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Active contours and surfaces are deformable models used for 2D and 3D image segmentation. In this paper, we propose two
methods developed in order to accelerate 3D image segmentation process. They are adaptations on active surfaces of two
methods developed for 2D active contour. We use them on a discrete 3D surface model (mesh) evolving with the greedy
algorithm. Those methods will be compared to the classical greedy algorithm and to a recent fast adaptation of the level set
method.
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1. INTRODUCTION

Active contours or snakes, initially developed by Kass et
al. in [1], are powerful segmentation tools thanks to their
noise robustness and ability to generate linked closed
boundaries. Their 3D extensions, active surfaces, were
developed according to several implementations (see [2] [3]
for surveys on 3D deformable models). Among these
implementations, meshes are explicit discrete representations
[4], which represents the surface as a set of interconnected
vertices. The model is deformed by direct modifications of
vertices coordinates. Several evolution algorithms have been
developed to deform them. One of the most popular is the
greedy algorithm [5] because of its efficiency. An adaptation
of the greedy algorithm on 3D surface was proposed by
Bulpitt and Efford in [6].

Conversely, implicit implementations, based on the level
set framework [7], handle the surface as the zero level of a
hypersurface, defined on the same domain as the image (for
3D images, the hypersurface is a �3 � � application). Level
sets are often chosen for their natural handling of topological
changes and adaptiveness to any dimension. Their
algorithmic complexity is proportional to the image
resolution, making them time-consuming. Despite the
development of accelerating methods (like the narrow band
technic [7], the fast marching method [8] and the recent fast
level set [9]), their computational cost remains high,
preventing their use in time-critical applications. Moreover,
mesh surfaces have several advantages over their implicit
counterparts. Their representation is more intuitive, and thus
allow easier modeling of a priori knowledge and user
interaction. The main drawback is that meshes do not modify
their topology naturally (technics for detection of topological
changes must be implemented beside the evolution
algorithm).

In many applications, the topology of the area of interest
is known in advance. When segmenting images in which
prior knowledge about the object topology is available, we

believe that mesh-based approaches should be privileged
over implicit surfaces. In this paper, we deal with a 3D
triangular mesh driven by greedy algorithm. The model is
able to perform remeshing, thus providing geometrical
versatility (in the same manner that 2D reparameterization
technics overcome the lack of geometrical flexibility of
traditional snakes). Several methods have been developed
in [10] in order to accelerate 2D active contours. In this
paper, we study 3D adaptations of these methods in order to
accelerate discrete active surfaces, as an extension of the
work in [11].

The outline of this paper is as follows: section 2 presents
the 3D model and its energies, the greedy algorithm for active
surfaces and the remeshing principle. Section 3 and 4
describe the shifted neighborhood method and the line search
method. Section 5 describes the Fast Level Set
implementation for active contours. Section 6 shows our
experimental results on 3D models, comparing the
performances of our acceleration methods with the basic
greedy algorithm and the recent Fast Level Set
implementation method. Section 7 concludes with our work
expecting the future developments.

2. THE 3D ACTIVE SURFACE MODEL

In a continuous domain, a 3D deformable model is
represented by a parameterized surface S mapping a couple
of parameters (u, v) to a space point (x, y, z)T :

S : �2 � �3

(u, v) � (x(u, v), y(u, v), z(u, v))T (1)
The parameter domain is normalized : ��= [0, 1]. The

surface is attached to the image I, which is a �3 � � function,
mapping each voxel (x, y, z) to a gray level I(x, y, z). Basing
ourselves on the work by [25], the surface is endowed with
the energy functional E(S).
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Segmentation of a region of interest in image I is
performed by determining the optimal surface S* minimizing
E. The energy functional depends on two kinds of energies.
The first one quantifies the geometrical regularity of the
surface, whereas the second one is the external term,
depending on the distance between the surface and the salient
edges of the image. First and second order partial derivatives
of S with respect to u and v are smoothing terms. Coefficients
�

ij
 weight the significance of regularizing components with

respect to the external term. �
10

 and �
01

 are the elasticity
coefficients, �

20
 and �

02
 are the rigidity coefficients and �

11

is the resistance to twist. Since our segmentation is boundary-
based, P is the external term attracting surface points towards
salient boundaries on the image. It must decrease as the edge
magnitude increases, hence we choose P = –||��I ||. It should
be noted that other attracting functions could be chosen, e.g.
a distance map with respect to the thresholded edge image.

To implement the active surface, we use the discrete
representation described in [12], which is a triangular mesh
made up of n vertices, denoted p

i
 = (x

i
, y

i
, z

i
)T � �3, and

edges connecting the vertices (making a set of adjacent
triangles). In order to represent the connectivity notion, each
vertex pi has a set of adjacent vertices, denoted A

i
. The mesh

is built from successive subdivisions of an icosahedron [13]
[14], thus leading to a sphere-like surface with a
homogeneous vertex distribution (see figure 1).

energy. This approach avoids to perform gradient descent
of a partial derivatives equation, derived from the energy
functional using classical Euler-Lagrange scheme [13].
Hence, it is not necessary to derive analytically the energies,
with respect to vertex coordinates.

Figure 1: The basic icosahedron and its first two tesselations

Initially developped for 2D active contours by Williams
and Shah in [5], the greedy algorithm is an energy minimizing
method first proposed as an alternative to the variationnal
method [1] and the dynamic programming [15]. It has been
recently used for 2D segmentation in [16] and [17]. In [6]
one may find an extension of this algorithm for 3D meshes.
Global energy minimization is performed via successive
local optimizations. Each vertex is endowed with its own
energy. Hence, unlike in eq. 2, the energy functional is the
sum of vertex energies.
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At each iteration, a cubic neighborhood of side length
w around each vertex is considered (see fig. 2). The energy
is computed at each voxel belonging to the neighborhood
and the vertex is moved to the location leading to the lowest

Figure 2: Cubic centered neighborhood

Unlike in the classical greedy algorithm, our methods
will deal with neighborhoods which are not necessarily
centered around the vertices. We define �

i
( t),  the

neighborhood of the ith vertex at iteration t:

� �( ) ( ) ( ) 3| [0, 1]t t t
i i i w� � � � �p r s r

�
� (4)

( ) ( , , )t T
i x y zs s s s�
�

 is the shift vector, representing the

coordinates of the ith vertex at iteration t relatively to an
original voxel chosen on the corner of the neighborhood. At
the beginning, all vertices are centered in their neighborhood,

hence we have (0) ( / 2, / 2, / 2) .T
is w w w��

The initial position being p
i
, we denote p�

i
 a tested

location in the neighborhood. Once all energies have been
computed the new location of vertex p

i
 is chosen:

( )

( 1) arg min ( )
t

k i

t
i kE�

� �
��

p
p p

� (5)

The energy of a vertex at location p�
i
 is a weighted sum

of discrete internal and external energies, normalized on the
whole neighborhood.

E(p�
i
) = �E

cont
(p�

i
) + �E

curv
(p�

i
) + �E

grad
(p�

i
) + �E

bal
(p�

i
) (6)

The coefficients �, �, � and � are the weights defining
the relative influence of the energies. The continuity E

cont

and the curvature E
curv

 are discrete implementations of first
and second order surface derivatives of eq. 2, respectively.
Parameters � controls the surface elasticity whereas � is the
rigidity. They have a similar role than coefficients �

ij
 in the

continuous model.
Let us describe the adaptation of the different energies

to our 3D model. The energies are intuitive extensions of
the 2D active contour ones, suitable to our  mesh
representation. While the discretization of internal energies
is simple for a parametric snake, it is not obvious how to
implement the surface derivatives of eq. 2 in a triangular
mesh. For a discrete planar contour, the continuity is the
distance between successive neighbors. However, like in [5],
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it is preferable to use the absolute difference between this

distance and a default length d , which may be the mean

distance computed over all vertices. Extending this principle
to the mesh, E

cont
 maintains the vertices evenly spaced along

the surface. Minimizing it reduces the gap between the mean

squared distance 2d  and the distance between the considered

vertex and its adjacent vertices.
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The second internal energy is the curvature E
curv

, which
minimization results in a local smoothing effect, by making
the vertex get closer to the centroid of its adjacent vertices.
In a 2D snake, curvature is equivalent to the squared distance
between the vertex and the middle of its two neighbors. By
extension to 3D, the curvature of the tested point p

i
� is the

squared distance between p
i
� and the centroid of the

neighbors of vertex p
i
.

2
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i
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Note that for a given mesh vertex p
i
, E

curv
(p

i
) = 0 if p

i

and all its adjacent vertices lie on the same plane. To attract
vertices towards salient edges, the external energy E

grad
 is a

function of normalized gradient magnitude g of image I. In
presence of noisy data, the image is smoothed with a gaussian
filter prior to gradient operation. In the following equations,
G� is a gaussian kernel with standard deviation �, � is the
convolution operator and g

max
 is the maximal edge intensity

in the image.
g(p) = ||��I(p) � G�|| /gmax

E
grad

(p
i
�) = –g(p

i
�) (9)

As regards gradient magnitude, real 3D edge detection
is obtained by convolving the image with the Zucker-
Hummel operator [18], which usually yields better edge
localization than using direct finite differences. It is made
up of three 3×3×3 masks ZH

x
, ZH

y
 and ZH

z
, each mask

filtering the image in one dimension.

1 1 2 2 1 1

2 2 3 3 2 2

1 1 2 2 1 1

0 0 0

0 0 0

0 0 0
x

k k k k k k

ZH k k k k k k

k k k k k k

� � �� � � � � �
� � � � � �� � � �� � � � � �
� � � � � �� � �� � � � � �

(10)

1 2 1 2 3 2 1 2 1

1 2 1 2 3 2 1 2 1

0 0 0 0 0 0 0 0 0y

k k k k k k k k k

ZH

k k k k k k k k k

� � � � � � � � �� � � � � �
� � � � � �� � � � � � �
� � � � � �� � � � � �

(11)

1 2 1 1 2 1

2 3 2 2 3 2

1 2 1 1 2 1

0 0 0

0 0 0

0 0 0
z

k k k k k k

ZH k k k k k k

k k k k k k

� � �� � � � � �
� � � � � �� � � �� � � � � �
� � � � � �� � �� � � � � �

(12)

1 2 3

3 2
; ; 1

3 2
k k k� � � (13)

To increase the capture range, we introduce a balloon
energy E

bal
 derived from the inflation force proposed in [19].

It allows the mesh to be initialized far from the object
boundaries.

2( ) || ( ) ||bal i i i iE k� �� � �p p p n
�

(14)

where in
�

 is the unit inward normal, defined at vertex p
i
.

The normal of vertex p
i
 is the normalized sum of the normals

of the neighboring triangles [14]. Rigorously, the normal of
a triangle t is the unit vector orthogonal to the plane defined
by t. In the following expressions, T

i
 is the set of neighboring

triangles of p
i
. The normal tn

�
of a given triangle is the

normalized cross product between two vectors belonging to
the corresponding plane.
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where ptj
, j = 1...3 are vertices of triangle t (p

i
 must be one

of them). s
t
 = ±1 is the sign changing the orientation of tn

�

insuring that it points towards the interior of the surface.
Such a calculation of the normal vector is necessary to a
correct balloon implementation. The motion resulting from
the balloon energy minimization is either an expansion or a
retraction of the surface, depending on the sign of coffiecient
�. This one must be chosen regarding the initial position of
the surface with respect to the target object.

In order to adapt local topology, remeshing is performed
after each iteration of the greedy algorithm. The mesh is
allowed to add or delete vertices to keep the distance between
adjacent vertices homogeneous, resulting in a stable vertex
distribution [20] [14] [21]. It insures that every couple of
adjacent vertices (p

i
, p

j
) satisfies the constraint:

d
min

 � ||p
i
 – p

j
|| � d

max
(16)

where d
min

 and d
max

 are two user-defined thresholds, such
that d

max
 � 2d

min
.  We choose their  values near the

neighborhood width w, so that the surface sampling is
consistent with the motion range of the vertices. Adding or
deleting vertices modifies local topology, thus topological
constraints should be verified. To perform vertex adding or
deleting, p

i
 and p

j
 should share exactly two common adjacent

vertices: |A
i
 � A

j
| = 2. When ||p

i
 – p

j
|| > d

max
, a new vertex is

created at the middle of line segment p
i
p

j
 and connected to

p
a
 and p

b
 (see middle part of figure 3). When ||p

i
 – p

j
|| < d

min
,

p
j
 is deleted and p

i
 is translated to the middle location (see

right part of figure 3).

3. THE SHIFTED NEIGHBORHOOD METHOD

In order to improve active surfaces completion time, we used
the shifted neighborhood method developed for 2D snakes
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4. THE LINE SEARCH METHOD

The line search method [10] originally applied for two-
dimensional active contours allows to reduce completion
time efficiently. We adapted this method on 3D active
surfaces. The principle of this approach is to anticipate on
the next iteration of the greedy algorithm using the
information taken from the previous one. This method is
launched at the end of each iteration of the greedy algorithm,
once all the vertices have been translated.

The direction followed by each vertex p
i
 is memorized

and we look toward it for a fixed number of voxels, which
creates a linear neighborhood. These lasts are compared by
computing their global energies in a similar way as it is done
with the cubic neighborhood (see equation (6)). The voxel
giving the lowest energy is then chosen for the new location
of the current vertex. As a result, for each vertex, two
neighborhoods are scanned consecutively: the cubic centered
neighborhood and the linear neighborhood. The second
algorithm describes the line search method integrated in the
greedy algorithm for active surfaces. Let T be the number
of iterations to be done by the greedy algorithm and l the
number of voxels to be explored (length of the linear
neighborhood).

5. LEVEL SET AND FAST LEVEL SET
IMPLEMENTATION

In order to compare our methods with recent breaktroughs
in the image segmentation domain we adapted the Fast Level
Set implementation method to our 3D segmentation problem.

Dynamic neighborhoods in active surfaces for 3D
segmentation 9

Algorithm 2: Line Search Method: 3D Model

1: for t � 1 to T do
2: for i � 1 to n do

3: ( )

( 1) arg min ( )
t

k i

t
i kE�

� �
��

p
p p

�

4: Determine the direction 
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v
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�

5: Line Search: m = � �( )

[0, ]
arg min ( )t

i
k l

E kv
�

�p
�

6: Update: ( 1) ( 1)t t
i i m� �� �p p v

�

7: end for
8: end for

Basing ourselves on the work of Osher et al. [22] and
[7], we implemented our active surface model with level sets.
We consider the parameterized surface S defined in section
2, on which we add a time dependency.

S : �2 × �+ � �3

(u, v, t) � (x(u, v, t), y(u, v, t), z(u, v, t))T (20)

The surface evolves according to the following partial
differential equation:

Figure 3: Remeshing operations: vertex adding and deleting

in [10]. We adapted this greedy-based method on active
surfaces. For each vertex and at each iteration, we modify
the neighborhood in order to direct the searching space of
each vertex to the directions that seems the most interesting.
To define where these directions are, we use the information
of the direction followed by each vertex during the last
iteration. So each neighborhood will be shifted from one
voxel in the direction followed previously. At each iteration,
we compute the next shift applied to the vertex with:

( 1) ( 1) ( )( 1, 1, )t t t
i i i

� �� � �d p p
�

� (17)

The vector quantity ( )t
id
�

 represents the displacement

applied on the neighborhood of the ith vertex at iteration t. �
is a shift limiting function, bounding the vector coordinates
between two scalars:
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1 2 1 2
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z
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�
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The displacement ( 1)t
i
�d
�

 given by equation (17) allows

us to define the new shift vector ( 1)t
i
�s
�

for each vertex of the
active surface. Thus we have:

( 1) ( ) ( 1)(1, 2,t t t
i i iw� �� � �s s d

�� �
� (19)

Algorithm 1 Shifted Neighborhood Method: 3D Model

1: for t ��1 to T do
2: for i � 1 to n do

3: p
i
(t+1) = arg ( )

min ( )
t

k i
kE

� �
�

p
p

�

4: ( 1) ( 1) ( )( 1,1, )t t t
i i i
� �� � �d p p
�

�

5. ( 1) ( ) ( 1)(1, 2, )t t t
i i iw� �� � �s s d

�� �
�

6: � �( 1) ( 1) ( ) 3| [0, 1]t t t
i i iN w� �� � � � �p r s r

�

7: end for
8: end for

The next iteration of the greedy algorithm will be helded
with these new neighborhoods. At this stage, we can define
the algorithm for the shifted neighborhood method. This last
consists in computing the new neighborhood �

i
(t+1) with

equations (4), (17) and (19) at the end of each iteration, once
all the vertices of the active surface have been modified.
When included in the greedy algorithm for an active surface
of n vertices and T iterations, the shifted neighborhood
method is described in algorithm 1.
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( , , )u v t
F

t

�
�

�
S

n
�

(21)

where n
�  is the inward normal vector and F is the speed

function applied on the surface points. The surface boundary
is implicitly represented as the zero-level of a function � :
�3 × �+ � �. It comes:

�(S(u, v, t), t) = 0    �(u, v) � �2, �t � 0 (22)

Function � evolves on its zero-level according to the
equation:

( ( , , ), )
( , , )|| ( ( , , ), ) ||

u v t t
F u v t u v t t

t

�
� �

�
S

S
�

� (23)

If the speed function F is defined over the entire domain
�3 × �+ then eq. 23 can be extended such as:

3( , )
( , ) || ( , ) || , 0

x t
F t t x t

t

�
� � � � � �

�
x x �

�
� (24)

The main advantage of the level-set implementation is
its ability to automatically handle topological changes.
Indeed, the curve can naturally split or merge with others
without any additionnal implementation. Unfortunately the
level-set method requires significant computationnal time.
Several methods have been developed in order to accelerate
the level-set implementation. The narrow band
implementation [8] allows to decrease the complexity of the
algorithm from O(n2) to O(n), n being the size of the image
grid. The author considers a band around the zero-level of
the level-set function. The partial dierential equation (PDE)
is solved only inside this region and not in the entire
definition domain of �. Although this technique allows to
significally reduce computational time of the level-set
implementation, it still limits the use of the level-set in real
time applications such as object tracking. Shi et al have
recently developed in [9] an acceleration method based on
the narrow band implementation called the Fast Level Set
method. As it was originally designed for 2D segmentation,
we extended it to 3D. The Fast Level Set method uses two
lists to represent the surface: the list of outside boundary
points L

out
 and the list of inside boundary points L

in
.

L
out

 = {x | �(x) > 0, � y � N(x), �(y) < 0}

L
in
 = {x |  �(x) < 0, � y � N(x), �(y) > 0} (25)

where N(x) is the discrete neighborhood of x.
The authors assume �(x) to take only four integer values,

according to the position of x:

out

in

1 if x L

1 if x L
(x)

3 if x isoutside and x

3 if x is inside and x
out

in

L

L

��
�� ��� � ��
�� ��

S

S

�
(26)

The authors define the dicrete optimality condition for
the surface as:

The surface S with boundary points L
in
 and L

out
 is optimal

if the speed function F satisfies:

F(x) < 0 �x � L
out

 and F(x) > 0 �x � L
in

(27)

While this optimality condition is not reached, the speed
function F is calculated for every point in L

in
 and L

out
. If

F(x) > 0 at a point in L
out

 the surface is moved outward. If
F(x) < 0 at a point in L

in
 the surface is moved inward. Once

the surface has moved, the two lists are updated.
The main idea of this method is thus to make the surface

evolve without solving the PDE of 24 which requires
significant computationnal time but only by computing the
speed function F. Again, segmentation is boundary-based,
hence the surface should stop on strong edges. As a result,
F is a function of curvature � and gradient magnitude.

F(x) = || �I(x)|| – ���� (x) (28)

The curvature regularizes and is weighted by coecient
��. It is expressed as follows:

div
|| ||

� ��
� � � ��� �

�
�

   = 
2 2 2 2 2 2

2 2 2 3 / 2

( ) ( ) ( ) 2 2 2

( )
xx y z yy x z zz x y xy x y xz x z yz y z

x y z
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� �
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� � �

with notations 
2

2
, , ...x xxx x

� �
� �
� �
� �

� �

For more details and testings on the method one can
refer to [9]. The next section describes and compares the
results obtained on tested images with our greedy
acceleration techniques.

6. EXPERIMENTAL RESULTS

In this section, we present our experiments on 3D images.
We compare the shifted neighborhood method and the line
search method to the classical greedy algorithm. This
comparative study also includes the results obtained with
implicit surface modeling implemented with the fast level
set method. Each tested image is made of several slices of
gray objects embedded in white backgrounds, highly
corrupted with gaussian noise. Dierent values of
neighborhood width w are tested (obviously, the shifted
neighborhood is not experimented with w = 3). For each
image, the surface is initialized as a sphere with identical
center and radius for all evolution methods, independently
from its implementation (a mesh or a level set).

In order to evaluate segmentation, we use a function
taking into account the overall distance between the
estimated boundary and ground truth. Let � be the set of
voxels belonging to the real boundary, and � the set of voxels
belonging to the estimated boundary. For each voxel on the
estimated boundary, we consider the distance to the nearest
voxel on the real boundary, and conversely. The modified
Hausdor distance �

mean
 introduced in [23] measures the

average fitting of the surface to the real boundary.

�
mean

(�, �) = max(h
mean

(�, �), h
mean

(�, �))

h
mean

(�, �) = 
1

min || ||
| | q

p
�

�

�� p q
�

�� (30)
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In what follows, we compare computational times
obtained on final surfaces having equivalent qualities, with
respect to the modifief Hausdo distance. Typically, H

mean
 have

values around 1, which corresponds to good fitting of the
real boundaries.

The first image is a 400 × 400 × 400 data set
representing a spiral and was chosen in order to test the
methods when vertex adding is enabled. The active surface
is initialized inside the 3D model with only 12 vertices. The
final meshes for the three methods contain about one
thousand vertices. We choose ��= 0, ��= 0.5, ��= 2 and ���
[–0.6, –1.1].

The second image is a 200 × 200 × 200 model of a vase
and is interesting to test the infiltration of the model into the
concavities. For this particular 3D dataset, remeshing of the
model is disabled. We use � = 0, ��= 0.5 for the greedy
algorithm, 0.4 for the shifted neighborhood method and 0.3
for the line search, ��= 2 and ��= 0.8. We initialize the meshes
with 2562 vertices.

The third image represents three ellipsoids and allows
to have both salient and smooth angles on the same model.
The image size is 200 × 200 × 200. We prevent remeshing
of the model and initialize it with 2562 vertices. The
parameters are ��= 0.5, ��= 0.3 for the greedy algorithm and
0.4 for the shifted neighborhood method and the line search,
��= 2 and ��� [0.3, 0.7].

In order to compare boundary fitting ability of the
methods on real data, we tested them on computed
tomography (CT) data sets of the abdomen, in which the
active surface was used to detect boundaries of the aorta.
Such segmentation is done in the framework of abdominal
aortic aneurysm diagnosis. The mesh was initialiazed as a

small sphere inside the aorta and inflated thanks to the
balloon energy. Figure 4 shows one slice of each image and
the visual 3D results obtained with the line search method.
Tables 1 and 2 list computational times obtained on synthetic
and CT images, respectively. Each method and each window
width is systematically tested on the images (tests were made
on a Pentium IV 1.7 GHz with 512 Mb RAM).

Mesh-based methods (initial greedy algorithm, LS and
SN) need fewer iterations than the level set surface to reach
the boundaries, which is mainly due to the level set front. A
voxel neighboring the front (the L

out
 list) needs more than

one iteration to change its status, from outer to inner voxel.
An iterations of the level set method is also more
computationally intensive than one of the explicit methods.
The discretization of the evolving front is the same as the
image grid, so that each voxel located on the front needs to
be considered. On the mesh, the motion of a vertex does not
aect its coordinates but also all neighboring triangles, which
cover many voxels (the quantity of voxels depends on the
sampling resolution w). As regards distance measures, it is
interesting to note that explicit methods lead to more accurate
results than the level set approach, except on the “Vase” data
set. We may assume that level sets are globally more sensitive
to noise and prone to boundary leakage issues, because of
the implicit formulation of the regularizing curvature energy,
which has a limited range. On the mesh, the internal energy
of a vertex aects a larger portion of the surface. The better
performance of the implicit surface on the “Vase” data set is
explained by the presence of sharp angles at the shape
borders. Curvature prevents the mesh from fitting angular
parts accurately, whereas the level set surface is not limited
thanks to its discretization. Indeed, it can easily grow voxels
into small concave parts of the boundary.

Figure 4: 2D slices of 3D noisy images (top) and surface results obtained with the line search method (bottom)
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Table 1
Comparison of Completion Times between Classical Greedy
Algorithm, Line Search Method (LS), Shifted Neighborhood

Method (SN) and Fast Level Set on Synthetic Data Sets

Image Neighborhood Method # iterations Time (s) Hmean

w=3 Greedy 400 0.30 0.497
Spiral LS 65 0.16 0.499
(400 × 400 × 400 w=5 Greedy 195 0.52 0.723
voxels)  LS 63 0.30 0.734

SN 138 0.31 0.728
w=7 Greedy 145 0.63 0.985

LS 60 0.57 0.997
SN 97 1.11 0.991

Fast level set 1060 44.17 0.995
3 ellipsoids w=3 Greedy 47 0.63 0.534
(200 × 200 × 200 LS 19 0.41 0.545
voxels) Greedy 25 1.05 0.716

w=5 LS 12 0.69 0.734
SN 16 0.98 0.721

w=7 Greedy 18 2.24 0.961
LS 12 1.86 0.985
SN 14 2.07 0.972

Fast level set 120 30.82 1.030
Vase w=3 Greedy 155 0.98 0.665
(200 × 200 × 200 LS 68 0.72 0.687
voxels) w=5 Greedy 120 1.27 0.875

LS 50 0.85 0.896
SN 92 1.08 0.892

w=7 Greedy 109 1.98 1.337
LS 43 1.13 1.554
SN 60 2.20 1.423

Fast level set 210 47.04 0.815

Table 2
Comparison of Completion Times between Classical Greedy
Algorithm, line Search Method (LS), Shifted Neighborhood

Method (SN) and Fast Level Set on CT
(Computed Tomography) Data Sets

Image Neighborhood Method # iterations Time (s) Hmean

CT 1 w=3 Greedy 580 25.30 1.324
(512 × 512 × 810 LS 98 17.7 1.458
voxels) w=5 Greedy 330 9.65 1.694

LS 117 7.23 1.734
SN 256 8.03 1.710

w=7 Greedy 240 8.69 1.936
LS 102 6.68 2.034
SN 168 9.73 1.967

Fast level set 1227 302.41 3.345
CT 2 w=3 Greedy 425 18.57 1.125
(512 × 512 × 400 LS 96 13.99 1.241
voxels) w=5 Greedy 242 7.08 1.439

LS 85 5.30 1.476
SN 187 5.89 1.454

w=7 Greedy 176 6.37 1.646
LS 86 4.95 1.756
SN 136 7.16 1.672

Fast level set 750 185.07 2.381
CT 3 w=3 Greedy 313 14.34 0.754
(512 × 512 × 400 LS 75 10.2 0.832
voxels) w=5 Greedy 178 5.23 0.965

LS 65 4.47 0.988
SN 137 4.86 0.974

w=7 Greedy 132 4.82 1.104
LS 62 3.81 1.159
SN 96 5.49 1.121

Fast level set 735 182.446 2.016

7. CONCLUSION AND FUTURE WORK

In this article we have described two acceleration methods
for active surfaces evolving with the greedy algorithm. The
first one is based on a smart orientation of the neighbourhood
grid of each vertex regarding the directions followed in the
preceding iterations. The second one uses the same direction
information to make each vertex search for a better position
along an exploration line. The main application domain of
our methods is time-dependent segmentation with a priori
knowledge about the topology of the object, such as 3D
videos. We compared our two acceleration methods with a
recent fast implicit implementation of active contour based
on the level-set approach.

As shown in table 1 and 2, our methods allowed us to
accelerate the greedy algorithm for active surfaces. Mesh-
based methods (the greedy algorithm and our acceleration
methods) leads to performances turning out to be far beyond
the level set-based method ones. Accelerations methods tend
to make completion time fall below 1s (for the best
configuration) whereas the fast level set approach exceeds
30s. The best acceleration method for 2D active contours
was the shifted neighborhood but we detected the line search
as the best to be applied on 3D active surfaces. The
explication is that in three dimensions an exploration line
stays a line whereas a square neighborhood becomes cubic,
r ising the completion times added by the shifted
neighborhood method.

We also tested the Deformed Neighborhood method
discribed in [10] but it was not ecient on active surfaces for
the same reasons. We can also notice that the contribution
of the shifted neighborhood method is better with a large
neighborhood. Indeed, the shiftings are dependent of its size.

We are developing an hybrid model based on the shifted
neighborhood method and the physic-based approach of
parametric active contours [24]. The main idea is to use the
information of the force vector to direct the shift of the
neighborhood grid. We also plan to upgrade the
performances of our methods by using a multi-resolution
approach.
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