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A Novel Numerical Corrective Technique to Mass Spring Systems
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This paper presents a numerical corrective technique that allows control of nonlinearity in a mass-spring system (MSS)
independent of its spring constants or system topology. The governing equations of MSS in the form of ordinary differential
equations or a regular function companied by any boundary or initial condition as known constraints are employed to
modify the results. A least-squares algorithm coupled with the finite difference method is used to discretize the basic residual
function implemented in this corrective technique. This numerical solution is applicable to both static and dynamic MSS.
This technique is easy to implement and has similar accuracy as the equivalent finite element method (FEM) solution to the
same system with the solutions are obtained in a fraction of the CPU time required for FEM. The proposed technique can
also be used to smooth solutions from other methods such as finite element method or boundary element method (BEM).
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1. INTRODUCTION

Mass-spring systems (MSS) have been extensively used
in mechanical simulation of soft tissues over the past
fifteen years [1, 2]. They are also used in modeling of
deformable objects for facial animation, animation of
artificial animals, cloth modeling and recently in surgical
simulation [3-14]. Although, MSS are known as non-
time-consuming solvers, it suffers from the lack of
accuracy as compared to other numerical techniques such
as the finite element method (FEM) [24]. To address this
shortcoming, numerical corrective techniques have been
developed for the MSS. The approaches used include the
inverse dynamics procedure to eliminate super elongation
of the springs, the implicit integration method to take
large time steps and the heuristic method of handling post-
buckling instability for robust modeling [15-18].

Both isotropic and anisotropic elastic materials can
be found among the objects to animate. For instance, most
soft tissues are strongly anisotropic, due to their fiber
structure and/or composite nature. One of the main
limitations with the mass-spring systems is that neither
isotropic nor anisotropic materials can be generated and
controlled easily [19-23].

In this study a new numerical corrective technique
to MSS is developed by which the accuracy of MSS
results is enhanced by utilizing the material properties
and the boundary and/or initial conditions of the system.
FORTRAN custom code is used to implement the
corrected MSS technique in this study. Application of
this new corrective technique is illustrated by three
examples. These include the force-displacement of a non-

linear spring, a highly nonlinear displacement of a
nonlinear spring and a highly non-linear stress-strain
relationship of a polymer hydrogel, a biomaterial that
mimics cardiovascular tissue properties [25].

2. METHOD

2.1. Governing Equation for MSS

The internal force of a MSS which is due to the changes
of spring length and velocity takes the form of:
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Where x
�

 and v
�

are position and velocity vectors between
the two ends of the springs and |x| and x

0
 are the current

and initial length of the spring, respectively. K and D are
linear constants of the MSS elements representing the
spring and dashpot constants.

Equation (1) can be represented in the following
nonlinear form:
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Equations (3) and (4) are defined as directional
vectors and the nonlinear functions K(�) and D(�) represent
spring stiffness and damping function. Newton’s equation
of motion can be rearranged in the following form:
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Where �x(k) and �x(k–1) are position changes and F
ext

refers to the external force as boundary conditions. Given
the input and output data, nonlinear functions K(�) and
D(�) can be approximated using, for instance, ordinary
differential equation (ODE) numerical solvers or neural
network approaches.

2.2. Corrective Technique to MSS

MSS is governed by a set of ODE as mentioned above.
There is also additional information in the form of
boundary or initial conditions that can also be formulated.
These additional information companied together with
the governing equations can be expressed as:
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Where R is the residual function to the MSS, j is the
number of internal points of the domain to be corrected
and �

j
 and �

k
 are the Lagrange multipliers. The certain

quality to be corrected is displacement ( )iu x  available

in i points. The corrected values of the ( )iu x are

considered as u
i
(x). The governing equation of the MSS

is F(u) = 0 where order of F is either 0 (static) and 2
(time-dependent). Also the additional information from
the system such as boundary and initial conditions is
T(u

i
) = 0 and T is a known function of u. Equation 6 is

solved for u
i
 by minimizing the residual function R.

It should be noted i and j have different ranges, i
refers to all points of the domain including boundary
points and additional constraints, j refers only to the
internal points of the domain and k is the number of
constraints where T(u

k
) is defined. The residual function

R should be minimized on the entire domain by taking
the first derivative of the function R with respect to u as
such:
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Also the first derivative of the function R with respect
to �

j
 and �

k
 delivers the following complementary set of

equations:

F(u) = 0 (8)

T(u) = 0 (9)

The function F can be replaced by the equivalent
finite difference forms calculated for the points j.
Equation (6) and (7) are now reduced to a set of algebraic
equations, with u being the only variable. These sets of

equations can be solved by any relevant numerical
technique as they are in the form of linear or non-linear
algebraic equations. The order of function F which is
called r defines the number of connected points, which
are to be solved in each step. When order of F is 2 (time-
dependent), three consecutive values: u

i–1
, u

i
 and u

i+1
 are

defined and consequently j = i – 2 as j = i – r, because
equation (8) and (9) can only be written for the internal
points of the domain.

Equations (6) can also be written in matrix form, as
such:
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and eventually the matrix form of the error function R
takes the form of:
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where I is the unit diagonal matrix and B is the matrix
resulting from the additional equations (8) and (9), which
is of the order i + j + k. For ease of calculations, equation
(10) can be broken down to two lower systems of the
order i and j + k. The new partitioning of equation (10)
takes the matrix form, as such:

TIu B u� � � (13)

Bu = 0 (14)

Equation (13) can be multiplied by B:

TBIu BB Bu� � � (15)

Using equation (15) the Lagrange multipliers matrix
can be computed as follows:

SBu� � (16)

and,

u Yu� (17)

where Y is defined as:

TY I B SB� � (18)

which is considered the corrective matrix where matrix
S is defined as:

S = (BBT)–1 (19)

The order of matrix S is (j + k) × (j + k) and the
correction matrix Y is essentially a square matrix of order
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i × i. The correction matrix is unique for a given MSS
and once it is solved it can be retained as a modulus for
the MSS. It can also be proven that the Lagrange
multipliers �

j
 and �

k
 contributes to correction of the results

and therefore, they can be considered as correction factors
as well.

Now, the set of equations (6) to (19) can appropriately
interpret the MSS and can be solved for u and the
multipliers �

j
 and �

k
. The solution is unique since it refers

only to the corresponding set of governing equations and
selected constraints of the MSS.

3. RESULTS

3.1. Example 1 – Time Independent Application
(A non-linear MSS)

Part I: The force-displacement of a nonlinear spring
(f = ku2, where f, u and k refer to force, displacement and
the spring constant respectively) under large deformation
is considered. A linear spring is used for uncorrected
results and is modified through the proposed technique.
For this example, the governing equation is not a
differential equation, and however, it is a second order
polynomial. The functions F and T, take the form of:

F(u) = f – ku2 = 0 (20)

T(u) = 0 (21)

where k is the spring constant which is set to 1 for this
example. The minimized residual function can be written
as such:
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where the B
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 matrix is written as (m = n = 2):
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Given B matrix (equation 23), equation 13 is solved
for the corrective matrix Y. The Y matrix is now available
for the uncorrected results. The exact solutions to this
simple model for the linear and the used nonlinear spring
constant are in the form of linear and parabolic functions,
respectively. The uncorrected, exact and modified results
in company with the Lagrange multipliers are shown in
Figure 1.

The trial function as uncorrected results for this
simple system is linear. The corrected results are close to
the result of the FEM simulation, with a deviation of less
then 10%.

Part II: The solution to the Example 1 can be
extended to a relatively complicated MSS. A rectangular
polymeric plate (5 × 15 cm2) made of 10% polyvinyl
alcohol (PVA) hydrogel is considered. The mechanical

properties of the sample in the form of stress-strain
relationship has been determined previously using a
uniaxial tensile machine and are expressed as follows
[25, 27, 28]:

� = –0.05923 + 0.0611e2.2347� (24)

where s and µ are stress and strain, respectively and the
Poisson’s ration of the used PVA sample was assumed to
be 0.5 (incompressible).

The stress-strain behavior shows a highly non-linear
behaviour similar to that of the porcine aortic root [25].
An iterative modified Newton-Raphson method to MSS
and a validated finite element solver for soft material
considering material nonlinearity has been reported
previously [26]. In this finite element code hyperelastic
isotropic elements have been employed along with a
classical Mooney-Rivlin soft material model. The
corrective technique to the results from MSS has also been
calculated. The results of uncorrected MSS, modified MSS
and nonlinear FEM are shown in Figure 2.

The modified MSS gives results that are close to
FEM, with a percentage error of less then 5%. The
corrected mass-spring approach is more accurate here
than in the solution provided in part 1 as the trial function
in this example is already nonlinear. Also in this example,
the accuracy approaches the existing finite element
solution at 1/20 of the CPU time on a Pentium IV with a
CPU speed of 2.4 GHz and 512 MB RAM.

3.2. Example 2 – Time-dependent Application

A vibrating spring with a linear spring constant is
considered. The exact results, which are in the form of a

Figure 1: Modeling of a parabolic spring with a linear spring in
a MSS - the exact solution and modified results are in
the same range with 10% difference
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sinusoidal function, are randomly manipulated by a
factor of more than 20% to examine the robustness
of the proposed numerical technique for a time-
dependent example. The equations (8) and (9) take the
form of:

( ) 0F u u ku� � ��� (25)

T(u) = 0 (26)

where ü is the second derivative of the u with respect to
time and k is the spring constant. The minimized residual
function takes the form of:
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The expansion of the equation (26) together with the
implementation of finite difference to the equation (25)
gives the following set of equations:
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The Y matrix is now calculated for the current MSS.
The results of this solution and the exact solution for k=1
are presented in Figure 3 including the Lagrange
multipliers.

Figure 2: (Right) the nonlinear FEM solution, (Left)  the
regular MSS solution for a 10%PVA rectangular pate
(5 x 15 cm2) for a deformation starting form 15% to
100%

Figure 3: Motion of the vibrating spring for k=1, manipulated
and modified results

Although the manipulated data are designed to hold
more than 20% error, the discrepancy between corrected
and exact results are smaller.

The proposed technique can also be implemented on
regressing other parameters of a MSS (for instance, for
the spring constant used in example 2). For this case, the
residual function (R) is the same except a new variable
(k) is added up. An additional equation can be obtained
where the residual function, R, is minimized with respect

to k. This equation takes the form of: 0
j
u� �� , which
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is non-linear and can be solved iteratively using the
Newton-Raphson algorithm or similar approaches. The
calculated stiffness of the spring was k =1.2 for
uncorrected results.

4. CONCLUSION

A corrective numerical technique to modify the MSS
results independent of the system topology or spring
constants has been developed. Illustrated examples of
both static and dynamic systems indicate the successful
implementation of this approach to MSS and corrections
of more than 80% is achievable. In the dynamic example
of the vibrating spring, the corrective technique was able
to improve the results to within 10% of the FEM results.
In summery, the corrective numerical technique presented
here is of general applicability to both static and dynamic
application of MSS. Since the proposed technique is
computationally efficient and easy to implement, it can
also be employed to smooth solutions obtained using
other numerical techniques such as finite element,
boundary element or finite difference methods to enhance
the precision of the solutions.
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