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Abstract. In this paper, we obtain sufficient conditions for every solution of the
nonlinear differential equation with unbounded delay x′(t) = −p(t)f(x(g(t))) to tend
to zero as t → ∞, without requiring the nondecreasing assumption of f(x).
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1. Introduction

We consider the nonlinear differential equation with unbounded delay

x′(t) = −p(t)f(x(g(t))), t ≥ 0, (1.1)

where p : [0,∞) → [0,∞) and f : R → R are continuous functions such that xf(x) > 0
if x 6= 0, and g : [0,∞) → R is a nondecreasing continuous function such that g(t) ≤ t
for t ≥ 0 and limt→∞ g(t) = ∞. We see that g(t) = t − 1 and g(t) = t/2 are typical
examples of g(t).

By a solution of (1.1), we mean that a continuous function x(t) which is defined
for t ≥ g(0) and satisfies (1.1) for t ≥ 0. We note that if |f(x)| ≤ |x| for x ∈ R and
∫ t

g(t)
p(s)ds is finite for all large t > 0, then solutions of (1.1) exist for t ≥ 0, by an

argument similar to [14].
Global asymptotic behavior of solutions of scalar delay differential equations con-

taining (1.1) has been studied by many authors, see [1–6, 8–17] and the references
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cited therein. In [8], the author et al. discussed global attractivity for (1.1) under the
following strict nonlinearity of f(x):

|f(x)| < |x| if x 6= 0. (1.2)

Their result is stated as follows:

Theorem A. Let f(x) be a nondecreasing function satisfying (1.2). Suppose that

∫ t

g(t)

p(s)ds ≤
3

2
for all large t > 0 (1.3)

and
∫ ∞

0

p(s)ds = ∞. (1.4)

Then every solution of (1.1) tends to zero as t → ∞.

Theorem A is obtained under the 3/2 stability condition (see, e.g., [2, 3, 11, 13–
16]). An example which shows that the condition (1.3) is the best possible is also given
in [8]. Unfortunately, however, in case f(x) = x(4 − 3 sin2 x)/5, Theorem A cannot
be applied to (1.1), because the monotonicity of f(x) is not satisfied. The purpose
of this paper is to remove this restriction in Theorem A. This research is inspired by
our recent paper on global attractivity for nonlinear delay difference equations in [7].

2. Main Result

The following theorem is our main result.

Theorem 2.1. If (1.2), (1.3) and (1.4) hold, then every solution of (1.1) tends to

zero as t → ∞.

To prove Theorem 2.1, we give some remarks. First, in view of the assumption of
g(t), there exists a sufficiently large T > 0 such that g(t) ≥ 0 for t ≥ T . Note that

g(g(t)) ≤ g(t) ≤ t for t ≥ T.

Let g−1(t) = sup{s : g(s) = t} for t ≥ 0. Then g−1(t) is a piecewise continuous
function satisfying t ≤ g−1(t) for t ≥ T .

Next, we notice that if solutions of (1.1) are nonoscillatory, then the following
result holds.

Lemma 2.1. If (1.4) holds, then every nonoscillatory solution of (1.1) tends to zero

as t → ∞.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Then there exists t1 ≥ g−1(T )
such that x(t) has a constant sign for t ≥ g(t1). Assume that x(t) ≥ 0 for t ≥ g(t1).
(In case x(t) ≤ 0, the proof is similar.) Then we have x′(t) ≤ 0 for t ≥ t1. Hence,
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x(t) is nonincreasing on [t1,∞) and there exists α ≥ 0 such that limt→∞ x(t) = α. If
α 6= 0, there exists t2 = t2(α) ≥ g−1(t1) such that

α

2
≤ x(t) ≤

3

2
α for t ≥ g(t2),

which implies
x′(t) ≤ −p(t)β for t ≥ t2, (2.1)

where β = minα/2≤x≤3α/2 f(x) > 0. Thus, integrating (2.1) from t2 to t and using
(1.4), we obtain

x(t) − x(t2) ≤ −β

∫ t

t2

p(s)ds → −∞ as t → ∞.

This contradicts the fact that the left-hand side tends to a finite limit as t → ∞, and
so α = 0. The proof is complete. �

Proof of Theorem 2.1. By virtue of Lemma 2.1, we have only to consider the case
where solutions of (1.1) are oscillatory.

Let x(t) be an oscillatory solution of (1.1). Then, by (1.3), there exists a suffi-
ciently large t∗ ≥ g−1(g−1(T )) such that x(t∗) = 0 and

∫ t

g(t)

p(s)ds ≤
3

2
for t ≥ g(g(t∗)). (2.2)

Let M be a positive constant such that

max
g(g(t∗))≤t≤t∗

|x(t)| ≤ M.

We define

f̃(x) = max

{

sup
0≤u≤x

f(u), sup
0≤u≤x

(−f(−u))

}

for x ≥ 0.

Then, from the nondecreasing property of f̃(x), it turns out that

|f(x(s))| ≤ f̃(|x(s)|) ≤ f̃(M) for s ∈ [g(g(t∗)), t∗].

Hence, we get

|x′(t)| = p(t)|f(x(g(t)))| ≤ f̃(M) p(t) for t ∈ [t∗, g−1(t∗)]. (2.3)

Also since

|x(g(t))| ≤

∫ t∗

g(t)

p(ξ)|f(x(g(ξ)))|dξ

≤ f̃(M)

∫ t∗

g(t)

p(ξ)dξ for t ∈ [t∗, g−1(t∗)],
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we have, together with (1.2),

|x′(t)| ≤ p(t)|x(g(t))| ≤ f̃(M) p(t)

∫ t∗

g(t)

p(ξ)dξ for t ∈ [t∗, g−1(t∗)]. (2.4)

Thus, by (2.3) and (2.4), we obtain

|x(t)| ≤ min

{

f̃(M)

∫ t

t∗
p(s)ds, f̃(M)

∫ t

t∗
p(s)

∫ t∗

g(s)

p(ξ)dξds

}

≤ f̃(M)

∫ t

t∗
p(s)min

{

1,

∫ t∗

g(s)

p(ξ)dξ

}

ds for t ∈ [t∗, g−1(t∗)].

Now we will show that

|x(t)| ≤ f̃(M) for t ∈ [t∗, g−1(t∗)]. (2.5)

We consider two cases:
Case (I). λ =

∫ t∗

g(t∗) p(s)ds ≤ 1. Then for t ∈ [t∗, g−1(t∗)] we see

|x(t)| ≤ f̃(M)

∫ g−1(t∗)

t∗
p(s)

∫ t∗

g(s)

p(ξ)dξds

= f̃(M)

∫ t∗

g(t∗)

p(ξ)

∫ g−1(ξ)

t∗
p(s)dsdξ

= f̃(M)

{

∫ t∗

g(t∗)

p(ξ)

∫ g−1(ξ)

ξ

p(s)dsdξ −

∫ t∗

g(t∗)

p(ξ)

∫ t∗

ξ

p(s)dsdξ

}

≤ f̃(M)











3

2

∫ t∗

g(t∗)

p(ξ)dξ +





1

2

(

∫ t∗

ξ

p(s)ds

)2




t∗

g(t∗)











= f̃(M)

(

3

2
λ −

1

2
λ2

)

≤ f̃(M).

Case (II). 1 <
∫ t∗

g(t∗)
p(s)ds ≤ 3/2. Then there exists s0 ∈ (t∗, g−1(t∗)) such that

∫ t∗

g(s0)
p(ξ)dξ= 1, and we have for t ∈ [t∗, g−1(t∗)],

|x(t)| ≤ f̃(M)

{

∫ s0

t∗
p(s) · 1ds +

∫ g−1(t∗)

s0

p(s)

∫ t∗

g(s)

p(ξ)dξds

}

= f̃(M)

{

∫ t∗

g(s0)

p(ξ)dξ

∫ s0

t∗
p(s)ds +

∫ t∗

g(s0)

p(ξ)

∫ g−1(ξ)

s0

p(s)dsdξ

}
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= f̃(M)

∫ t∗

g(s0)

p(ξ)

∫ g−1(ξ)

t∗
p(s)dsdξ

= f̃(M)

{

∫ t∗

g(s0)

p(ξ)

∫ g−1(ξ)

ξ

p(s)dsdξ −

∫ t∗

g(s0)

p(ξ)

∫ t∗

ξ

p(s)dsdξ

}

≤ f̃(M)











3

2

∫ t∗

g(s0)

p(ξ)dξ +





1

2

(

∫ t∗

ξ

p(s)ds

)2




t∗

g(s0)











= f̃(M).

Furthermore, using (2.5), we claim that

|x(t)| ≤ f̃(M) for t ≥ t∗. (2.6)

Suppose, for the sake of contradiction, that

|x(t)| > f̃(M) for some t ≥ g−1(t∗).

Then there exist T1 = sup{t > g−1(t∗) : |x(s)| ≤ f̃(M) for s ∈ [g−1(t∗), t]} and T2 =
sup{t∗ ≤ t < T1 : x(t) = 0}. In case T1 <g−1(T2), noting that maxg(g(T2))≤t≤T2

|x(t)| ≤
M , we get

|x(t)| ≤ f̃(M) for t ∈ [T2, g
−1(T2)],

which contradicts the definition of T1. In case T1 ≥ g−1(T2), it follows from the
choice of T1 and T2 that

x(t) ≥ 0 or x(t) ≤ 0 for t ∈ [T2, T1].

Assume first that x(t) ≥ 0 for t ∈ [T2, T1]. (In case x(t) ≤ 0, the proof is similar.)
Then we have

x′(t) ≤ 0 for t ∈ [T1, g
−1(T1)],

and so
x(t) ≤ x(T1) = f̃(M) for t ∈ [T1, g

−1(T1)].

This contradicts the definition of T1. Consequently, we obtain (2.6).
From the argument above, we can establish an increasing sequence {t∗n} with

t∗1 = t∗ such that limn→∞ t∗n = ∞ and x(t∗n) = 0, and a sequence {Xn} with X1 = M ,
Xn+1 = f̃(Xn) such that

max
g(g(t∗n))≤t≤t∗n

|x(t)| ≤ Xn and sup
t≥t∗n

|x(t)| ≤ Xn+1. (2.7)

Here, in view of (1.2) and the definition of f̃(x), we obtain f̃(0) = 0 and

0 < f̃(x) < x for x > 0,

which imply that Xn tends to zero as n → ∞. Finally, by (2.7), we conclude that
x(t) tends to zero as t → ∞. This completes the proof. �
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Remark 2.1. In our proof of Theorem 2.1, the nondecreasing assumption of g(t)
cannot be omitted, because we need to use it in leading (2.3) and (2.4), and need to

exchange the order of integration on the double integral in leading (2.5).
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