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A model capable of capturing the essential behavior during repeated large displacement cyclic flexure at near real time
would greatly enhance the study of the biomechanical functioning of the lumbar spine and improve work design and clinical
therapies. This paper presents a model that bridges the gap between detailed finite element models and overly simplified
models. All major components of the lumbar spine are modeled using nonlinear elements including viscoelastic effects
where appropriate. The element types were selected to provide a balance between computational efficiency and level of
detail. To increase the usefulness of the model it is linked to goniometer-measured motion data and the load is applied as a
specified displacement at the top of the thoracic vertebra T

12
. A complete description of the elements, loading derivation,

and computational process is presented in this paper. A companion paper provides a validation study of the model results.
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1. INTRODUCTION

Detailed knowledge of the behavior of the lumbar spine
under normal and abnormal postures and loading can lead
to improved work design and clinical therapies. However,
since it is not possible to perform either acute or
cumulative failure tests in-vivo with human subjects, two
approaches remain feasible, cadaveric studies and
modeling. Cadaveric studies investigating cyclic loads
have generally subjected the spine to high frequency loads
until failure is achieved. These are artificial loading
conditions and do not realistically reflect the stresses to
which the spine is exposed through bending and lifting
during normal daily or occupational activities (eg. manual
material handling, etc.).

On the other hand, significant effort has also been
invested in developing biomechanical models, in
particular finite element (FE) models, for investigating
spinal behavior. An advantage of this type of modeling
is that the tissue response can be predicted, and the
material properties and loads can be varied to a degree
that is not possible with human subjects. To date, most
finite element analysis studies have applied simplified
static loads to a single motion segment. However, since
most low back disorders (LBD) found in industry today
are due to tasks that are repetitive in nature, static or short
duration dynamic analyses may not be adequate.

With finite element models, loads that will damage
the spinal structure(s) can be investigated, which cannot
be done with human subjects. However, the results

obtained are a function of the model assumptions and
the applicability of the results depends upon the model
specificity. Also, there is a trade-off between the number
and complexity of elements (accuracy) and computation
time. The implemented models vary widely in the choices
made as to material properties, loads, and outcomes
investigated.

Over the last two decades, the FE modeling of lumbar
motion segments has taken multiple directions. Although
mathematical models of the spine have been in use since
the 1950’s a substantial number of studies began to appear
in the 1970’s. These early studies used relatively simple
representations of the geometry and material properties.
Belytschko et al. (1976), Spilker (1980), Spilker et al.
(1984), and Kurowski et al. (1986) assumed an
axisymmetric geometry, allowing a single two-
dimensional slice to represent the entire motion segment.
All used linear elastic materials, combined the annulus
fibers and ground substance into a single element, and
assumed an incompressible nucleus. Kurowski used an
applied hydrostatic pressure to represent the nucleus
rather than a physical element. A more complex, but still
linear, model was developed by Shirazi-Adl et al. (1984).
A full three-dimensional representation of the motion
segment was developed, and the annulus was divided into
separate elements for the fibers and ground substance.
Further developing the model, Shirazi-Adl et al. (1986a,
b) added facet joints and the spinous process, and used a
nonlinear model for the collagen fibers in the annulus.

Subsequent papers extended the basic models to
include various material properties. Kim et al. (1991)
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added nonlinear ligaments, and the loss of fluid in the
disc was studied by Shirazi-Adl (1992) by changing the
disc volume. The time-dependent characteristics of the
nucleus were modeled with poroelastic elements by
Argoubi and Shirazi-Adl (1996) and with viscoelastic
elements by Lu et al. (1996). Kong et al. (1998) studied
the effect of the thorax and the attached muscles.

Few finite element studies of the cyclic behavior of
the lumbar spine have been undertaken to date. Lee et al.
(2000) used a poroelastic model and applied an impact
load (duration up to 0.2 seconds). Goel et al. (1994)
investigated the spinal system response to a cyclic load.
Five cycles were modeled with a total duration of 1 second.
Wang et al. (1998) used a viscoelastic model loaded in
compression at 15 Hz for 30 seconds to determine the
hysteretic energy loss per cycle. A simplified mass-spring
model was used by Pankoke et al. (1998) to determine the
vibration characteristics of a seated subject. Approximately
10 seconds of simulation was performed. The extremely
short duration of loading for each of these studies
emphasizes the difficulties in applying current FEMs to
repetitive motion analysis problems.

Attempts to model the complete lumbar spine using
relatively small numbers of elements, so-called “simple”
models (Fagan et al., 2002), have been made since the
late 50’s (Latham, 1957; Orne and Liu, 1970; Roberts
and Chen, 1970; Prasad and King, 1974; Sundaram and
Feng, 1977; Belytschko et al., 1978; Dietrich et al., 1991).
Although often termed simple because of the use of fewer
elements, the models of each individual element are
actually more complex than typical solid finite elements,
with higher orders of displacement and stress
approximation, and allow for investigation of the entire
spine including motion and the effect of material
properties, posture, etc. These models offer a tradeoff
between prediction of detailed local behavior and overall
global spinous structure behavior. Recent examples of
whole-spine models were developed by Pankoke et al.
(1998) and Ezquerro et al. (2004), concentrating on small
displacement vibration, or static loads.

In summary, this paper presents a model that
addresses both the loading derivation and model
complexity issues. Realistic loading during repeated
sagittal lifts is obtained by explicitly linking the model
with experimental measurements using a lumbar motion
monitor (LMM) (Marras, et al. 1992). In addition, the
analytical model takes a middle way, including enough
detail to predict some localized behavior while remaining
able to calculate the large displacement dynamic response
of the full lumbar spine in near real-time. The model is
not intended to replace existing models, but rather to
complement them by adding a method of determining
the overall behavior with response parameters that
identify key areas that should be further investigated.

2. MODEL DESCRIPTION

Overview. Determining the forces to which a spine is
subjected during flexion requires consideration of the
material properties of the tissue, the subject-specific
geometric configuration of the spine, and the particular
motion imposed by the flexion task. The method proposed
herein involves predicting the response of the lumbar
spine using a finite element model and measured motions
during flexion. Capturing the essential behavior necessary
to accurately predict the spinal motion and forces requires
a detailed model. Conversely, the need for near real-time
calculations to allow evaluation of the changes in force
and to predict damage during repetitive lifting naturally
leads to a less complex model.

The finite element model developed in this research
bridges this gap. It provides sufficient detail about the
internal mechanisms of motion and stress distribution to
allow insight into the behavior. On the other hand it
executes quickly enough to allow for long-term, multiple
cycle calculations. The overall computational
methodology is discussed in this section.

Model Description. The model is built-up using
elements representing the different components of the
lumbar spine. Vertebral bodies, endplates, posterior
elements, ligaments, and intervertebral discs are explicitly
modeled. Six vertebral bodies are included in the model,
L

5
 (lumbar) -T

12
 (thoracic) along with their endplates.

Posterior elements are integrated for each of the vertebral
bodies. Six discs are placed between the endplates and a
variable number of ligaments may be included in the
model. A total of thirteen nodes are used (one at the top
and one at the bottom of each vertebra, plus the top of
the sacrum, S). A two-dimensional model was developed
and the sacrum was assumed fixed against translation as
a reference point, leading to a total of 37 degrees of
freedom (Figure 1).

Figure 1: Overall model geometry and components: (a) model
nodes and degrees-of-freedom, (b) motion segment
detail including all component elements
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3. MODEL DETAILS

Vertebrae Model: The vertebral bodies are modeled as
linear, elastic, beam-type elements. The behavior of the
vertebral bodies appears to follow a basically linear force-
displacement relationship for the range of strains
considered (Fung, 1993), and the complexity of a
nonlinear model does not seem justified. However, the
shape of the vertebral bodies, approximately the same
height as width, indicates that shear deformations might
be important; therefore shear stiffness is included in the
element. The cortical and cancellous bone are modeled
independently as elements in parallel, one inside the other,
having the same displacements at their ends.

The endplates are also modeled as linear, elastic
beams including axial, bending, and shear deformations.
Although the endplates can exhibit quite complex
behavior, only those behavior modes with a significant
effect on the overall motion are included in the model.
Once the motion and general stress levels have been
determined using the current model, more detailed
analyses can be performed to predict specific behaviors.
For computational efficiency, the endplates are combined
with the vertebral bodies into a single superelement using
substructuring theory (Sennett, 1994). Geometric stiffness
is considered, and is calculated for the superelement
rather than for the individual components.

Ligament Model: Since ligaments exhibit mainly a
nonlinear (Weiss, 2002; Woo, 1993) uniaxial longitudinal
behavior, they are modeled using truss-type elements. In
addition, ligaments have little or no ability to carry
compression and behave like cables, having an
“activation” length (strain) at which they become taut
and their stiffness increases dramatically.

The stress-strain behavior of collagen-based
ligaments is nonlinear, viscoelastic, and exhibits
hysteresis (Fung, 1993, Martin, 1998, Solomonow, 2004).
A Voigt model is employed to capture the ligament
behavior and consists of a spring and dashpot in parallel.
The loading portion of the elastic curve (spring) is
characterized by zero stiffness in compression and up to
the point where the ligament activates. At higher strains,
the stiffness gradually increases, eventually reaching its
maximum value.

Ligaments are formed by collagenous tissue
consisting mostly of type I collagen. They are tension
resistant (Bogduk, 1997) and usually exhibit a behavior
similar to isolated collagen fibers, which is characterized
by a stress-strain curve (Shah et al., 1977; Shah, 1980;
Nordin, 2001) that is divided into four functional regions:
a silent zone, transition or toe, linear and yield
(Figure 2). Under compression and up to some value of
the tensile strain, the ligament exhibits essentially no
resistance to deformation – silent zone. The center of the

transition or toe zone between the slack and taut
conditions is labeled �

0
 in Figure 2. As the ligament

lengthens, the stiffness gradually increases until it reaches
a constant value - linear zone (starting at Point A).
Typically, at point A the strain values were found to be
about 6 to 20% of the initial length (Chazal et al., 1985).
As the strain continues to increase, the modulus will
eventually start to decrease and failure occurs – yield
zone. Some ligaments can be strained up to 30% or more
without damage (Martin, 1999).

This behavior is modeled by varying the tangent
modulus based on the length (strain) of the ligament
(Figure 2). Required input data include the modulus for
both slack and taut conditions, the strain at which the
ligament becomes taut, and a parameter describing the
sharpness of the transition from slack to taut. The equation
used to describe the behavior is

� �� �� � � �� �01.0 tanh / 2.0taut slack slackE E E E� � � � � � � �

where E is the current tangent modulus, E
taut

 is the tangent
modulus at large tensile strains, E

slack
 is the tangent

modulus at small tensile and all compressive strains, �
is a parameter defining the shape of the transition curve,
� is the current ligament strain, and �

0
 is the center strain

of the ligament modulus transition (“activation” strain).
For the ligament model, E

slack
 is taken as zero and E

taut
 is

the activated modulus, obtained from experimental data.
The value of �

0
 varies based on the ligament and the

average strain at which it stiffens. The curve parameter,
�, is used to adjust the abruptness of the transition to
match measured data. For most ligaments the slack
modulus is zero (no tensile capacity), but for the
ligamentum flavum, which consists of 80% elastin
(Bogduk, 1997, Nordin, 2001), the slack modulus is

Figure 2: General shape of the ligament stress-strain curve (after
Chazal et al., 1985)
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small, but non-zero. The dashpot is nonlinear with a
viscous coefficient, �, relating the ligament stress and
strain rate. The viscous coefficient also varies based on
the ligament strain using the same transition equation as
the modulus but with different parameters. Values for the
parameters were determined from an extensive parametric
study of the available experimental results (Campbell-
Kyureghyan, 2004).

In addition to the ligament material properties and
cross sectional area, the attachment location must be part
of the input data for each ligament. The ligament axial
deformation is determined from the displacement and
rotation at the disc centroid assuming the ligament is
rigidly attached (Crisfield, 1991) using constraints. Thus,
the ligaments carry only axial force, but they contribute
to the bending stiffness of the lumbar spine.

Intervertebral Disc Model: The intervertebral discs
are the most complicated component in the model. They
are made up of three subcomponents: annulus fibers,
annulus ground substance, and nucleus. Each of these
requires a different model, but they must be combined
into a single element for computational efficiency.

The nucleus is modeled as a beam element with shear
stiffness. Although it is recognized that the nucleus may
behave more like a fluid than a solid, a beam element
with properly chosen parameters can satisfactorily model
the overall behavior of the nucleus (Campbell-
Kyureghyan, 2004). In addition, the beam element is
computationally efficient and only a single element is
required to adequately capture the overall nucleus
behavior.

The annulus consists of collagen fibers embedded
in the ground substance. In order to accurately model
the spatial variation of the annulus response, the annulus
is subdivided into strands running parallel to the element

axis (Figure 3a). Each strand has a collagen fiber element
and a ground substance element, and is located at a
distance from the element centroid. The ground substance
is modeled as a linear, viscoelastic truss-type element.
Although the truss has only axial stiffness, the distance
from the centroid means that it will also contribute to the
bending stiffness of the element.

The annulus collagen fibers are modeled as nonlinear
truss-type elements. They are oriented at an angle a

v
 to

the element axis, both longitudinally and transversely
(Figure 3b). The orientation of the fibers with the respect
to the vertical axis is of constant magnitude and
alternating sign. This allows the fibers to contribute to
the axial, bending, and shear stiffness. The varying
horizontal orientation of the fibers also allows for an
estimation of the disc bulge. Collagen fiber nonlinear
behavior is modeled with the method already used in the
ligament property variation.

The nucleus and the annulus strands are parallel to
each other. The equivalent element stiffness can be
calculated from

� � � �1 cosgi i i ci i i vin
EA EA E A r E A r� � � � ��

� � � � 2 21 cosgi i i i ci i i i vin
EI EI E A r d E A r d� � � � ��

� � sin cosci i i vi hin
GA GA E A r� �� � � ��

where E is the elastic modulus, A is the cross-sectional
area, I is the moment of inertia, G is the shear modulus,
A� is the effective shear area, r is the fraction of the
annulus made up of collagen, d is the distance between
the strand and the centroid, �

vi
 is the angle formed by

collagen fiber i with the vertical (element axis) direction,
�

hi
 is the angle formed by collagen fiber i with the

horizontal direction, and the subscripts n, g, and c refer

Figure 3: Intervertebral disc model: (a) basic cross-sectional geometry; (b) annulus collagen fiber orientation
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to the nucleus, ground substance, and collagen
respectively. The design of the disc element allows the
behavior and contribution of each of the components to
be determined. In addition, the strand design allows the
spatial variation in the response of the annulus to be
calculated. With a reasonable number of strands,
approximately 6-8, quite complex behavior can be
obtained without great computational expense.

An increase in stiffness with cyclic loading has been
noted in studies on both single components and complete
motion segments (Koeller et al., 1984a, 1984b; Farfan,
1973; Hansson et al., 1987; Goel et al., 1988;
Yoganandan et al., 1994; Callaghan and McGill, 2001).
A common characteristic of the results from each study
is a rapid increase in stiffness at the early stages of cyclic
loading, followed by a more gradual increase with an
asymptotic approach to an ultimate stiffness value. In
order to model this effect, the elastic modulus of the
components found to exhibit this behavior (discs and
ligaments) was varied with cycling. Variation based on
the number of cycles would introduce a number of
problems including determining what constituted a cycle,
partial cycles, and the increase in stiffness within a single
cycle. The use of energy as the measure of cycling
addresses all of these problems associated with standard
cycle determination methodologies.

Energy will increase with loading and decrease with
unloading, allowing for variations within a cycle. In
addition, the energy will increase or decrease during any
loading sequence, eliminating the need to measure
“cycles”. And finally, the energy will gradually increase
with time as some of the energy is dissipated through
creep and damping. Addressing all of these issues, an
equation relating the elastic modulus with the energy was
developed as

� �1 ref

ENG

ENG
ini ult iniE E e E E

�� �
� �� � � �
� �
� �

where E is the current modulus, E
ini

 and E
ult

 are the initial
and final values of the modulus, ENG is the current energy
in the component, and ENG

ref
 is a reference energy. The

reference energy is chosen to set the rate of modulus
increase. Figure 4 shows the general curve of the stiffness
(modulus) modification versus energy dissipation for a
final modulus equal to twice the initial modulus.

4. LOADING AND MODEL CALCULATIONS

Loading: The spinal column without the supporting
muscles, rib cage, etc. is an unstable structure. The
application of load directly to the unsupported spine
would result in immediate instability. To overcome this
issue, the current model loads the spine through imposing
displacements on the top of T

12
. The loading

Figure 4: Variation of elastic modulus with component energy

(displacement) for the model is derived from LMM data
recorded during actual sagittal lifting tasks as described
in the following section. The motion of the top of vertebra
T

12
 (top node of the model) and the rotation of the sacrum

have been calibrated against the LMM measurements
(Campbell-Kyureghyan, et al., 2005). This allows for a
determination of the position of the top node in the model
and the rotation of the bottom node at each step. The
displacements are applied to the model using a Penalty
Method (Bathe, 1996).

Calculations. Calculating the lumbar spine response
consists of three phases (Figure 5). First, a model for the
specific subject and task must be defined. Based on the
anthropometric data of the subject and the initial LMM
readings, the initial position of the nodes (Campbell-

Figure 5: Flow chart for the overall solution procedure



92 International Journal for Computational Vision and Biomechanics

Kyureghyan et al., 2005) is determined. The user defines
the material and cross sectional properties, including the
number of fibers used to model the disc annulus. Second,
at each step of the calculation the position of T

12
 is

determined from the measured LMM data during a
sagittal lift. Finally, after the boundary displacements are
imposed, the displacements of the remaining nodes are
calculated and used to determine the component
deformations and stresses.

5. DISCUSSION

This paper described a model that can be used to analyze
the response of the lumber spine to realistic, dynamic,
cyclic loads and bridges the gap between complex finite
element models and simplified models. The model
incorporates all the major spinal components and their
behaviors that contribute to the overall deformation.
Sufficient detail is included to allow for the prediction
of detailed response quantities such as the maximum and
minimum stress in the disc, ligament forces, and energy
dissipation. The model is intended to interface with the
Lumbar Motion Monitor for determination of the input
motion. Within the limitation imposed by the model
complexity, it can be a valuable tool for investigating the
response of the lumbar spine to typical flexion motions.

There are several advantages of such a model. First,
many finite element models have been developed that
provide detailed information on the response of single
motion segments. However, these models have only been
applied to simple loading conditions for static or
extremely short load durations. While providing a
valuable insight into the motion segment response, the
models do not provide any information on the long-term
cyclic behavior. This model provides a method for
investigating these effects.

Second, this model provides information for the
entire range of motion during a flexion cycle. Other
models exist that provide snapshots of the forces for a
given posture or peak values, but do not give a full time
history. The temporal information provided by this model
allows for the calculation of secondary response
parameters such as energy dissipation and to investigate
the relationship between posture, load, velocity, and the
resulting response. This information may provide
valuable insight into the injury mechanism.

This model could be used in conjunction with
existing tools to provide a more complete picture of
lumbar spine behavior. One could use a simple,
goniometer-driven model to determine the motions most
likely to cause injury. The model presented in this paper
would then be used to provide a more detailed look at
the motion and the resulting forces and deformations. The
results would pinpoint the segments and behavior modes
most likely to cause injury, and provide input

deformations, postures, and forces to more complex finite
element models of individual motion segments for
detailed analysis.

Possible improvements to this model include adding
a muscle model and extending the model to three-
dimensions. Without muscle force in the model only
passive forces are predicted. The active muscle forces
would also act to stabilize the model during deformation.
At present only two-dimensional, sagitally symmetric
motion can be analyzed. The individual components of
the model were developed to be easily adapted to three
dimensions and such an extension would enhance the
utility of the model.

Finally, this model has been tested and validated
against experimental results in the literature. Each
component was examined for its ability to reproduce the
range of observed behavior and parametric analyses were
conducted to determine the effect of each input variable
on the results. The complete model was then tested using
experimentally measured cyclic sagittal flexion motions
and the predictions were compared to reported values. A
companion article (Campbell-Kyureghyan and Marras,
2007 [this issue]) describes the experimental conditions
and validation study. The ability to rapidly generate and
execute models, including linking the model to real-world
loading conditions, allows the use of this model in
conditions where more traditional analytical models are
either too time consuming or of inadequate detail.
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