19) holds. We have that µ(A) < 0, so the matrix G is positive definite
and self-adjoint, and

|µ(A)| ‖x‖2
n ≤ xTGx ≤ ‖A‖ ‖x‖2

n

for all x ∈ Cn. Also

xTCTGCx = (Cx)TG(Cx) ≤ ‖A‖ ‖Cx‖2
n ≤ ‖A‖ ‖C‖2‖x‖2

n

xTBTBx ≤ ‖B‖2‖x‖2
n

and
xTCTHTHCx = (HCx)T (HCx) = ‖HCx‖2

n ≤ ‖H‖2‖C‖2‖x‖2
n

for all x ∈ Cn. Thus to verify (3.18) it is sufficient to show that

|µ(A)| > ‖C‖2‖A‖ +
1

k
‖C‖2‖H‖2 +

1

|µ(A)| − k
‖B‖2 (3.29)

for some k satisfying 0 < k < |µ(A)|. In particular, set

k =
|µ(A)| ‖C‖ ‖H‖

‖B‖ + ‖C‖‖H‖
.

Note that 0 < k < |µ(A)|, because k < |µ(A)| as long as B 6≡ 0, which is the case
under consideration, and 0 < k because A not being Hermitian implies ‖H‖ 6= 0.
(Of course, if ‖C‖ = 0, then we are in the retarded case and would instead invoke
Theorem 2.1). For this choice of k, (3.29) becomes

|µ(A)| > ‖C‖2‖A‖ +
1

|µ(A)|
(‖B‖ + ‖H‖ ‖C‖)2, (3.30)

or equivalently,

|µ(A)|
2
> |µ(A)| ‖C‖2‖A‖ + ‖B‖2 + ‖H‖2‖C‖2 + 2‖B‖ ‖H‖ ‖C‖. (3.31)

In order to verify (3.31) notice that (3.2) implies

|µ(A)| > |µ(A)| ‖C‖ + ‖A‖ ‖C‖ + ‖B‖,

so it follows that

|µ(A)|
2

> |µ(A)|
2
‖C‖2 + ‖A‖2‖C‖2 + ‖B‖2

+2‖A‖ ‖B‖ ‖C‖+ 2|µ(A)| ‖A‖ ‖C‖2 + 2|µ(A)| ‖B‖ ‖C‖

> |µ(A)|2‖C‖2 + ‖H‖2‖C‖2 + ‖B‖2

+2‖H‖ ‖B‖ ‖C‖+ 2|µ(A)| ‖A‖ ‖C‖2 + 2|µ(A)| ‖B‖ ‖C‖

≥ ‖H‖2‖C‖2 + ‖B‖2 + 2‖H‖ ‖B‖ ‖C‖+ |µ(A)| ‖A‖ ‖C‖2
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where we used that ‖H‖ ≤ ‖A‖. Thus (3.31) holds and the result follows. 2

Thus our condition is sharper than Li’s condition. Next we show by a numerical
example that our condition is independent of Hu and Hu’s condition.

Example When B ≡ 0 the condition of Hu and Hu reduces to

µ(A) +
‖CA‖

1 − ‖C‖
< 0 and ‖C‖ < 1. (3.32)

We used a simple Matlab routine to generate random matrices and check the condi-
tions (3.19) and (3.32). First consider the matrices

A =




−1.9415 0.8606 1.9198

1.6590 −1.8770 1.7767
−4.3995 −1.7607 −4.7607





C =




−0.0761 −0.0083 −0.0406

0.0729 −0.0470 −0.0176
−0.0801 −0.0802 0.0140



 .

We see that µ(A) ≈ −0.4643, ‖C‖ ≈ 0.1373 and

µ(A) +
‖CA‖

1 − ‖C‖
≈ −0.0108 < 0,

so (3.32) is satisfied. However the eigenvalues of G − CTGC − 1
|µ(A)|C

THTHC are

approximately 5.2151, 2.7887, and −0.0548, so (3.19) is not satisfied. Thus the condi-
tion of Hu and Hu is satisfied while our condition is not satisfied. On the other hand,
consider the matrices

A =




−10.6449 1.8236 −0.9194
−0.4264 −8.3802 −0.8692

2.1469 −4.1161 −3.0405




C =




0.0970 0.1448 −0.1442
0.0527 0.0979 0.0775

−0.0383 −0.0619 −0.0728



 .

We get µ(A) ≈ −2.0461, and the eigenvalues of G − CTGC − 1
|µ(A)|C

THTHC are

approximately 11.0611, 8.5926, and 1.5996, so (3.19) is satisfied. However, ‖CA‖ ≈
1.8356 and ‖C‖ ≈ 0.2319, so

µ(A) +
‖CA‖

1 − ‖C‖
≈ 0.3436 6< 0,

and (3.32) is not satisfied in the 2 norm. It turns out that (3.32) is not satisfied in the
1 or ∞ norms either, since µ∞(A) ≈ 3.2225, and µ1(A) ≈ −1.2519, ‖CA‖1 ≈ 2.2349,
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‖C‖1 ≈ 0.3046, so

µ1(A) +
‖CA‖1

1 − ‖C‖1
≈ 1.9619 6< 0.

Thus our condition is satisfied while the condition of Hu and Hu is not satisfied.

4. Conclusion

We have obtained some new results for exponential stability of differential-difference
systems of retarded- and neutral-type linear delay equations. Our approach makes
use of linear semigroup theory and an appropriate renorming of the underlying state
space. We use our new norms to obtain sufficient conditions for exponential stability
of the corresponding solution semigroups. Then we compare and contrast them with
some known sufficient conditions, and some improvements over existing conditions
are noted. Along this line we also obtain estimates of the exponential decay rate of
the solution semigroup, estimates which are usually not available.
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