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Ductile irons offer a wide range of mechanical properties at a lower cost than the older malleable iron. These properties
mainly depend on the shape characteristics of the metal matrix microstructure and on the graphite elements morphology;
these geometrical features are currently evaluated by the experts visual inspection. This work provides an automatic procedure
for a reliable estimation of standard parameters of the material microstructure morphology based on a novel image
segmentation technique. The procedure has been validated versus standard segmentation techniques, and successfully tested
on specimens of different kinds of ductile irons of a typical production.
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1. INTRODUCTION

Image data are largely used almost in any scientific field.
Frameworks such as medicine and earth environment
monitoring have historically based their investigations on
image analysis [1-4]. The industry compartment has
increasingly become interested in the application of image
processing, as high-level tasks can be accomplished by
automation systems using the complex information that can
be extracted from image data at a very low cost [5-6]. In
particular, quality control fully exploits the chances offered
by such a technology for real time detection of the production
defects [7-8]. Material science has only recently become
aware of the advantages of image analysis: pictures of
metallographic planes are processed to extract the
information relevant to the characterization of the material
mechanical properties [9-11]. This information is currently
evaluated by experts visual inspection of specimens obtained
by light optical microscope (LOM).

Any application requires the definition of features that
compose the information to be extracted from data (intensity,
color, texture, motion, topology, geometry,...). The role of
image processing therefore consists in separating the
elements on a picture according to the “value” assumed by
the features of interest; as a consequence a simplified version
of the original picture is obtained where all the elements are
separated from the context and labeled, so that they can be
individually analyzed. This step is called image
segmentation, see [12] for a reference work on the variational
approach. A further step is usually required to link the raw
information obtained by the segmentation to the objects
properties, relevant to the given application. This is particular
evident in the case of the materials considered in this work
where the mechanical properties depend on the morphology
of their microstructure. The interest in ductile irons relies in
their versatility: within the same production process, by

adjusting some parameters, materials with properties varying
in a wide range of values can be obtained at a very low cost.
The ductile iron basic elements are the metallic matrix and
the graphite nodules. The former is responsible for the tensile
strength and wear resistance, whereas the latter perform
mainly as crack arresters. The matrix properties depend on
the volume fraction of its phases of different chemical
composition; the nodules performance depends on their
shape. Phases’ volume fractions and nodule’s morphological
parameters can be reliably estimated by image analysis
applied to the pictures of the metallographic planes of the
material specimens. For quality control routine some
quantitative approaches have been proposed in literature,
based on the definitions of a shape factor defined as the ratio
of the nodule section area over the circumscribed circle area,
[9,10]; the role of research activity should aim at the
development of a standard methodology to support these
quantitative methods.

Images obtained by means of LOM, despite a good
visual appearance, are represented by a quite irregular signal
due to various kind of degradations stemming from the very
acquisition process: additive noise, albedos due to dust and
specimen oxidation, artefacts coming from scratches
occurring during the specimen preparation. In these
conditions methods based on signal thresholding may fail
in providing reliable results; global thresholds may also
provide results of different quality on different zones of the
same specimen; moreover thresholds may change from
specimen to specimen. A high performance image analysis
procedure to robustly evaluate the nodules shape
characteristics and the matrix phases fractions can be
obtained within the framework of image segmentation: the
original image is partitioned into disjoint domains where the
signal has homogeneous characteristics, and, passing from
one domain to another, these characteristics vary significantly
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[12, 13]. Within each domain a best minimum square fit to
the data is also provided so that a cartoon image is obtained;
this is the closest approximant of the original picture in the
class of piecewise constant functions. The segmented image
preserves all the graphic information relevant to the analysis
to be performed, but with a lower number of different gray
levels: for the considered application two levels proved to
be sufficient, as compared to 256 levels (8-bit) of the original
LOM data. The segmentation problem can be solved by
various techniques (see [14]), with different pros and cons.
In this paper a region based method was preferred since it
can deal with the complex topology of the material specimens
and is numerically efficient, [15]: as a consequence the
ductile iron metallographies can be reliably segmented and
evaluated also in real time. As opposite to standard
procedures that are based on a continuum model of the
image, the novelty of the proposed method consists in
defining the segmentation problem and the related algorithm
directly in the discrete domain. Despite the formulation in
the continuum allows for a sophisticated analysis, giving
ultimately a deep insight into the segmentation problem, the
optimal segmentation is obtained as a solution of an evolution
equation (the Euler-Lagrange equation related to the
variational problem); this solution can only be computed
numerically by discretization. Therefore only a numerical
approximation of the optimal solution is obtained; this
approximation is defined on the lattice where the data are
available, so that most of the analytical properties of the
continuum image model loose their meaning. To get around
these problems, a discrete set up was developed, [15]. The
choice of the cost functional and the characterization of the
segmentation elements on the discrete domain allows us to
obtain the Euler-Lagrange equation directly as a non linear
difference equation that, in this case, turns out to be necessary
and sufficient for the global minimum in the class of
piecewise constant functions, with no restrictions on the
nature of the multiple points, so to meet the complex
topology of the real world images. This equation is an explicit
numerical scheme for the level set function computation,
that is the level set samples at step n + 1 are explicitly defined
as a function of just the same quantities at step n, whereas
numerical approximation of continuum partial differential
equation usually requires implicit schemes.

Experiments on cast iron specimens showed the
inadequacy of simple thresholding procedure, while the
performance of the proposed method was satisfactory both
in terms of numerical efficiency and segmentation accuracy.
The method was also validated by a comparison with a well
established region based segmentation procedure, obtaining
the same level of performances in the half time. Therefore
the shape parameters of the nodules and the volume fractions
of the metallic matrix have been reliably estimated on a batch
of a typical cast iron production.

The paper is organized as follows. In section 2 a
description of the properties of the ductile irons is presented.

In section 3 the proposed image segmentation procedure is
outlined. In section 4 real data experiments are provided.
Concluding remarks along with some possible further
developments are presented in section 5.

2. DUCTILE IRONS DESCRIPTION

Ductile cast irons are characterized by a wide range of
mechanical properties, mainly depending on microstructural
factors, as graphite particles, phases and defects. Ductile iron
advantages that have led to its success are numerous, and
they can be summarized easily: versatility and higher
performances at lower cost. This versatility is especially
evident in the area of mechanical properties where ductile
iron offers the designer the option of choosing high ductility
(up to 18% elongation), or high strength, with tensile
strengths exceeding 825 MPa (mega Pascal). Austempered
ductile iron offers even better mechanical properties: higher
wear resistance, providing tensile strengths exceeding 1600
MPa. Ferritic-pearlitic ductile irons are widely used because
they are able to summarize both a high castability and good
mechanical properties (the best combination is obtained with
similar ferrite and pearlite volume fraction).

Focusing on graphite elements shape, a very high
nodularity is strongly recommended. The peculiar
morphology of graphite elements in ductile irons is
responsible of their good ductility and toughness.
Characterized by a rough spherical shape, graphite particles
contained in ductile irons are also known as “nodules”.
They act as “crack arresters”, with a consequent increase
of toughness, ductility and crack propagation resistance
[16]. A lack of graphite elements roundness immediately
implies a degradation of the mechanical properties.
Considering the results of in-situ tensile tests performed
on a fully pearlitic ductile iron (Fig. 1, arrows indicate
loading direction), it is evident that an irreversible damage
(crack) localises in graphite elements in the linear elastic
stage, where deformations are usually considered as
completely reversible. Crack starts and propagates where
the graphite element presents a lack of roundness, and, as
a consequence, stress intensification is obtained.
Cor responding to higher  deformation, where the
irreversible strain component is macroscopically evident,
damage increases with decohesion of nodules pole cap and
a consequent pearlite-graphite debonding. Focusing on the
metal matrix microstructure, it could range from fully
ferritic, to fully pearlitic, from martensitic to bainitic
depending on the chemical composition and on the heat
treatment. Microstructure strongly affects mechanical
properties and damaging micromechanisms, as it can be
observed by comparing the damaging mechanisms shown
in Fig.1 (fully pearlitic ductile iron) with the results
obtained with a ferritic-pearlitic ductile iron (50% ferrite–
50% pearlite), Fig. 2. In this case, the linear stage is not
characterized by cracks presence, and damage evolution
is mainly connected to decohesion of nodules pole cap and
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Figure 1: SEM (Scanning Electron Microscope) in-situ surface analysis during a tensile test (strain-stress diagram; fully pearlitic
ductile iron): graphite element damage evolution

Figure 2: SEM in-situ surface analysis during a tensile test (strain-stress diagram; 50% pearlite-50% ferrite ductile iron):
graphite element damage evolution

to the consequent matrix-graphite debonding. Furthermore,
a plastic deformation around graphite element becomes
more and more evident with the increase of the macroscopic
strain. This is due to the peculiar phases distribution
(ferritic shields around graphite nodules embedded in a

pearlitic matrix) and to the different mechanical behaviour
of ferrite and pearlite. Therefore the material mechanical
behaviour can be adequately described once the
characterization of both the graphite elements and the
microstructure are considered.
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3. THE IMAGE SEGMENTATION PROCEDURE

Real data consist in the samples {I
i,j
} of the original image I

over a grid of points D. Standard instrumentation provides
a 8-bit data measurement, therefore 256 gray levels are
available within the conventional range of [0 1]. In the
considered application an image representation that
preserves the relevant information content but with a much
lower number of gray levels is advisable. The shape of the
image sub-regions with homogeneous gray level gives the
information of interest since defines different objects over a
common background. Such a simpler representation can be
obtained by a piecewise constant image segmentation I

s

defined as follows
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�D � B where B is the segmentation boundary.
The morphology of the ductile cast iron metallographic

planes can be adequately represented by a segmentation with
two gray levels (binarization). Let us then consider the case
that D = D1 � D2; the two disjoint (not necessarily connected)
components D1 and D2 can be defined by means of a level
set function. This is a real valued function ��= {�

i,j
}: D � �

defined on the image domain D. By means of the level set
function we can define the two image subregions,
D1 = {(i, j) : �

i,j
 � 0},  D2 = {(i, j) : �

i,j
 < 0}. The boundary

points of D1 or D2 define the boundary B of the segmentation.
It is clear that in the pixels adjacent to any point of �D1

or �D2 the function � has at least one sign change, whereas
in the interior points it has none. Let H(.) and �(.) denote
the Heaviside and the Dirac function respectively. The
following function
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counts the number of changes of sign of � in the following
neighborhood of pixel (i, j) : {(i + 1, j), (i – 1, j), (i, j + 1),
(i, j – 1)}; therefore we can check a boundary point with the
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Function � is zero both on interior points (� = 0) and on
isolated points (� = 4), and is one on the boundary points
(� = 1, 2, 3). Now, given any real data I, segmentation (1)
can be obtained by minimizing the following functional
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This is a discrete version of the early Mumford and Shah
variational formulation of the segmentation problem [12];
the first two terms are just the fit error within D1 and D2; the
third and fourth terms evaluate the “area” of D1 and D2 and
the “length” of the segmentation boundary respectively.
Parameters �, � and � are weights that can be used to enhance
the contribution of one term with respect to the others.
Parameter � weighs the last term that is peculiar of the
proposed formulation and is responsible of the functional
convexity so that necessary and sufficient conditions for
global minimum are available, see [15]. Function E is not
smooth with respect to � because of the presence of the
generalized functions H(.) and �(.). As suggested in [13] we
relax the definition of (2) by considering smooth
approximants of the generalized functions
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We therefore modify the definitions of � and � by using H���� in place of H, �, and define the following cost function
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Necessary and sufficient conditions for the existence

of a unique optimal solution can be found in [15]. The
optimal segmentation is given by
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that is the Euler-Lagrange equation for (3). Functions p
i,j
 and

q
i,j
 in (4) have the following definitions
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Function � that solves equation (4) is obtained as the

limit of a sequence {�n} by introducing a fictitious time
evolution according to the following finite difference
evolution equation
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 by ,

n
i j� . The solution of (5)

converges to the solution of (4) whatever the initial condition
[15].

Equation (5) provides an explicit scheme for the
computation of the exact level set function {�

i,j
}: the value

in the pixel (i, j) at step n + 1 is function of the values in
neighbouring pixels at step n; therefore only one level of
recursion is required as the “time” n increases to achieve
the steady-state. Convergence is quite fast and makes the
algorithm eligible for real time applications.

The level set function approach is a region based
algorithm able to deal with the complex topology of the real
world images as the level set function evolves according to
equation (5) from an arbitrary initial configuration toward
the steady-state function that yields the optimal segmentation,
see Fig. 3.

analysis. Such a method may be very effective providing
that the intensity histogram has a typical bimodal shape, as
in the case of the specimen on Fig.4a; here the threshold
can be computed as the mean value of the modes abscissas.
Fig.4c shows a satisfactory binarization. On the contrary,

Figure 3: Zero level set evolution from an arbitrary initial
configuration to the final configuration giving the
optimal segmentation at step 20

A rationale for the choice of the weight parameters can
be found in [15], where it is shown that the algorithm
performance is by far more affected by parameter �; as a
general guideline the finer the contrast the larger �.

4. DUCTILE CAST IRON DATA ANALYSIS

A key point in the characterization of the ductile cast irons
is the morphological analysis of the graphite nodules.
Therefore the first task consists in separating the spheroids
from the background; this can be obtained by binarizing the
material specimens pictures. It is known that the simplest
image binarization procedure is based on a thresholding
processing, the threshold being designed by histogram

Figure 4: Binarization by histogram analysis. (a) Original image;
(b) Intensity histogram; (c) Binarization with a
threshold equal to 0.5

(a)

(b)

(c)
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the histogram of Fig.5a denotes a very irregular gray level
distribution, and the automatic determination of a suitable
threshold is questionable. Of course it can be chosen
manually within few attempts.

Specimens of a large production have an unpredictable
gray level distribution, therefore a reliable segmentation
procedure is required for morphological analysis, such as
the region based algorithm proposed.

The morphological characterization of ductile cast irons
is based on parameters such as: the nodules size, solidity
and eccentricity that characterize the nodule roundness, the
degree of granularity, that describes how the nodules are
distributed over the metallic matrix area. In a material of
good quality the nodules are uniformly distributed over the
matrix, and have a high solidity along with low eccentricity
values, Fig. 6a. As opposite Fig. 6c represents a deformed
nodule with very low solidity and surely not round. In Fig.
6b an intermediate situation is shown where, due to the
nodule contour roughness, solidity decreases with respect
to Fig 6a, whereas we still have a good degree of roundness.

(a)

(b)

(c)

Figure 5: Binarization by histogram analysis. (a) Original image;
(b) Intensity histogram; (c) Binarization with a
threshold equal to 0.45; (d) Binarization with a
threshold equal to 0.65

(d)

Figure 6: Some typical graphite nodules

In Fig. 7 three specimens with different degrees of
granularity, with nodules area values and spatial distribution
varying in a large range of situations are displayed: in the
specimen of Fig. 7a the nodules are better distributed as
compared to those on Fig.7c. The specimen on Fig. 7b has an
intermediate degree of granularity as compared to the others.

Our discussion about the specimens of Figs.6 and 7 is
just what an expert does by visual inspection. It is therefore
of paramount importance to give a standard quantitative
evaluation of the nodules shape characteristics, especially
in real situations where, on the same specimen, nodules with
characteristics shifting between the cases shown in Fig.6 are
present. To this aim a specimen binarization can be

(a) (b) (c)
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available, the morphological properties of interest can be
evaluated. The nodule size is described by the Area
parameter that is defined simply by its number of pixels.
The Solidity parameter is computed as the ratio between the
nodule Area and the area of its convex hull; therefore Solidity
values range in [0, 1]. The Eccentricity parameter is defined
as the eccentricity of the ellipse that best fits the nodule,
and its values also range in [0, 1]. For example, the nodule
of Fig. 6a has Solidity close to 1 and Eccentricity close to 0,
as opposite to the nodule of Fig.6c whose Solidity is below
0.3 and the Eccentricity is about 0.8; the nodule of Fig.6b
has a good Eccentricity but Solidity lower than the nodule
of Fig. 6a.

The accurate estimation of these shape parameters is
strongly affected by the binarization quality. The performance
of the proposed procedure (discrete level set approach, DLS)
has been assessed versus the performance of the well
established region based segmentation procedure in [13]
(continuous level set approach, CLS), whose outcome was
used as ground truth data. In both procedures, the typical
algorithm parameters have been chosen at their own best. The
test is based on an object-to-object comparison by evaluating
the differences in the estimates of the shape parameters of
interest, and on the ratio of the DLS over the CLS speed. A
batch of 88 specimens (each one containing on average 50
nodules of significant size) was considered; the results are
summarized in Table 1. In the first column median � and
standard deviation � of the area error normalized to the area
measured by the CLS method are reported; in the second and
third column the medians and standard deviations of the errors
of Solidity and Eccentricity are displayed.

Table 1
Statistics of the Comparison between the CLS and DLS

Performances

Area error Solidity error Eccentricity error Speed ratio

µ = –0.067 µ = –0.0431 µ = –0.0072 µ = 2.0342
� = 0.0087 � = 0.0029 � = 0.0051 � = 0.0169

From data on the fourth column of Table 1 it can be
noted that the DLS procedure is as double as faster than the
CLS one, already in a binarization process; moreover the
errors are negligible, meaning that the parameters DLS
estimates are as much as accurate of those of the benchmark
CLS method.

We finally proceeded in applying the DLS procedure
to the required morphological study of ductile cast irons. A
first level of analysis was aimed to the characterization of
the graphite nodules shape and distribution. The procedure
parameters were set to this values: � = 1, � = 103, µ = 1,� = 1, and � = 1

Fig. 8 displays the binarization of the specimen of
Fig.7a. For any nodule the shape parameters were evaluated;
for simplicity, the set of values just for two nodules are
reported in the picture.

Figure 7: Specimens with different degrees of granularity.
(a) good; (b) medium; (c) low

(a)

(b)

(c)

performed to separate the nodules from the background. For
binarized images, the Matlab Image Processing Toolbox
provides functions to label all the objects over  the
background; therefore, once the pixel list of any nodule is
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To provide an overall evaluation of the quality of the
material specimens of Fig. 7 we determine the sample
distribution of the nodules over the values of Area, Solidity
and Eccentricity; in Fig. 9 the histograms for the specimen
of Fig. 7a are reported.

Standard averages can be computed for Area, Solidity
and Eccentricity for the specimens of Fig.7 and are reported
in Table 2. Hence the operator can obtain a specimen
signature to classify the quality of the current ductile cast
iron production. To characterize Granularity we introduced
the following indicators:

• N: the number of nodules in the specimen;

• ND: the number of nodules per unit area;

• CV_AREA: the coefficient of variation (i.e. standard
deviation over the mean) of the nodules area
distribution;

• CV_ND: the coefficient of variation of the
nodules local density. The specimen area is tiled
into 9 equal subregions; in each tile the local
nodules density is computed and the error with
respect to the global density ND is evaluated. The
standard deviation of this quantity over ND defines
CV_ND.

In Table 2 the median � and the standard deviation � of
Area, Solidity, Eccentricity are reported along with the
Granularity indicators of specimens of Fig. 7.

The values in Table 2 were obtained by disregarding
nodules with area lower than 100 pixels; these indeed
correspond either to dust inclusion during the specimen
preparation or to nodules at different metallographic
planes. Data in Table 2 show that the specimens of
Fig. 7a has a better Granularity than that of Fig. 7c, as all
the indicators are better: higher ND, lower CV_AREA
(meaning a larger number of similar nodules, that is with
Area values closer to the average Area value), lower
CV_ND (that is the nodules local density is more similar
to the nodules global  densi ty,  denoting a  bet ter
distribution over the specimen surface). The specimen of
Fig. 7b has an intermediate ranking: despite a higher
global nodules density (due to a higher number of
nodules), their spatial distribution is worse as compared
to that of specimen of Fig.7a (higher CV_ND), moreover
there is a larger dissimilarity in the nodules size, as the
CV_AREA parameter is greater. As a further test we
analyze the specimen of Fig. 10 that, by visual inspection,
shows a good Granularity but with not well-formed
nodules.

Figure 8: Optimal binarization of specimens of Fig. 7a with shape parameters values for two different nodules

Area = 5150
Eccentricity = 0.4104
Solidity = 0.9702

Area = 718
Eccentricity = 0.4263
Solidity = 0.9535

Figure 9: Sample distribution of Area, Solidity and Eccentricity
of specimen of Fig. 7a.
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Table 3
Morphological and Granularity Parameters of

Specimens of Fig. 10

Area Solidity Eccentricity N ND CV_AREA CV_ND

m = 434 m = 0.83 m = 0.77 87 2.11 0.72 0.27
s = 392 s = 0.12 s = 0.20

 In fact, data in Table 3 characterize a specimen with a
good nodules distribution: CV_AREA is lower than that of
the specimens of Fig.7, this denoting that there is a larger
number of nodules with similar area; CV_ND is again lower
as compared to data for Fig.7, meaning that the nodules local
density is closer to the nodules global density. Nevertheless
the nodules shape has worse indicators with respect to the

nodules of the specimens of Fig.7: Solidity has a lower
median value whereas Eccentricity has a higher median value
denoting a significant decrease in the nodules roundness.

A second level of analysis consisted in determining the
characteristics of the metallic matrix, that depend on the
phases volume fractions. Different etching conditions (e.g.
solution chemical composition, temperature or etching
duration) allow to mark differently each phase. Light areas
correspond to ferrite, gray areas correspond to pearlite and
black nodules correspond to graphite. In order to evaluate
the ferrite/pearlite ratio it is necessary to measure the ratio
between the light/gray area to the total available area (light
plus gray area). To this aim it is necessary to measure the
area of the ferritic phase: this can be obtained from the
specimen binarization by subtracting from the specimen area
the total area of the black objects; these ones are either
nodules or the dark gray areas relative to the pearlite phase.
To evaluate the ferrite volume fraction we further need to
determine the total area of the matrix, that is the specimen
area out of the nodules. To this aim we need to select among
the black elements of the specimen binarization those that
correspond to the nodules: this can be done by using the
shape parameters estimated as in the previous analysis; the
nodules indeed can be extracted by the degree of roundness
defined by the Solidity and the Eccentricity. In the following
the results obtained for four typical cast iron specimens are
reported: for any specimen the original picture, the optimal
binarization and the selected nodules are displayed.

In Figs. 11-14 the nodules were selected according to
the following procedure: the median and standard deviation
of the Eccentricity values were computed; hence the nodules
were identified as those elements in the binarized image with
Solidity not less than 0.9 and Eccentricity below m

E 
+ 0.5

Table 2
Morphological and Granularity Parameters of Specimens of Fig. 7

Area Solidity Eccentricity N ND CV_AREA CV_ND

Specimen of Fig.7a µ = 467 µ = 0.93 µ = 0.48 61 1.48 1.08 0.34
��= 751 ��= 0.04 ��= 0.21

Specimen of Fig.7b µ = 283 µ = 0.92 µ = 0.62 89 2.16 1.3 0.37
��= 759 ��= 0.07 ��= 0.19

Specimen of Fig.7c µ = 404 µ = 0.92 µ = 0.60 52 1.26 1.62 0.68
��= 2420 ��= 0.09 ��= 0.18

Figure 10:Specimen with good granularity but not well formed
nodules

Figure 11: (a) original image with 70% of ferrite (expert’s evaluation); (b) binarization; (c) selected nodules
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Figure 12:(a) original image with 80% of ferrite (expert’s evaluation); (b) binarization; (c) selected nodules

Figure 14:(a) original image with 100% of ferrite (expert’s evaluation); (b) binarization; (c) selected nodules

Figure 13:(a) original image with 90% of ferrite (expert’s evaluation); (b) binarization; (c) selected nodules

�
E
. The thresholds were chosen by trial error procedure on

a large batch of metallographic specimens, according to the
experts suggestions, in order to obtain a reliable phase
volume fraction evaluation. The ferrite phase volume fraction
was then evaluated as 79%, 88%, 92% and 100%
respectively as compared to the expert’s visual classification
of 70%, 80%, 90% and 100%. The estimates obtained by
the proposed procedure are reliable since, as can be
observed, both the light areas corresponding to the ferrite
phase and the nodules that allow to quantify the total matrix
surface available to etching are reliably evaluated from the
binarized image.

5. CONCLUSIONS

In this work a novel discrete set up to the image segmentation
problem was proposed and applied to the analysis of the
geometry of the ductile cast iron metallographic specimens.
A robust estimation procedure was devised for a quantitative
evaluation of parameters describing the morphology of the

material microstructure and nodules shape. These estimates
provide a rich set of standard geometrical characteristics that
may support the experts in the quality evaluation of ductile
cast iron productions. As a further development, any
supervised learning technique can be enforced by using the
geometrical properties of the cast iron nodules and
microstructure to evaluate the material quality directly in
terms of its mechanical characteristics.
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