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Abstract: Model-based fault detection (MFD) techniques are preferred over hardware based schemes due to low cost and
minimal changes to the system when the system states are available. However, one of the major challenges in model based
monitoring, diagnosis and prognosis (MDP) approach was to develop a detection and prognosis (DP) scheme in discrete-
time in the presence of partial state information since discrete-time schemes are normally preferred for ease of implementation.
Therefore, in this paper, we propose a unified fault detection and prediction (FDP) scheme for a nonlinear discrete-time
input-output system in the presence of modeling uncertainties when certain states are not available for measurement. A
nonlinear estimator with an online tunable approximator and a robust term is introduced to monitor the system. A residual
is generated by comparing the output of the system with that of the estimator. A unknown fault is detected when the generated
residual exceeds a mathematically derived threshold. Subsequently, the online approximator and the robust terms are initiated.
The approximator uses the system input and output measurements while its own parameters are tuned online using a novel
update law. Additionally, robustness, sensitivity, and the stability of the fault detection scheme are rigorously examined. The
proposed scheme is guaranteed to be asymptotically stable due to the introduction of the robust term and using some mild
assumption on the system uncertainty. Subsequently the process of determining the time to failure (TTF) is introduced.
Finally, the FDP scheme is simulated on a magnetic suspension system.
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I. INTRODUCTION

Traditionally fault detection and prognostics schemes were
developed individually due to lack in understanding of how
to learn the fault dynamics. In general, the process of fault
detection, prognosis and accommodation consists of: (a)
detection deals with determining if a fault has occurred; (b)
diagnosis considers the problem of root cause and location
of the fault; (c) prognosis deals with the prediction of TTF
and (c) accommodation attempts to correct a particular fault,
through controller reconfiguration. In particular, prognostic
schemes have been found to be vital since the prediction of
TTF helps the maintenance personnel to take action in the
event of a fault.

From the available fault detection (FD) schemes, the
model based FD appear to be most preferred [5, 9] over any
hardware based schemes due to reduced cost. In such an
approach, a model representative of the nonlinear system
behavior is first developed and residuals are obtained by
comparing the response of the model with that of the actual
system. A fault is detected when the residuals exceed a pre-
determined threshold. However, modeling uncertainties can
cause performance degradation of the FD scheme rendering
false alarms and missed detection thus demanding a robust
FD scheme. Quantitative modeling schemes such as state-
space [9], parity relations [5] as well as the qualitative

schemes such as expert systems [10] have been introduced
for linear systems [5, 9, 10] as a robust FD scheme.

With the development of advance nonlinear modeling
techniques [8], it is now possible to develop FD schemes
for nonlinear systems with nonlinear incipient or abrupt faults
[1, 3, 7, 20, 23, 24]. This classification of faults is based on
the time profile, where an incipient fault would be a slowly
growing whereas an abrupt fault would be suddenly
occurring [7]. However, most of the above discussed schemes
[5, 9, 7, 10, 20, 24] of FD are for continuous-time systems.
There has been limited previous work on FD of discrete time
system [1, 3], but has mainly been on sensor or actuator
faults, and requires the persistency of excitation (PE)
condition to prove the stability of the scheme. It is noted
that the development of a FD scheme in discrete-time is
difficult due to the stability or convergence. In other words,
the first difference of a Lyapunov function is quadratic with
respect to the states which makes the detection scheme in
discrete-time difficult whereas it is linear in the case of
continuous-time systems. Therefore, the authors have
recently introduced a robust FD framework for nonlinear
discrete-time systems [8] by assuming that all the states are
available for measurement and relaxing the requirement of
the PE condition. However, availability of all the states
means the need for more sensors, which makes the scheme
expensive. This is the main focus of this paper.
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One of the noted problems in the literature for the above
mentioned schemes even for continuous-time systems is the
lack of prognostics or TTF determination. One of the earlier
works on prognostics [16, 17] assumed a specific
degradation model of the system, which is found to be quite
limited to the system or material type under consideration.
On the other hand, deterministic polynomial and a
probabilistic method were developed for prognosis [19, 21]
by assuming that only certain parameters affect the fault.
The fault dynamics are not being learned online making the
prediction inaccurate. Finally, a black box approach using
NN was developed in [22] using failure data which is
expensive to collect apriori.

By contrast, in this paper, we unify the development of
the fault detection and prognostics (FDP) scheme for
nonlinear discrete-time input-output systems [7, 20, 24].
Such an approach has not been previously developed either
in continuous or discrete time systems [1, 3]. First, a
systematic learning methodology and some analytical results
for the FDP scheme are introduced for a class of nonlinear
discrete time input-output systems by using a robust term
and assuming an upper bound on the modeling uncertainties.
As a consequence, the proposed FDP scheme guarantees
asymptotic stability in contrast to other schemes where a
bounded stability [1, 3, 7, 20, 23, 24] is ensured. The
proposed FDP scheme could detect nonlinear system faults,
which are modeled as a nonlinear function of the input and
output variables rather than actuator  faults [1, 3].
Subsequently, the TTF is introduced by using the learning
methodology.

The main idea behind this methodology, is to monitor
the system for any abnormal behavior (which could be due
to the faults or modeling uncertainties) utilizing a nonlinear
estimator consisting of an online approximator in discrete-
time (OLAD) with adjustable parameters and a robust term.
Commonly used OLAD models are neural network, fuzzy
logic, and spline function. By comparing the output of the
estimator and the system output, residuals are generated and
compared against a mathematically derived threshold for FD.
After the detection of a fault, the OLAD and the robust term
are initiated to learn the fault dynamics online. A stable
adaptive update law is proposed for tuning the OLAD.
Subsequently, the parameter update law is utilized to solve
for the TTF. Further, the stability, the sensitivity, and the
robustness of the FDP scheme are demonstrated through
Lyapunov analysis in the presence of reconstruction errors
and unmodeled dynamics. Finally, it is important to note that
fault detection schemes and adaptation laws developed in
continuous-time [7, 20, 24] cannot be directly applied to
nonlinear systems represented in discrete-time.

This paper is organized as follows: In Section II the
nonlinear  discrete-time input-output system under
consideration is explained. In Section III, the fault detection
scheme is introduced. In Section IV, the robustness, the
sensitivity, and the performance of the fault detection scheme

is shown extensively with mathematical proofs by using the
Lyapunov theory and in Section V the prognostics scheme
is developed. In Section VI, a magnetic suspension system
is used to illustrate the fault detection and prognostics
scheme. Finally, in Section VII some concluding remarks
and some possible future work are given. This paper
introduces a fault detection and prediction algorithm in
discrete-time and not a fault isolation and accommodation
scheme. However, published literature on fault isolation and
accommodation could be found elsewhere [10, 20, 26].

II. PROBLEM FORMULATION

The discrete time input-output system under consideration
is described by

x(k + 1) = Ax(k) + �(y(k), u(k)) + �(x(k), u(k))

+�(k – T) f(y(k), u(k))

y(k) = Cx(k) (1)

where x ��n is the state vector, y�� is the output, �, f : � ×
�m � �n, �� : �n × �m � �n are smooth vector fields,
T � 0 is the starting time of the fault,��(y(k), u(k)) represents
the nominal dynamics of system, �(x(k), u(k)) is the modeling
uncertainty, f(y(k), u(k)) is the fault dynamics, and �(k – T),
a n × n square matrix function representing the time profiles
of the fault.

A system fault typically changes the parameters of the
system or its dynamics which is expressed as a nonlinear
function of the output and input. It is important to note that
(1) does not address sensor faults. The time profiles of the
incipient faults are modeled by [23]

�(k – T) = diag(�
1
(k – T), �

2
(k – T), ..., �

n
(k – T))

where

i-

0
( )
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0  if    
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� �
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� �
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�
�

i = 1, 2… n (2)

with �
i
 > 0 is an unknown constant that represents the rate at

which the fault in the state x
i
 occurs. For large values of �

i
,

the time profile function �
i
(�) approaches a step function to

model an abrupt fault. In this paper, we address only abrupt
faults.

Remark 1: Modeling of faults using time profile is
commonly found in the fault detection literature [25], and is
used extensively by researchers [1, 3, 7, 20, 23, 24].

Next, throughout this paper, we make the following
assumptions.

Assumption 1: Initial state of the system is known, i.e.,
x(0) = x

0
.

Assumption 2: The state and the inputs are bounded
before and after the fault, a standard assumption often made
in the literature [7].

Assumption 3: The nominal system is assumed to be
observable [24] in some domain of interest.

Assumption 4: The modeling uncertainty is
unstructured and bounded [7, 24], i.e.,
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0( ( ), ( )) ,  ( , ) ( )x k u k x u U� � � � � ��

where there exists the compact sets ��� �n and U � �m,
with �

0
 � 0 a known constant.

During the past decade, many design schemes so called
the robust fault diagnosis schemes have resulted in a variety
of tools in continuous-time for dealing with modeling
uncertainties [5]. In these robust detection schemes, when
the system dynamics change above a predefined threshold,
then a fault is declared [7, 20, 24]. On the other hand, another
approach [5] attempts to decouple the effects of faults and
modeling errors as a way of improving robustness. In the
following section, a fault detection scheme is developed by
using a mathematically derived threshold and OLAD.
Subsequently, the parameter tuning scheme of the OLAD is
utilized for prediction.

III. FAULT DETECTION SCHEME

The input-output system with fault under study uses the
following nonlinear estimator given by

ˆ ˆ( 1) ( ) ( ) ( ( ), ( )) ( )x k A KC x k y k u k Ky k� � � � � �

ˆ ˆ( ( ), ( ); ( )) ( )f y k u k k v k� � �

ˆ ˆ( ) ( )y k Cx k� (3)

with 0ˆ(0)x x� , where ˆ nx ��  is the estimated state vector,,

ŷ �� is the estimated output, f̂  is the OLAD, ˆ q� �� is a

set of adjustable parameters, v is a robust term and would
be defined later in the text, and K is a design constant, which
is chosen such that G = A – KC has all its eigenvalues within
the unit disc. The initial value of the OLAD in (3) is selected

such that 
0

ˆ ˆ(0)� �� , so that 
0

ˆ ˆ, ) 0( ,f y u � � for all y � Y and

u � U. Given the initial conditions, the next step involves

the development of an adaptive law for the parameter ˆ( )k� ,

so that the OLAD ˆ ˆ( ( ), ( ); ( ))f y k u k k�  reconstructs the fault

dynamics f(y(k), u(k)). An accurate modeling of the nonlinear
discrete-time system would enable us to track any changes
in the system dynamics and helps in the development of a
robust fault detection algorithm.

Remark 2: Only upon detection of a fault, the OLAD
and the robust term are initiated.

During the last few years, several online approximation
based models have been studied primarily in continuous-
time in the context of intelligent and learning control. In
addition to conventional approximation models like
polynomials, spline functions etc., various neural networks
such as sigmoidal activation functions, radial basis functions,
CMAC etc and others such as fuzzy logic systems and
wavelets, have emerged. For the OLAD, y and u are

considered as the input vectors, ˆ( )k� is the vector of

adjustable parameters, and ˆ ˆ( , ; )f y u �  is the output. In this

paper, we consider a general class of sufficiently smooth

online approximators, ˆ .f C��

Next define the state estimation error as ˆe x x� � .

Also define ˆoe y Cx� �  as the output estimation error or

residual. Under the ideal conditions with no modeling errors,
a fault is declared active whenever the output of the online

approximator ˆ ˆ( ( ), ( ); ( ))f y k u k k� and the residual becomes

nonzero. An intuitive way of generating robustness with
respect to modeling uncertainties is to start the adaptation
whenever the residual is above a certain threshold. This can
be easily implemented by using a dead-zone operator D[.],
which is defined for improving the robustness of the fault
detection scheme as

( )

( )

0,  if 
[ ( )]

( ),if 
o

o

k

k
o

o

e

e
D e k

e k

� ��
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(4)

where e
o
(k) is the residual and � > 0 is a design constant.

The dead-zone size � clearly provides a tradeoff between
reducing the possibility of false alarms (robustness) and
improving the sensitivity of the faults.

In the next section, � is derived in terms of the modeling
uncertainty bound (�

0
), which guarantees robustness in the

presence of modeling uncertainty. Based on the estimation
model in (3) and the dead-zone in (4), the following
parameter update law is proposed for tuning the OLAD

0
 B D[ ( )]ˆ ˆ ˆ( 1) ( ) ( )T

oe kk k Z I ZZ k� � � � � � � � � � � (5)

where � > 0 the learning rate or adaptation gain, 0 <��<1 is
a design parameter, B

0
 � �n is a constant vector, and Z is a

q×n matrix defined as

ˆ ˆ( , ; )

ˆ

T

f y u
Z

� �
�

��

� �
� �
� �
� �

(6)

The key advantage of the proposed parameter update
law is the relaxation of parameter drift, a phenomenon that
may occur with standard adaptive laws in the presence of
approximation errors and due to the lack of the persistency
of excitation (PE) of input signals. The last term is similar
to e-modification in continuous-time adaptive control.

Next we define the robust term as

1

1 1

ˆ ( )
( )

ˆ ˆ( ) ( )

T

T T
m

B k
v k

k B B k c

�
�
� � � (7)

where B
1
 ���q×n is a constant matrix and its selection is

addressed later in the paper and c
m
 > 0 is a design constant.

The performance of the parameter update law is shown
mathematically by using Lyapunov theory in the next section.

Remark 3: In our earlier work [23], the authors have
developed a nonlinear estimator for robust fault detection
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in dynamic systems with full state feedback. In the case of
full state measurement with n states and m inputs, the input
to the online approximator will be (n + m) whereas it is
(1 + m) for the proposed work. This has a major impact on
the online approximator especially for linearly parameterized
approximators since for high dimensional input spaces, the
number of adjustable parameters needed to achieve a given
approximation accuracy increases with the input dimension
[2]. Therefore, the use of output sensor data instead of full
state vector has obvious practical advantages similar to the
case of continuous-time systems.

IV. ANALYTICAL RESULTS

In this section, the robustness, the sensitivity, and the stability
of the nonlinear fault detection scheme is rigorously
examined. The robustness analysis deals with the
investigation of the behavior of the OLAD in the presence
of modeling uncertainties prior to the occurrence of any
faults. The sensitivity analysis examines the behavior of the
OLAD after the occurrence of the fault and characterizes
the class of faults that can be detected by the robust fault
detection scheme. On the other hand, the stability analysis
included in  this section deals with the asymptotic
convergence of the system signals, even after the fault
occurrence.

In an ideal case, where there is no modeling errors and
prior to the occurrence of a fault, i.e., k � [0, T), from (1)
and (3), the state estimation error satisfy

e(k + 1) = Ge(k) (8)

Since G is a stable matrix, hence the stability follows
trivially, i.e., e � 0 as k ���. Next, in the presence of
modeling errors, (8) becomes

e(k + 1) = Ge(k) + �(x(k), u(k)) (9)

To determine an appropriate value for �, we derive an
upper bound for e

o
(k) prior to the fault. From (9), we have

1
1

0

( ( ), ( ))( )
k

k j

j

x j u je k G
�

� �

�

�� � . Hence the residual is given by

1

1

0

( ) ( ( ), ( )).
�

� �
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k

k j

o

j

e k C G x j u j  Since the matrix G is stable,

there exist two positive constants µ and �
C
 such that

(Frobenius norm) 1k k
cG �� � � . Therefore by using

1C �  [9], and taking � = �
c
µ, we get ( )

(1 )

(1 )
o

k

oe k �
� �

� �
� �

.

Thus we choose the size of the dead-zone (1 )
o��

� �
� � . Next

to show the robustness of the proposed scheme (using
equations (3), (4), (5), (9)), the following theorem is
proposed.

Theorem 1 (Robustness): The robust nonlinear fault
detection scheme described by (3), (4), (5) and (9) guarantees

that ˆ ˆ( ( ), ( ), ( )) 0f y k u k k� � , for k � T prior to the occurrence

of the fault.
Proof: Let us assume that there exists a time k

r
, 0 < k

r
 <

T, such that ( )
o

e k ��  for k < k
r
 and

0( )
(1 )o re k
��

� � �
�� (10)

It is could be seen that the parameter ˆ( )k� has not

adopted in the time interval [0, k
r
) by using (5) and the

continuity of e
o
(k) [24]. Hence in the time interval

[0, k
r
) the state estimation error e(k) satisfies

e(k + 1) = Ge(k) + �(x(k), u(k)) (11)

Therefore, in the interval [0, k
r
), the residual or the

output estimation error  is given by

1
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0
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G
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0( ( ), ( ))x k u k� � � , we get 
(1 )

( ) (1 ).
(1 )

k
k

o oe k
��
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� �

Hence, ( ) (1 )
o

ke k � ���  for all k � [0, k
r
) Thus by using

the continuity of e
o
(k) we obtain that |e

o
(k

r
)| < �, which

contradicts our assumption in (10). In other words, the
residual remains within the dead-zone and the output of the
OLAD remains zero.

Remark 4: The proof of the theorem is quite analogous
to the continuous-time case [24].

Next after the occurrence of the fault at k � T, by using
equations (3) and (4), the state estimation error satisfies

e(k + 1) = Ge(k) + �(x(k), u(k)) + �(k – T) f(y(k), u(k))

ˆ ˆ( ( ), ( ); ( )) ( )f y k u k k v k� � �

ˆ( ) ( ( ), ( )) ( ) ( ( ), ( ), )Ge k x k u k k T f y k u k� � � � � � �

ˆ ˆ( ( ), ( ); ( )) ( ) ( )f y k u k k k v k� � � � �

where the approximation error  is given by

ˆ( ) ( )[ ( ( ), ( )) ( ( ), ( ), )]k k T f y k u k f y k u k� � � � � �  and � is

an optimal value chosen such that it minimizes the L
2
 norm

distance between ˆ ˆ( , ; )f y u �  and f(y, u) for all (y, u) in some

compact domain U�y . Also  � is constrained to a compact
set w � �q.  Based on the smooth assumptions on

ˆ)ˆ ( , ,f y u � [7], further, the above defined error equation can

be expressed as

ˆ( 1) ( ) ( ( ), ( )) [ ( )] ( ( ), ( ), )e k Ge k x k u k I k T f y k u k� � � � � �� � �
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ˆ ˆ( , ; ) ˆ ˆ( ) ( , ; , ) ( ) ( )
ˆ

f y u
y u k v k

� �
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��
(12)

where 
ˆ ˆ( , ; )ˆ ˆˆ ˆ ˆ( , ; , ) ( , ; ) ( , , ) ( )

ˆ
f y u

y u f y u f y u
� �

� � � � � � � � � � ��
��

with ˆ( , ; , )y u� � �  represents the higher order terms of the

Taylor series expansion of ˆ ˆ( , ; )f y u �  w.r.t to �̂ . Let

ˆ� � � ���  is the parameter  estimation error, denote

( )]ˆ( ) ( , ; , ) [ ( ( ), ( ), )ˆy I yk u k T f k u k� � � � � � � � ��  +�(x(k),

u(k)) + �(k), and 1( ) ( ) ( ),Tk Z k k� � ��  then the error equation

(12) becomes

e(k + 1) = Ge(k) + �
1
(k) + �(k) + v(k)

Now using the definition of the robust term from (7),
we get

1
1

1 1

ˆ ( )
( 1) ( ) ( ) ( )

ˆ ˆ( ) ( )

T

T T
m

B k
e k Ge k k k

k B B k c

�
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Add and subtract 
� �1 1

1 1
ˆ ˆ( ) ( )

T

T T
m

B C

k B B k c

� �
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 in the above

equation, where C
1
 ���n is a constant vector, to get

� �1 1

1 2

1 1

( 1) ( ) ( ) ( ) ( )
ˆ ˆ( ) ( )

T

T T
m

B C
e k Ge k k k k

k B B k c

� �
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(13)

where 
� �1 1

2

1 1

( )
( )

ˆ ˆ( ) ( )

T

T T
m

B k C
k

k B B k c

� �
� �
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�

. Next we consider the

sensitivity of the proposed fault detection scheme. The class
of detectable fault is given by the sensitivity theorem and is
shown below; this theorem is obtained under the worst-case
detectable conditions [9]

Theorem 2 (Sensitivity): For some 0
d

k � , if the fault

dynamics ( ( ), ( ))f y k u k  satisfies the following inequality

1
( 1 ) ( ( ), ( ) (1 )

d

d

T k
T k j

c
j T

CG f y j u j
� �

� � �

�

� �� �� (14)

Then the residual is given by ( )o de T k� � � .

Proof: The state estimation error in the presence of a
fault and prior to the OLAD adaptation is given by

e(k + 1) = Ge(k) + �(x, u) + f(y, u)

Therefore for k > 0, the residual is given by

( 1 )
1

( ( ), ( ))( ) ( ) T k j
T k

k

j T
o x j u jT CGe T k CG e �� � �

� �

�

� � � �

( 1 )
1

( ( ), ( ))
T k j

T k

j T

f y j u jCG � � �
� �

�

� �

Using 
0( )

(1 )oe T
��

�
�� , k

c
kG � � �  and the triangle

inequality, we obtain

0
0 0

(1 )
( )

(1 ) (1 )

k k
ce T k
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� � � ���
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1
( 1 ) ( ( ), ( ))

T k
T k j

j T

CG f y j u j
� �
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�

� �

1
( 1 )(1 ) ( ( ), ( ))

T k
k k T k j

c
j T

CG f y j u j
� �

� � �

�

� �� �� � � � � � �� � �

Using 1C � , 1k k
cG � � � �  and taking k = 0, we

obtain �
c
 � 1. If �

c
 = 1, �k � 1 and also if there exists a time

k
d
 > 0 and if the condition in (14) is satisfied then it can be

concluded that 0 ( )de T k� � � . This theorem shows that the

OLAD would start adapting, if  0 ( )de T k� � �  and hence

the output of the OLAD ( ˆ ˆ( , ; )f y u � ) becomes non-zero.

Remark 5: The above theorem characterizes the class
of faults that are detectable by the robust nonlinear discrete-
time fault detection scheme. Note that the left-hand side of
(14) represents the fault function. Intuitively the sensitivity
theorem states that if the magnitude of the fault function after
some time k

d
 becomes greater than (1 + �

c
)�, then such faults

can be detected under worst-case detectability conditions.
In other words, similar to the continuous-time case, the
inequality (14) is a sufficient (but not necessary) condition
for activating adaptation of the OLAD in the presence of
any modeling uncertainty satisfying Assumption 4.

One of the most important parameters in fault detection
is the time interval between the occurrence of a fault and
the detection of the fault which is referred to as fault
detection time. The sensitivity theorem not only characterizes
the class of faults but it also provides a measure of the
detection time. In other words, the smallest k

d
 for which the

inequality (14) holds is equal to the detection time under
the worst case detectability conditions. Hence, k

d
 represents

the maximum detection time over all allowable scenarios of
modeling uncertainties.

Next the stability and performance of the fault detection
scheme is examined. For the following results, it is taken
that |e

o
(k)| > �. For a gradient-based tuning updates used in

a fault detection scheme [1, 3] which cannot exactly
reconstruct certain unknown parameters because of the
presence of unmodeled nonlinearities or approximation
errors, cannot be guaranteed to yield bounded estimates.
Then the PE condition is required to guarantee boundedness
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of the parameter estimates. However, it is very difficult to
guarantee or verify the PE. In the next theorem, improved
parameter tuning schemes for the fault detection scheme is
presented so that PE is not required.

Theorem 3 (Stability): (PE condition not required) let
the initial conditions for the nonlinear estimator is bounded
in a compact set S � �n. In the event of a fault, the fault
detection scheme guarantees robust stability in the presence
of modeling and approximation errors, such that e

o
(k) is

locally asymptotically stable and ( )k�� is bounded.

Proof: Consider a Lyapunov candidate as

21 1
( ) [ ( ) ( )]

5 3
T

oV e k k k� � � �
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The first difference is given by
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Consider the first term (�V
1
) in the first difference �V

and substituting ˆ ˆe y Cx Cx Cx Ceo � � � � � , using the error

equation (13), and applying the Cauchy-Schwarz inequality
(a

1
 +  a

2
 +. ..  + a

n
)T .  (a

1
 +  a

2
 + .. .  + a

n
) �

1 1 2 2.( ... )T T T
n nn a a a a a a� � � �  gives us
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(15)

Next, considering the second term (�V
2
) in the first

difference of the Lyapunov function �V

2

1
[ ( 1) ( 1) ( ) ( )]

3
T TV k k k k� � � � � � �� �

�
� � � �

by using the parameter update law (5), applying the dead-

zone operator in (4), and ˆ,� � � � �� one obtains
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Applying the Cauchy-Schwarz inequality (a
1
 + a

2
 + ...

+ a
n
)T . (a

1
 + a

2
 + ... + a

n
) 1 1 2 2.( ... )T T T

n nn a a a a a a� � � � in the

above equation gives us
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1
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In the above equation, performing some mathematical
manipulations would result in the following equation
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(16)

Combining �V
1
 from (15) and �V

2
 from (16) results in

the following equation
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Next, we introduce the following Lemma
Lemma 1: The term �(k) in (17) comprising of the

approximation error and the basis function of the OLAD, is
assumed to be upper bounded by a smooth nonlinear function
of state estimation and parameter estimation errors [6, 11]

222
0 1 2( ( ) ) ( ) ( )T T

Mk C e k k� � � � � � � � � ��

3 ( ) ( )e k k�� ��

where �
0
, �

1
, �

2
 and �

3
 are computable positive constants.

Proof: Use some standard norm inequalities,
Assumption 1, and the fact that the reconstruction error can
be expanded as a function of the residual error and error in
adaptive estimation parameters. The steps follow similar to
the case in continuous-time in proving the boundedness for
a NN controller [15].

Then taking the Frobenius norm and using lemma 1,
equation (17) could be rewritten as
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where min max� � � � � , min maxZ Z Z� � ,  and

� �4 3 / 2� � �  .

Taking 
min
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.

Using this definition in (18) results in the following
equation
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Hence in the above equation, �V < 0 if we choose the
following gains
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� � , and � < 1.

Thus as long as the first difference �V < 0 which
indicates that the error signals are stable in the sense of
Lyapunov. Additionally, in absence of measurement noise,

e
0
(k) = Ce(k), hence e

0
(k) and ( )k�� are bounded, provided

e
0
(k

0
) and 0( )k�� are bounded in a set S. Hence e

0
(k) and ( )k��

converges asymptotically to zero.
Remark 6: From the above theorem, it is observed that

by using the robust term and the lemma on the approximation
error, we proved local asymptotic stability of the closed loop
system.

Next we propose stability without using the robust term
and also removing the lemma 1, thus we present the following
corollary. In this corollary, we show that the FD scheme is
only semi-globally uniformly ultimately bounded (SGUUB).
Thus (13) without the robust term could be written as

e(k + 1) = Ge(k) + �(k) + �(k) (19)

where ( ) ( ) ( )Tk Z k k� � ��  and

ˆˆ( ) ( , ; , ) [ ( )] ( ( ), ( ), )k y u I k T f y k u k� � � � � � �� � � +�(x(k),

u(k)) + �(k). Next the corollary on the stability is presented.

Corollary 1: Consider the hypothesis given in Theorem
3 with the robust term being removed. In the presence of
bounded uncertainties and reconstruction or approximation
errors, the output estimation error or residual e

o
(k) and the

parameter estimation error ˆ( )k�  are SGUUB.

Proof: Consider a Lyapunov candidate as
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Consider the first term (�V
1
) in the first difference �V

and substituting ˆ ˆoe y Cx Cx Cx Ce� � � � � , using the error

equation (19), applying the Cauchy-Schwarz inequality
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Next, considering the second term (�V
2
) in the first

difference of the Lyapunov function �V, we get
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by using the parameter update law (5), applying the dead-

zone operator in (4), and ˆ� � � ��� , one obtains
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Applying the Cauchy-Schwarz inequality ((a
1
 + a

2
 + ...

+ a
n
)T . (a

1
 + a

2
 + ... + a

n
) 1 1 2 2.( ... )T T T

n nn a a a a a a� � � �  in

the above equation gives us
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In the above equation, performing some mathematical
manipulations would result in the following equation
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Combining �V
1
 from (20) and �V

2
 from (21) results in the

following equation
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Applying Frobenius norm in the above equation gives
us
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Then �V � 0 as long as the following conditions hold
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< 0.577, and � < 1. (22)

Therefore, �V � 0 and it can be concluded that the
residual or output estimation error e

o
(k) and the parameter

estimation error ˆ( )k�  are SGUUB.

Remarks 7: It is important to note that in the above
two theorems (Theorem 3 and Corollary 1) the requirement
of the PE condition and certainty equivalence (CE)
assumption are relaxed for the adaptive estimator, in contrast
to standard work in discrete-time adaptive control [13]. In
the latter, two separate Lyapunov functions are considered
to show the bound on the state estimation error and the
parameter estimation error [13, 23]. By contrast in our proof,

the residual, e
o
(k) and the parameter estimation errors ˆ( )k�

are combined in one Lyapunov function. Hence the proof is
exceedingly complex due to the presence of several different
variables. However, it obviates the need for the CE
assumption and it allows parameter-tuning algorithms to be
derived during the proof, not selected a priori in an ad hoc
manner.

Remark 8: The parameter updating rule (5) is a
nonstandard scheme that was derived from Lyapunov
analysis and does include an extra term referred to as
discrete-time �-mod [13], which is normally used to provide
robustness due to the coupling in the proof between the
residual and the parameter estimation error terms. The
Lyapunov proof shows that the term is necessary. Unless
the term is utilized, the time to failure cannot be derived.

In this section we presented the robustness, sensitivity,
and the stability of the proposed FD scheme. Additionally,
two different stability results were obtained, i.e., asymptotic
stability and SGUUB under certain conditions. In the next
section, we would introduce a new method of predicting TTF.

V. PREDICTION SCHEME

The interest of most modern industrial maintenance is to
predict impending faults and alert the concerned maintenance
personal by predicting the TTF so that the failing component
or system can be replaced thus avoiding any catastrophic
failure. The prognosis scheme will help out in this regard so
that costs can be controlled due to failures. Though it is
usually difficult to predict failure, TTF can be approximately
obtained by predicting time to limit, In other words, systems
parameters are monitored with fault and the TTF is obtained
by projecting the time at which the value of the parameters
reach their maximum limit usually set by a designer. The
maximum limit could be the value up to which the system
could perform it’s intend task or operation safely. In general
for most physical systems, the system parameters could be
related to physical parameters. Hence in the event of a fault,
the parameters may tend to increase or decrease depending
on the fault characteristics.

To predict the TTF by using the parameter update law
in (5), we propose the following theorem. In this theorem,
we show that an explicit mathematical formula could be
derived to predict the TTF. Before proceeding any further,
we make the following assumption.

Assumption 5: The parameter ˆ( )k� is an estimate of

the actual system parameter.
Remark 9: This assumption is satisfied when a system

can be expressed as linear in the unknown parameters (LIP).
For example in a mass damper system or civil infrastructure
such as a bridge, the mass, damping and spring constants
can be expressed as unknown parameters. Hence in the event
of a fault, we assume that system parameters change and
tend to reach their limits defined by the designer. When any
one of the parameters exceeds its limit, it is considered unsafe
to operate. TTF will be defined as the time that the first
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parameter reaches its maximum limit. Here the TTF analysis
can be done with lower limits as well.

Theorem 4 (Time to failure): Assume that the
parameter update law can be treated time invariant during
the time interval k and k+1 and consider system (1) can be
expressed as LIP, the TTF for the ith system parameter could
be iteratively determined by solving

max
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0
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0
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� � � �
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� (23)

where k
fi
 is the TTF, k

0i
 is the time instant when the prediction

starts (starts at k
d
 and incremented with time), �imax

 is the
maximum value of the system parameter, and �

i0
 is the value

of the system parameter at the time instant k
0i
.

Remark 10: The mathematical equation (23) is derived
for the ith system parameter. In general for a given system,
the TTF would be k

ft
 = min(kfi

), i = 1, 2,...l, where l the
number of system parameters. This also implies that for a
fault that is occurring in the system, the TTF is obtained as
the time that the first parameter reaches its limit.

Proof: In general for any system satisfying Assumption
5, the maximum value of the system parameter in the event
of a fault is determined via physical limitation. Hence we

take 
max

ˆ ( )
ii f ik� � � . Note that the equation (23) holds only in

the time interval k � [k
d
, k

f
] when the residual and other

terms are held constant at each k. Thus the values of Z and
e

0
 are known and would be held fixed for the kth time instant.

Under the assumption, the parameter update law shown in
(5) could be written as

0 0
ˆ ˆ( 1) ( ) ( )  Tm I I ZZ I m Z B e� � � � � �� � � �

where we use m as the time index to simplify the
understanding of the theorem, and the above defined
equation could be written as

( 1) . ( ) .x m A x m B u� � � (24)

where ˆ( 1) ( 1)x m m� � � � , ( )TA I I ZZ I� � � � �  is a

diagonal matrix, ˆ( ) ( )x m m� � , and B � � , and 0 0 u Z B e� .

Since the above defined A  matrix is diagonal, (24) could
be written as

( 1) ( )i ii i i ix m a x m b u� � � (25)

where 1 T
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1
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i ij
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with the elements of input being constant between the time

instant k and k + 1.
Solving (25) to determine TTF using [4], we get
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Since at a given instance k, u
i
 is time-invariant in (26),

thus the above equation becomes
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Now using results of geometric series, the above
equation could be written as
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After  performing some simple mathematical
manipulation, one obtains

0

0
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Since 0 1iia� � , take absolute value and logarithm on

both sides and apply again the absolute operator to get
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Next we take 
if

m k� , and 0 0i
m k� . Additionally, we

have

max
( ) ( )

ii i f ix m x k� � � , 
00 0( ) ( )

ii i ix m x k� � � , and we

know that 1 T
iia I ZZ� � � � � , ib � � ,  and

0 0
1

n

i ij
j

u z B e
�

� � .  Thus,  we get equation (23). Hence

completes the proof.
After fault detection, (23) is utilized iteratively to obtain

TTF in the time interval k � [k
d
, k

f
]. To better understand

the idea of updating the TTF, refer to the flowchart in
Figure 1. From the flowchart, upon detecting the fault, at

each time instance, z(k), ˆ( )k�  and e
0
(k) are calculated. Then

TTF is estimated by using (23),  as the parameter

max
ˆ( )k� � �  as k � k

f
.. This iterative procedure allows one

to accurately assess the TTF at every time instant more
accurately when compared to probabilistic methods [21],
where the change in the direction of the fault parameter is
not known.

Next, the performance of the developed FDP scheme is
simulated onto an application. The details of the simulation
are given in the next section.
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VI. SIMULATION RESULTS

In this section the FDP scheme is simulated with a magnetic
suspension system. The performance of the FDP scheme is
shown with and without system uncertainty and measurement
noise. The learning capability of the OLAD is also presented
for the chosen example.

Fault Detection Scheme

To begin with, first we analyze the performance of the fault
detection scheme. A simplified discrete time state space
representation of a magnetic suspension system is given
below [14]

� �
1 2 1 1

2 1 2 2

( 1) ( ) ( ) ( ( ), ( ))

1
( 1) ( ) 9.8 ( ( )) ( )

S

S

x k T x k x k x k u k

x k T k x k f y k F x k
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� � � � �
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� �

y(k) = x
2
(k) (27)

where x
1
 and x

2
 are the system states, F is the input for the

system in (27) and for the estimator in (28) which is taken
as F = 5 sin (kT

S
). A fault induced by changing the coil

resistance in a nonlinear fashion by simply adding it to the

system in (27) using f(y(k)). The following nonlinear
estimator is used to study the system described in (27)
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1 2 1 1 2 3 1 2 2
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4 2 5 1 6 2ˆ ˆ( ) ( ) ( )a x k a x k a x k� � �

2ˆ ˆ( ) ( )y k x k� (28)

where 1̂x and 2x̂  are the estimated states of the system in

(27), and ˆ ˆ( ( ), ( ))f y k k�  is the OLAD. For this simulation,

the OLAD is chosen to be a single layer sigmoid function
network with sixteen neurons, and the initial weights of the

network ( �̂ ) are chosen randomly. The system is simulated

with an abrupt fault that occurs at 30T � seconds and is
given by

�(k – T) f(y (k)) = {5 sin(0.01 y(k)), if

k � 15, else 0  if  k � 15}

The parameter values for the actual system (27) and the
estimator (28) are taken as follows m = 1, k

1
 = 0.5,

a
1
 = 0.0005, a

2
 = 0.00005, a

3
 = 0.009, a

4
 = –0.5, a

5
 =

0.000005, a
3
 = 0.5 x

1
(0) = 0, x

2
(0) = 0, 1̂ (0) 0x � , 2ˆ (0) 0x � ,

and T
S
 = 0.01. In this simulation we present two different

scenarios, where in the first scenario, it is assumed that no
system uncertainty (i.e., �

1
(x(k), u(k)) = 0) is present with

no measurement noise and in the second scenario, a fixed
system uncertainty and a measurement noise of Gaussian
type is considered. For both the scenarios, to tune the OLAD,
the parameter update law (5) is employed. The learning rate
and the design constant in (5) are taken randomly as
� = 0.03 and ��= 0.001 respectively. The simulation results
for the first scenario are shown in Figs. 2 and 3. Figure 2
shows the absolute value of the residual under normal
operation wherein the residual appears to be zero. However,
during a fault, this residual will increase above zero
indicating the presence of a fault and by initiating the OLAD.

Figure 3 shows the evolution of the fault term and the
OLAD response. From this figure, it could be observed that
the chosen OLAD learns the occurring fault dynamics

Figure 1: Procedure to Iteratively Update the TTF

Figure 2: Absolute Value of the Residual
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satisfactorily. Such online fault estimates are useful for fault
isolation. To study the robustness of the scheme, we
introduce a fixed system uncertainty, i.e., �

1
(x(k), u(k)) =

0.5 and a measurement noise of Gaussian type with a
maximum amplitude of 0.02.

Thus from the above simulation results, the robustness
and the performance of the proposed fault detection scheme,
and its learning capabilities of the OLAD were demonstrated.
The scheme is able to learn online any type of unknown
nonlinear faults, which is an inherent advantage. Although
in this simulation, the system considered having abrupt faults,
but still the fault detection scheme would be able to capture
a wide range of fault conditions, which is evident from the
mathematical results as seen in the previous section. This
makes the OLAD based approach better than other
quantitative or qualitative based methods [5, 10]. Next we
illustrate the working of the prognostics scheme, where we
assume the same type of fault, i.e., nonlinear change in coil
resistance.

Prediction Scheme

For this simulation, a change in coil resistance in the form
f(y(k)) = 5 sin(0.01y(k)) is considered at the 10th second of
operation in (1) and the prognostics scheme is now
demonstrated. By using the procedure outlined in Section
V, we determine the TTF. The spring constant (k

1
) is

considered to be unknown. Next, the parameter update law
(5) is utilized to estimate the unknown system parameter.
The learning rate and the design constant in (5) are chosen
as � = 0.35, � = 0.0011 respectively. The estimated system
parameter is compared with the actual system parameter by
defining a maximum acceptable limit (usually using safety
limit) as shown in Fig. 6. As the fault continues to grow, the
actual parameter tends to increase approaching the maximum
defined parameter threshold value of 30. This value was
chosen randomly to demonstrate the working of the proposed
prediction scheme.

From the procedure outlined in the flowchart in Fig. 1,
the TTF is estimated at each time instant after the occurrence
of the fault and is shown in Fig. 7. From the figure, after the
first prediction of TTF, for few seconds the prediction seems
to increase, this could possibly be due to the random selection
of the gains of the parameter update law in (5) which needs
some time to converge. However the prediction of TTF
improves as the scheme learns the change in the system

Figure 3: Evolution of the Actual Fault Term f(y) and OLAD

response ˆ ˆ( , )f y �

The simulation results for this scenario are shown in
Figs. 4 and 5 wherein the absolute value of the residual is
illustrated in Fig. 4 and due to the presence of the modeling
uncertainty, to improve robustness, a threshold is introduced.
A fixed threshold of 0.1 is considered as observed in Fig. 4.
The threshold is chosen based on the procedure developed

in Section IV, where 
0

(1 )

��
� �

� �  and solving this equation

using �
0
 = 0.5, µ = 0.9 and �

C
 = 0.2, to get ��= 0.18 and

� = 0.1. A fault is detected when the residual exceeds the
threshold, which is verified as seen in Fig. 4.

Figure 5 shows the performance of the OLAD during
the fault in the presence of the system uncertainty and the
measurement noise. Additionally from the figure, it could
be seen that the learning of the fault dynamics by the OLAD
appears to be highly satisfactory. An important point to be
considered here is the selection of the design parameters,
size and OLAD activation functions were kept unchanged
from the previous simulation. Hence even in the presence
of the uncertainty and noise, the performance of the fault
detection scheme is not compromised.

Figure 4: Absolute Value of the Residual and the Fault Detection
Threshold

Figure 5: Evolution of the Fault f(y) and OLAD Response ˆ ˆ( , )f y �

in the Presence of the System Uncertainty and the
Measurement Noise
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dynamics and converges to the actual time of failure of 17.27
seconds. This could also be observed in Fig. 7, where the
TTF decreases as the system parameter approaches the
threshold.

Hence with the chosen example, the working of the FDP
scheme was illustrated. The simulation results show
promising performance of the proposed FDP scheme.
Additionally, the robustness of the scheme was also studied
by introducing uncertainty and measurement noise in the
simulation results.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown a FDP algorithm for nonlinear
discrete time system with input and output measurements.
The scheme was developed based on the assumptions that
the states and the input being bounded before and after the
fault. The scheme also addressed the prediction of TTF.
Further more it is assumed that not all the states of the
system are available for measurement. A detailed
mathematical analysis and the simulation results show the
robustness and performance of the proposed FDP scheme.
Further based on the proofs, it was seen that the proposed
scheme could be used as a robust FDP scheme for nonlinear
discrete time input-output systems. Future work involves
with developing fault isolation and fault accommodation
techniques for a nonlinear discrete time input-output
systems.
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