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Abstract: Mathematical model for fuzzy PID controllers employing N, (= 3) number of symmetric fuzzy sets for the input
variable ‘displacement’, N, (> 3) number of symmetric fuzzy sets for the input variable ‘velocity’, N, (> 3) number of
symmetric fuzzy sets for the input variable ‘acceleration’ and (N, + N, + N, — 2) number of symmetric fuzzy sets for the
output variableisrevealed in this paper. The basic components used to derivethismodel are symmetric trapezoidal membership
functions for fuzzfication of inputs and output, algebraic product triangular norm, bounded sum triangular conorm and
Mamdani minimum inference method for the evaluation of the control rules, and center of sums (COS) method for
defuzzification. Properties of such a model are investigated. Mathematical model with N, (> 3) ,N, (> 3) and N, (= 3)
number of asymmetric fuzzy sets for the three input variables and N, + N, + N, — 2 number of asymmetric output fuzzy sets
isalso presented. The fuzzy PID controller model derived via symmetric fuzzy sets becomesa special case of the mathematical
model obtained with asymmetric fuzzy sets. Finally, to demonstrate the effectiveness of the fuzzy PID controllers, some
numerical examples along with their simulation results are included.
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1. INTRODUCTION

A fuzzy PID controller structure (configuration 1 in
Figure 1) which retains the characteristics similar to the
conventional PID controller was proposed [2]. Moreover,
in order to improve further the performance of the fuzzy
controller, a parameter adaptive method was introduced to
tune the parameters of the fuzzy controller on line.

In[3], fuzzy PID e ementswere proposed and different
fuzzy PID structures were constructed. Expressionsfor the
outputs of fuzzy PID elementswere deduced based on linear
likeand nonlinear like fuzzy logic controllers. Using these
expressions, apparent linear and apparent nonlinear fuzzy
PID gains were deduced while considering two levels of
tuning. Thefuzzy PID structures were eval uated in terms of
two levels of tuning. A quantitative mode for fuzzy PID
control, consisting of anonlinear relay and anonlinear PID
controller, was devel oped [5] for mathematical analysisand
gain design. Under certain approximations, this nonlinear
modd was found to have PID nature around the equilibrium
state. The connection between the scaling gains and the
control actionswas expressed in an explicit mathematical
form by directly comparing the proposed fuzzy PID control
with the conventional PID control. Thistheoretical analysis
revealed that fuzzy PID had led to more damping and hence
less oscillationsthan did its conventional counterpart.

A fuzzy PID controller comprising fuzzy P, fuzzy I, and
fuzzy D controllersin parallel hasbeen proposed [6]. Fuzzy
P and fuzzy | controllers have been implemented in

incremental form whilefuzzy D controller has been realized
in position form. A fuzzy inference algorithm has been
developed [7] to produce a closed-form solution of a
three-input fuzzy PID system using Zadeh-Mamdani’s
min-max-gravity fuzzy reasoning. An input transformation
technique has been proposed to reduce the number of
input conditions required in defining the fuzzy output. It
has been shown that with this technique the solution can
be represented using a minimum number of nonlinear
expressions.

Recently, optimal fuzzy reasoning technique [8] has
been proposed and integrated with a PID control structure
for better robust control. Thisfuzzy PID controller has been
analyzed quantitatively and compared with other existing
fuzzy PID control methodsto show itsimproved robustness.

It isevident from theliterature that

o  fuzzy PID controllers of configuration 1 (Figure 1) have
been developed using asymmetric triangular input fuzzy
sets[2], and symmetric triangular input and output fuzzy
sets [8].

» fuzzy PID controllers of different configurations have
been studied [3, 5, 6] using symmetric triangular input
and output fuzzy sets.

» fuzzy PID controllers of different configurations have
been investigated [ 7] using asymmetrictriangular input
fuzzy sets, symmetric triangular output fuzzy sets, and
unevenly distributed singleton output fuzzy sets.
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(a) Configuration 1

Figure1: Fuzzy PID Controller Configurations

e fuzzy PID controller of configuration 2, shown in
Figure 1, is not yet studied with multiple, asymmetric
input and output fuzzy sets.

Therefore, the abjectives of this paper are: (i) to
derive mathematical model of fuzzy PID controller by
employing symmetric triangular membership functions
(N, for displacement, N, for velocity, N, for acceleration,
and N, + N, + N, —2 for incremental contral), linear control
rules, algebraic product triangular norm, bounded sum
triangular conorm, Mamdani minimum inference, and COS
defuzzification, (ii) to investigate the properties of this
controller, (iii) to repeat (i) to obtain fuzzy PID controller
model by employing asymmetric trapezoidal/triangular
membership functions with the assumption that the
membership sum of two nei ghbouring fuzzy setsisequal to
unity, and (iv) to demonstrate the superiority of fuzzy
controller over the conventional controller through
simulation study on some examples.

This paper is organized as follows: The next section
describes the principal components of a typical fuzzy PID
controller. Section 3 presents mathematical model of the
fuzzy PID controller with symmetric fuzzy sets. In
Section 4 properties of fuzzy PID controller model are
studied. Section 5 presents mathematical models of fuzzy
PID controller with asymmetric triangular and trapezoidal
fuzzy sets. Section 6 includes simulation results while the
last section considers concluding remarks.

2. COMPONENTS OF A FUZZY THREE-TERM
CONTROLLER

The principal structure of a fuzzy three-term (PID)
controller is shown in Figure 2 which consists of the
components such as scaling factors, fuzzification and
defuzzification modules, rule base and inference engine.
Components of the fuzzy controller are discussed in the
following sections.

2.1. Scaling Factors

Normalization isthe process of mapping physical values of
actual inputs and outputs of the controller into anormalized
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domain. N, N, N_and N, arethenormalization factorsfor
the inputs d, v, a, and the output Au respectively.
Denormalization maps the normalized output valueinto its
physical output domain. N, isthereciprocal of N, , called
denormalization factor. These scaling factors play a role
similar tothat of the gain coefficients K¢, K and K$ ina
conventional PID controller.

2.2. Fuzzification Module

Let the number of fuzzy setson normalized input variables
“displacement d, (KT)”, “velocity v, (KT)” and “acceleration
a(KT)” beN,, N, and N, respectively. Assumethat thereare
J, number of fuzzy sets on negative displacement (J, on
negative velocity, J, on negative acceleration), one fuzzy
set for zero displacement (velocity or acceleration) and J;
number of fuzzy sets on positive displacement (J, on positive
velocity, J, on positive acceleration). Therefore, thereisa
total of

N=2J+1>3 Q)
number of fuzzy sets on each normalized input variable,
where N is N, (on displacement), N, (on velocity) and N,
(on acceleration), and J is J, (for displacement), J, (for
velocity) and J, (for acceleration). The fuzzy sets on each
normalized input variable are as shown bel ow:

{X_J s X_(J_l)a--a X_la xoa Xla'-s an- i) XJ_lﬂ XJ} (2)

where X is D (for displacement), V (for velocity) and A
(for acceleration) and A is i (for displacement), j (for
velocity) and n (for acceleration).The membership
functions corresponding to members in Eq. (2) are
considered as

{u; (xy), H-(J—l)(XN ) s o (X )s o (X )5 1y (%)
e By (X )y s 1y (X)), 1 (KDY (3)
where X, is d, (for displacement), v, (for velocity) and a
(for acceleration). The membership function p, (x)
corresponding to theinput fuzzy set X, in Eq. (2) isdefined
as follows:
For A.=—(J-1),-(J-2),..,(J-2),(3-]
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0, Xy £ %, o =X
(XN_;VB,])’ Xb) SXNSXa M, Xb(Jl)SXNSXaJ
(% =%.) : o (%) =104, =%, ) (6)
m)=1 1 Xy XX, (4) L Xy <Xy <L
(ﬁl_xm) Xb)SXNS O’ L< N
%, =%) i Notice that
0, <X
o SN B (%) #1006 =1 %, e [-L, L] 0
Forx=-J and i+j+n=m (8)
Figure 3 shows membership functions p.(d,), il (v and
0, X <-L u(a,) corresponding to the input fuzzy sets D, V and A
1 —L<x <%, Assume that thereare N, + N, +N—2(|e2(J +J +J)
(x,) = (X, —%) ®) + 1)) number of fuzzysetson thenormahzed output vanable
HolWh) =) tew T2 <X o theincremental control effort Au, (kT). Amongthese, J, + J,
(XBL(H) ~ %) + J, members are on negative output, J, + J, + J, members
0, Xa iy S Xu are on positive output and one member for zero output. The

wherex is d (for displacement), v (for velocity) and a (for
acceleration), and L isL, (for displacement), L, (for velocity)
and L, (for acceleration).

Fori=J

membership functions for normalized output is shown in
Figure 4 and can be described by

{0,,,,0 5 4-»04,04, 0., Oy s O

Jp-1°

o, O

L

1 =2

whereJ =J, +J,+J.. Let M =D, . TheparametersL
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L, M, d, and d, fori=-J,,-(3,-1),..-1,0,1, ..

1

(J,-1),J; Vs, and Vi, forj=-3J,,-(J,-1),..-1,0,1, ...
J,-1),J, a, and a, forn=-J,-(J,-1),..-1,0,1,
.. (J,-1),J,a andb_form=-J,-(J,-1),..-10,1,

... (J,—1), J, arechosen by the designer.

2.3. Control Rule Base

The following linear control rules are considered in terms

of the abovementioned input and output fuzzy sets.
(R) Ifd,isD, & v, is\/j & a isA thenAuisO,_.
(R)IfdyisD,, & v isV & a isA then AuisO,_,,.
(R)IfdisD,, & v isV & aisA  thenAuisO_,.
(R)Ifd isD & v isV, & a isA , thenAu isO_,,.
(R) IfdisD & visV, & aisA  thenAu isO_,.
(R)IfdisD & visV, & a isA thenAu,isO_,,.
(R)IfdisD,, & visV, , & a isA thenAuisO_,.
(R)Ifd,isD, & visV, & a isA  thenAu isO .
The & symbal in the above rules represents the fuzzy

‘AND’ operation and the AND operation considered hereis
algebraic product triangular norm which isgiven by

ﬁ(dNﬂvN’aN):“‘p(dN)'“’q(VN)'“r(aN) (10)

wherepe{D,,D,,.},qe {Vj, Vj+1} andre{A A .} aethe
p", g" and r" fuzzy setson d,, v, and a respectively. It is
tobe noted here that the control rulesarelinear asthe output
fuzzy setsarelinearly related to the input fuzzy sets.

2.4. Inference Engine

The degree of match is computed for each rule using
algebraic product triangular norm given by Eq. (10). Then
the degree of match isused to determinetheinferred output
fuzzy set via Mamdani minimum inference method, defined
asmin ([, n(Au)) . Thereference output fuzzy set (trapezoid),
and theinferred output fuzzy set (shown with hatching) are
shown in Figure5.

Therearetwelve possibleinput combinations, see Figure
6(a), of thenormalized inputsd, (KT) and v, (KT) intheregion

\

>
o bm-l i b Ej-:m+1'::’“‘J'tf:j'1-l1ﬂ-'

I

Figure5: Mamdani Minimum Inference Method

defined by d, <d,(kT)<d, and v, < v, (KT) SV,
twelve possibleinput combinationsof the normalized inputs
d\(kT) and a(kT) in the region defined by d, <d,
(kT)<d, and a, <ay(KT)<a, , and twelve possible
input combinations of the normalized inputs v,(KT)
and a(KT) in theregion defined by v, <vy (KT) < V%, and
a, <a,(kT)<a, .Similarlythereareeight possibleinput
combinations of the normalized inputsin each of the (d, v,
- d,a, — and v, a, -) plane shown in Figure 6(b). To
represent a state point uniquely in the 3D input space, all
possible input combinations in different planes are
considered and thus 8000 different cells of the form
(n,n,,n,)areobtainedwheren,n ,n =12 ...,12in
Figure6(a) andn,n,n =13, 14, ..., 20in Figure 6(b).
Not all 8000 cells are valid cells; only afew of them are
valid. Acdl (n,n,,n  )issaidtobevalidif andonlyif the
relations between d, and v, and d and a; produce the
relation between v, and a,. For example, thecell (4, 1, 4) is
avalid cell becausetherelationsd, <v, andd, > a, produce
therelation v, > d > a, which is satisfied by the relation
v, = a,. The outcomes of the contral rulesfor all the valid
cells with algebraic product triangular norm are listed in
Table1.

It may be seen from the control rules that each of the
output fuzzy sets O, ., and O_,, are fired three times. In
such a situation bounded sum triangular conormis used to
evaluate combined output fuzzy sets corresponding to the
rule sets {(R), (R), (R)} and {(R), (R), (R)}. This
triangular conorm isdefined as min{ 1, u,(Au,) + p (Au,)}
where A and B are the fuzzy sets on the normalized output
Au,.

" Since the fuzzy controller is having three inputs, and
algebraic product triangular norm is used, sum of all the
outcomes corresponding to either rule set islessthan unity.
Therefore the combined membership using bounded sum
triangular conormisgiven by

n(R) +u(R,) +n(Rs) <1
or M(R) + 1(R) +u(R) <1
2.5. Defuzzification

The most commonly used COS method is employed to
defuzzify the incremental control output. Thisisexpressed
as

(AGL() + AGL)() + AGi(R) + AL
() = RGN + AG() + AR ¢ ALY

> AG)

(11)
where A(fy,) is the area of the inferred output fuzzy set
corresponding to therule R and h, i =1, 2, ... 8, is the
centroid of inferred output fuzzy set (shown with hatching
in Figure 5) corresponding to therule R. Asmentioned in



28 International Journal of Computational Intelligence in Control

Table1
The Outcomes of ‘Algebraic Product’ Oper ation of Premise Part of Fuzzy Control Rules (R)) — (R,) for Valid 3D Cells
Cells R) R) R) R) R) Ry R) (Ry)
iy A i A s A i A
(1,1,1)to (4,4, 4) H My Hy 4, Hy Hg “, Hg
(5,9,5) 0 1y, 0 0 0 0 My, 0
(5,10, 7) 0 0 1y, 0 0 0 0 My,
(6, 6, 10) 0 0 Mo, Ho, 0 0 0 0
(6,8,9) Ho, Ho, 0 0 0 0 0 0
(7,11, 7) 0 0 0 1y, My, 0 0 0
(7,12, 5) 1y, 0 0 0 0 My, 0 0
(8,6, 11) 0 0 0 0 Hp, 0 0 Ko,
(8,8,12) 0 0 0 0 0 Hp, T 0
(9,5, 6) 0 Ha Ha 0 0 0 0 0
9,9,9),(17, 17, 17) 1 0 0 0 0 0
(9, 10, 10), (17, 18, 18) 0 0 1 0 0 0 0
(10, 7, 6) My, 0 0 [T 0 0 0 0
(10, 11, 10), (18, 19, 18) 0 0 0 1 0 0 0 0
(10, 12, 9), (18, 20, 17) 1 0 0 0 0 0 0 0
(11, 7,8) 0 0 0 0 [T My, 0 0
(11, 11, 11), (29, 19, 19) 0 0 0 0 1 0 0 0
(11, 12, 12), (19, 20, 20) 0 0 0 0 0 1 0 0
(12,5, 8) 0 0 0 0 0 0 My, [T
(12, 9, 12), (20, 17, 20) 0 0 0 0 0 0 1 0
(12, 10, 11), (20, 18, 19) 0 0 0 0 0 0 0
(13,17, 13) 0 By 0 0 0 0 My, 0
(13, 18, 15) 0 0 By 0 0 0 0 My,
(14, 14, 18) 0 0 Ho, Hp,, 0 0 0 0
(14, 16, 17) Mo, Ho, 0 0 0 0 0 0
(15, 19, 15) 0 0 0 By My, 0 0 0
(15, 20, 13) By 0 0 0 0 My, 0 0
(16, 14, 19) 0 0 0 0 Mo, 0 0 Mo,
(16, 16, 20) 0 0 0 0 0 Mo, Ho, 0
(17,13, 14) 0 Ha, Ha, 0 0 0 0 0
(18, 15, 14) Ha, 0 0 Ha, 0 0 0 0
(19, 15, 16) 0 0 0 0 Ha, Ha, 0 0
(20, 13, 16) 0 0 0 0 0 0 Ha, Ha,

Whe"euf HpHy Ha s Mo = Hp By B s Mg = Hp Hy Ha o By = Hp By Ba s Hs = Hp Hy R o Mg = Ho My, Hao u = Hop My Ha s Hg= Ho, M Ma,

* only valid cellsin (1, 1, 1) through (4, 4, 4)
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Figure 6: Possible Input Combinations of d (KT), v (KT) and a,(kT) (a) in the Region: d, <d,(kT)<d, , A < v (KT) <V, o
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Section 2.4, the output fuzzy set O__ isfired threetimes inferred output fuzzy set, obtained via Mamdani minimum
for rule set {(R), (R), (R)} and O__, is fired threetimes inference and shown in Figure 5, are respectively given by
for theruleset {(R), (R), (R)}. Inthissituation, usingthe  A=[(a,,—b, ,)[2-12-6,))/2,and

bounded sum triangular conorm, Eq. (11) can bewritten as

A (k) = A0 + Aty (M 16) + Al )us ) + AL(N) {3@n.. ~4) -3, 5 (3, - b.1) 2
" A(ﬁq) + A(ﬁz 4 6) + A(ﬁs/sw) + A(ﬁg) h= +am+l(am+1 B bm)] — K [(am - bm—l) B (anwl B bm) ]} (13)
(12) 3(a,, —b, ,)[2-i(1-6,)]

where 1, , and [i,,,, aretheoutcomesobtained using the
triangular conorm. The area A and centroid h of the Where 0, = (b, —a,)/(a,, —b..) (14
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3. MATHEMATICAL MODELS OF THE FUZZY PID
CONTROLLERSWITH SYMMETRIC TRIANGULAR
FUZzZY SETS

In this section mathematical model for fuzzy PID controllers

with symmetric fuzzy setsis presented. For symmetricinput
membership functions, weconsider a, -a, =V, -V, =
d, -d, =S and &, -a, =V, -V, =d, —d, =0 forall
i, jand nin Figure 3. Thus, with symmetric triangular input
fuzzy sets, thecdls (5, 5, 5) to (12, 12, 12) in Table 1 do not
exist. Symmetric triangular output membership functionscan
beobtained by lettinga_—-b__ =a ., —b =Wandb_ —a
=0foral minFigure4. Thisresultsin®_=0_ . =0__,
0,.,=0,a =b =mW=(@G(+j+nWa_  =b
M+ DW= (i+j+n+1)W,a_,=b__=(mM+2)W=(i +]
+n+2)W,anda_ ,=b_.=(M+3W= (i +]j+n+3)Win
view of Eqg. (8), and the expression in Eq. (12) for
incremental control output modifiesto
[AE)(+ ]+ MW+ ALy ,6)(i + ] +n+DW

Al :( 1 J+A<a3/5/7)(i +j N+ 2W+ A)(i + j+n+3W]
N AL + Alflz 0 + Alfias )+ Alflg)
_ (i+j+n+15W N
NAu

[ W J1.5[A<u8)—A(ul)]—os[A(um)—A(ua/w)]

I s

Au

NAu A(}’ll) + A(ﬁ2/4/6) + A(ﬁ3/5/7) + A(}’:LS)
=AU, +Ay, (15)
where Aug — M (]_6)
NAu
and

AU - [ w J 1.5 Alle) = Ayl = 05 Alkya6) = Albtys )]
N AL + Alfip106) + Alligs) + Alfig) -

In view of Eq. (15) we have

Theorem: The structure of the fuzzy PID controller
with linear control rules is the sum of a global three-
dimensional multi-level relay and a local nonlinear PID
controller.

In the following expressions, for smplicity we define
z(k) = d (k) = (i +0.5)S z,(k) = v, (k) — (j + 0.5)Sand z,(k)
=a (k) —(n+ 0.5)Sand consider KT ask. The mathematical
mode! of fuzzy PID controller in different cells follows now.

Case(a): iS<d (K < (i + 1S jS<v (k) <( + 1S
nS<a (k) <(n+1)S

Au

Au(ky = (%] +£+1.5)w { Nﬂ ] Ny (K) + Nipp2, (K) + Npyg 2 (K)
Au Au (18)

where
Ny =78 -4 Z(K)+ Z(K)S*-16Z () Z (K)S  (19)
N, =7S° - 4(Z (k) + Z (K))S’ -16Z (K)Z' (K)S  (20)
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N, = 757~ 4(Z (K) + Z(K)S’ 162 (Z(K)S  (21)

and D =155° —4(Z(K) + (k) + 2 (K))S* ~16(2 (k) 2% (K)

+7,(K)Z (K) + Z (K)Z (k)S* -647 (K)Z (K)Z (k) (22)
Case (b): One input lies in the cube defined by
iS<d(k) <(i+1)SjS<vy(k) <j+1S nS<a(k) <
(n+ 1)Sand theremaining two inputs do not liewithin this
cube. The Au(k) in different cellsis as follows:

Au(K) = (y+0.5)WJr 2NS 2x i 23)
N, N,, )3S" —4x
with x and y asdefined in Table 2.
_ 2 _ 2
Au(k):(y+2J 0'5)W+ W |3S +228< 24x (24)
N,. N, 3S° —4x
with x and y asdefined in Table 2.
_ 2 A2
Au(k) = (y-2J+15W (W |3S 229( 24x (25)
N, N, 3S° —4x

with x and y asdefined in Table 2.

Table 2
Attributes of x and y

X y Equation (23) Equation (24) Equation (25)
with cells with cells with cells
z,(K) i (14, 14, 18), (16, 14, 19) (14, 16, 17)
(16, 16, 20)
z,(K) j (13, 17, 13), (13, 18, 15) (15, 20, 13)
(15, 19, 15)
rA(9] n (17, 13, 14), (20, 13, 16) (18, 15, 14)
(19, 15, 16)

Case (c): All thethreeinputs do not liewithin theinner
cube defined by iS<d (K) < (i + 1)S jS<v,(K) < (j + 1)S
nS<a (k) <(n+ 1S

Au(k) = M for cells (17,17,17), (18,19,18), (19, 20,20)
Au (26)
Au(k) = M for cells (17,18,18), (19,19,19), (20,17, 20)
A” 27)
-M
Au(k) = for cell (18,20,17) (28)
Au
M
Au(k) = for cell (20,18,19) (29)

Au
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4. PROPERTIESOF FUZZY PID CONTROLLERSWITH
SYMMETRIC TRIANGULAR FUZZY SETS

The mathematical model of fuzzy PID controller presented
in the previous section isin the form of Eq. (15), in which
Au, representsthe global three-dimensiona multilevel relay
with respect to i, j, and n, and Au, represents the local

nonlinear PID controller. Since W = M/(3J) and S = 1/J,
Eq. (16) can be expressed as

M x[(i+0.5)S+(j+0.5)S+(n+0.5)9]
N,, x3

Auy = Au, (i, j,n) =

where | =d, =v, =a, =J whenJ =J,=J=Jin
Figure 3. Considering symmetric fuzzy sets, the point
((i + 0.5S (j + 0.5)9) is the center of the square in the
d,v—plane, ((i + 0.5)S (n+0.5)9) isthecenter of the square
inthed a—planeand ((j + 0.5)S (n + 0.5)9) isthe center
of the square in the v, a —plane, all shown in Figure 6(a).
The control action produced by the multilevel relay depends
on the current position of squares in the respective scaled
input planes. Asthe multilevel relay sweepsthe entireinput
planeswhen all valuesof i, j, n are used, thefirst part of the

incremental control output Au, is known as the ‘global’
multilevel relay. By studying Egs. (18) to (25), it isfound
that the second part of the controller output Au(K) is
calculated based on therel ative position of the normalized
inputs with respect to center of each square. Thus, Au, (K)
locally adjusts the control action generated by the global
multilevel relay. Therefore the second part is known as the
‘local’ nonlinear PID contraller.

For the fuzzy controller considered in Section 3,
the maximum absolute value of Au, (i, j, n) occurs at
i,j,n=J—1orati,j,n=—Janditsvalueis

M x (N -2)

| AU |rex=
N,, x(N-1)

(30)
and the maximum absolute value of Au, (k), occurring at
(dy. vy, ay) =((+DS, (j+DS (n+19) or (iISjSnY), is
given by

M

AU ey = =
N, x (N -1)

(31

To sudy therolesof global three-dimensiona multilevel
relay and local nonlinear PID controller in total control
action, and the degree of nonlinearity of fuzzy controllers
as N changes, we define a constant ny as

1

— |AU| |max
| Aug |max + | AuI

x100 = =100 (32)
N-1

e

It can beseen from Eq. (32) that (i) for larger values of
N, n approachesa smaller val ue which leadsto improvement
in the resolution of the global multilevel relay output and

the fuzzy controller becomes less nonlinear, and (ii) as
N > 3, n attains a maximum value of 50% for N = 3 which
implies that the global multilevel relay and the local
nonlinear PID controller play equal roles in total control
action.

5. MATHEMATICAL MODELS OF FUZZY PID
CONTROLLERSWITH ASYMMETRIC
FUZzZY SETS

In the following mathematical models of fuzzy PID
controllerswith asymmetric fuzzy sets are presented.

5.1. Output Fuzzy Sets-Trapezoidal

Case (a): All thethreeinputslie within the 3D input space
defined by d, <d,(k)<d, .V, SVN(k)gvaM, a, <ay

(k)<a, i.ecells(l,1,1)to(4, 4 4)

1 Num
Aulk) =35 [ Denj
Au

(33)

where

Num= S{ﬁl(a:‘wl - bri-l) + (ﬁz + ﬁ4 + ﬁe)(aﬁwz - bri)
+(}13+ l’i5+ 1:17)(3‘514-3 - bn21+1)

+}18(a72n+4 - br?HZ) - ﬁlz[brml(am - hTFl) +8n1 (am+1 - bm)] - (ﬁi + ﬁi + ﬁé)

[0 (B2 =) + B2 (B2 = B )] = (15 + i + 1)
[ bm+1(arm2 - bm+1) + am+3

(%3_hm2)]_}:tg[bm2(am+3_hm2)+am4(%4 _%3)]}_}111(%_%71)2
~(@na )= (R —00) (@ 0] (3G

+HA (@, 2B 1)2= @500, )T Brs 02— (@ s 0ni2)?]
and
Den = i, (&y.:~0, )[2-01,(1-0,)1+(@ =B [2(0, 0+
~(5+ A5+ DA 0,0)] + (Bnes )20+ i+ 1)
~(5+ g+ AL~ 0, o)+ fig(@.s — B 2)[2— gL~ 0,,5)]

with [, 0y, (s, O, (s, (g, 1L, and (i, as defined in Table
1, 0_asdefinedin Eq. (14), and

emﬂ — bm+1 B a'm+1 , em+2 — bm+2 — a'm+2 , em+3 — bm+3 _ a'm+3
Ao — bm +3 bm+1 4 bm+2
(34)

Case (b): Onenormalizedinput isin the 3D input space
defined by d, <d,(k)<d, .V, <vy (k) SV, 0 8 S8y
(k) <a, and the remaining two normalized inputs are

outside this 3D input space, see Figure 6. The terms Num
and Den for different cells are as follows:

In Eg. (33)
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NUm = g k2 (ariH-Z - bri) + kl(a‘r%:1+3 - br?wl) - kzz[bm(am+l - bm)

+am+2 (am+2 - bm+1)] - klz[bm+l(a‘rn+2 - bm+1) + am+3(am+3
_bm+2)]} - kza[(arm-l - bm)2 - (am+2 - bm+1)2]
_kla[(am+2 - bm+1)2 - (am+3 - bm+2)2] (35)
and

Den=k,[2-k,(1-6,,.1)](@y,, —by,) + K[2-k (1-6,,.,)] (@5 —0y.1)
(36)

wherek and k, are defined in Table 3.

In Eg. (33)

Num = :{kl(arzn+3 m+1) + k2(aTn+4 +2) kl [ +1(aTn+2 m+1)
+am+3 (am+3 - bm+2)] - k2 [bm+2 (am+3 - bm+2) + aTT‘I+4(aTT”I+4
_bm+2)]} - kla[(arm-z - bm+1)2 - (am+3 - bm+2)2]

_k23[(am+3 - bm-¢-2)2 - (am+4 - bm+3)2] (37)

and
Den =k [2-k (1-6,,.,)](8n.5 = b)) + K [2- K, (1= 6, )] (8.4 — By 2)
(38)

wherek and k, are defined in Table 3.
In Eg. (33)

Num =3k, (ar,, — b5 ,) + k. (a7,, —b}) - K[b, . (&, — by, )
+am+l(am+l - bm)] - kzz[bm (am+l - bm) + a'n‘H-Z (am+2 - bm+1)]}
_kla[(am - bm—1)2 - (am+l - bm)z] - k23[(am+l - bm)2
_(am+2 _bm+1)2] (39)
and
Den =Kk [2-k (1-6,)(ay,, — By t) + Ko[2—-k,(1-6,,)1(a.. —0,)
(40)
wherek and k, aredefined in Table 3
Case (c): Normalized inputs d,, (k), v, (k), a, (k) are
not in the 3D input space defined by d, <d(k)<d, ,
VN, <vy (k) Vo, s 8 <ay(k)<a, .

In thecdls (9,9, 9), (10, 11, 10), (11, 12, 12), (17, 17,
17), (18, 19, 18) and (19, 20, 20):

bm+1am+2 -b

aﬁwz + br?wl arfwl _ bri + n&m (41)

3NAu (am+2 - bm)(1+ em+1)

Inthecells(9, 10, 10), (11, 11, 11), (12, 9, 12), (17, 18,
18), (19, 19, 19) and (20, 17, 20):

Au(k) =

m+1am+2 (42)

Au(k) — ariH—S + ber—Z aer—Z m+l + bm+2am+3
3NAu (am+3 m+1)(l+ em+2)

In the cdlls (10, 12, 9) and (18, 20, 17):
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Table 3
Attributes of k, and k,

Equations Cells K, K,
Eqg. (35) and (36) for (5,9,5),(13,17,13) i, i,
Numand Den

or (6, 6, 10), (14, 14, 18) s i,
Eq. (47) and (48) for (7, 11, 7), (15, 19, 15) s n,
Num, and Den,
(8, 8, 12), (16, 16, 20) i, e
(9,5, 6), (17, 13, 14) Ay i,
(11, 7, 8), (19, 15, 16) s e
Eg. (37) and (38) for (5, 10, 7), (13, 18, 15) Ay g
Numand Den
or (8, 6, 11), (16, 14, 19) s g
Eqg. (49) and (50) for (12, 5, 8), (20, 13, 16) i, g
Num, and Den,
Eg. (39) and (40) for (6,8,9), (14, 16, 17) i i,
Numand Den
or (7,12,5), (15, 20, 13) i e
Eg. (51) and (52) for (10, 7, 6), (18, 15, 14) i i,
Num, and Den,
2 2 2 2
+bl—a —b. ,+Dh -b
Au(k) — aTT‘I+l m aTTI m-1 mam+1 m—lam (43)
SNAu (am+1 - bm—l)(1+ em)
In thecells (12, 10, 11) and (20, 18, 19):
Au(k) — ari+4 + br?1+3 am+3 m+2 +3am+4 m+2am+3 (44)
SNAu (am+4 m+2)(1+ em-¢-3)
The above mathematical model obtained

with asymmetric trapezoidal output fuzzy sets is
complex in nature and thus cannot be separated into global

and local parts By consdering a_,, = bm+4, .= Db
=b,.,, m+1 =b.,.,a =b ,a  =Db_ (suchtha
6 = 9m+1 0,,=0.,,0= 0) in the above model, model

W|th as)/mmetrictriangular output fuzzy setscan be obtained.
Thismodd, shown below, isless complicated than that with
trapezoidal output fuzzy sets and its expressions can be
decomposed into global and local parts.

5.2. Output Fuzzy Sets-Triangular
Case(a): All thethreeinputs lie within the 3D input space

defined by dq <dg (k)< dﬁh1 » Yy <vy (k) SVaM ;& <ay
(k) < a, i.e.cells(1,1,1)to(4,4, 4)
Au(k) = Auy +Au, (k) (45)
— bm+1 +bm+2 + 1 NUrT!L (46)
3N,, 3N,, ) Den,
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where
Numy = (i, (0,1 = 0501 ) (300 + By = 204,5) + (0, + iy + i) By, 2 — By)

(Sh'n 2I3er1+b +2)+(“3+“5+“7)( m+3
-2b

m+2

m+1)

m+3) + “’8( m+4 bm+2)( 2bm+1 + bm+2 m+4)
- bwl)(3bm—l - 3bm + 2bm+1 - h11+2) - (ﬁ; + ﬁli"" ﬁé)
~b,)(30, 40, +2b,,,) ~ (A3 + s+ A7)0, -

- 4'bm+2 + 3brrw3) - p"fzi(brm4

(b

m+1
_ﬁf(brml

( m+2 m+1)

(2b

m+1

- bm+2)(_bwl + 2bm+2
_Sbm+3 + 3bm-¢-4) - ﬁ:lg_[(bm - bm—l)2 - (bm+1 - bm)z]
(B, —b,)°

—(R5+ i+ i)
~,.0)°1- (ﬁl§+ fg+ A0y, ~ )
m+2) ] “’j( m+3 )2 _( m+4 m+3) ]

Denl = ﬁ1[2_ ﬁl](bmﬂ - bwl) +[2(ﬁ2+ }:l4+ ﬁe)

( m+2

_( m+3

and
_(ﬁli + }:lzzt*' ﬁlg)] (h’n+2 - bm) + [2(}134_ ﬁs + }:l7)

~(15 + i+ 0] (Os —Ba) + 1 2~ [ig) (B4 —Bi.2)
Case(b): Onenormalizedinput isin the 3D input space
defined by d, <d,(k)<d, .V, SVN(k)SVaM, a, <ay
K)<a, and the remai nmg two normalized inputs are
outside this 3D input space, see Figure 6. The terms Num,
and Den, for different cellsare as follows:
In Eqg. (46)

Num, = kz (bm+2 bm+2) + ki(brm3 -b

bm)(Sbm - 2bm+1 + m+1)(bm+1 - 2bm+2
+30.5) = Kz (B = by ) (30 = 40y + 2,,5) — K (Brys = Byay)
m+2+3b +3) kz[( m-*-l_tJ )

m+l)2]
_kla[(bm+2_bm+1)2 ( m+3 m+2) ] (47)

Den, = k,[2-k,](b,,, —b,) +k[2-k](B, 5 -0,.,) (48)

wherek and k, aredefined in Table 3
In Eq. (46)
Numy = k; (b5 =By, 1) By = 20,2 +305,,5) + Ko (Bys
+bm+2 + 3bm+4) - kl2 (bm+3 - bm+1)(2bm+l
_kzz(bm+4_bm+2)( b +2b -30

_kla[(bm+2 _bm+1)2 m+2) ]
—k31(b

m+3_bm+2)2 ( m+4 m+3) ]

Den, =k [2-k ] (0,5 -0,.) +k[2-K] (0,4 -
wherek and k, aredefined in Table 3

In Eq. (46)

Num, =k, (B;,., -

(me+l

( me2

- bm+2)(_2brml
- 4bm+2 + 3bm+3)

+3b

m+4)

( m+3

(49)

b,.,) (50)

wl)(Sbwl + bm+1 +2) + k ( m+2 )
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(30, —2b,,,; +1,,,,) — K’ (B, — b, 1) (3D, — 30,
+20,,., - b,,.) — k3 (b, ~b,)(30, — b, + 20,..,)
—|<z3[(bm+1—|0m)2 (CRPEL NS
~K 1By, = 0,)* = (0.2 = By,0)°] (51)
Den, = k[2-k](B,, b, ) +k[2-k,] (b, . ~b,) (52)

whereklandkzaredefinemeableS

Case (c): Normalized inputs d,, (k), v, (k), a, (k) are
not inthe 3D input spacedefined by d, <d, (k) <d,
W<V, g, <ay(<a,,

In thecdls (9, 9, 9), (10, 11, 10), (11, 12, 12), (17, 17,
17), (18, 19, 18) and (19, 20, 20):

) Vb.

b,,+b..+b,

m+1

Au(k) =2

Au

Inthecells(9, 10, 10), (11, 11, 11), (12, 9, 12), (17, 18,
18), (19, 19, 19) and (20, 17, 20):

bm+3 + bm+2 + bm+1

Au(k) = -
Au

In the cdlls (10, 12, 9) and (18, 20, 17):

bm+1 + bm + bm—l

Au(k) ===

Au

In thecells (12, 10, 11) and (20, 18, 19):

Au(k) — bm+4 + bm+3 + bm+2
3N,,

By substituting a, -a&, =V, -V, = d,, —-d, =S
and g, —a, =V, -V, =d, —d, =0 for al i, j and nin
Figure3,and a,.,=b, ,=(+j+n+3W, a, ,=b, ., =
(i+j+n+2W, a,,=b, ., =>{+j+n+DW, a =b =
(i+j+mMW,and 6,,=6,,,=6,.,=0,,,=0,intheabove
mathematical model, the model of fuzzy PID controller in
Section 3 can be obtained.

6. ILLUSTRATIVE EXAMPLES

Comparison of the performances of linear PID controller
and the fuzzy PID controller with multiple symmetric
triangular input and output fuzzy setsis presented here by
considering thefollowing examples:

(i) alinear third-order aircraft attitude-control system

(1]

2.718x10°
s(s+ 400.26)(s+ 3008)

Gpu(s) = (53)

with unit step reference signal,
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Table 4
Attributes of the Linear, Nonminimum Phase, and Nonlinear Processes

Process T Ks K K§ [0 IV e £
G (9) 0.002 0.309T 45T 0.006T 1 18.3066 5016.8934
G,2(9) 0.001 10.5T 20000T 0.0005T 1 131.343 19960.067
Nonlinear 0.1 1.8T 1.8T 0.008T 4 4.10676 994.592
Table5
Attributes and Time-domain Performance Data of Plants with Linear and Fuzzy PID Controllers
Process PID N, N, N, N, =M N M, t t,
controller (%) (sec) (sec)
Gu(s) linear - - - - - - 0 0.146 0.2
fuzzy 38 0.25 0.48 x 10°° 240 38 3 5.58* 0.006 0.0095
fuzzy 38 0.25 0.48 x 10°° 240 38 5 3.405* 0.0057 0.0093
fuzzy 38 0.25 0.48 x 10°° 240 38 7 3.48* 0.0056 0.0091
Gp2(9) linear - - - - - - 85.2357 0.009 0.4020
fuzzy 1800 4.0 0.41 x 10 16 3800 3 0.0709 0.0024 0.005
fuzzy 1800 4.0 0.41 x 10* 16 3800 5 0.0257 0.0021 0.0041
fuzzy 1800 4.0 0.41 x 10* 16 3800 7 0.0935 0.0023 0.0042
Nonlinear linear - - - - - - 37.4442 1.0 5.6
fuzzy 3 3 0.045 21 20 3 0 1.148 1.75
fuzzy 3 3 0.045 21 20 5 0 1.176 1.62
fuzzy 3 3 0.045 21 20 7 0 1.144 1.58

* Desired M, < 5%

(if) alinear third-order nonminimum phase system [4]

s’-s-2
G =
(9 = o e “10s- 24 4
with unit step reference, and
(iif) anonlinear first-order system [4]
y(t) = y() +sin* (] y(©) [) +u(t) (55)

with step input of magnitude 4 as the reference
signd. In Egs. (53) and (54), G,(s) and G (s)
represent thetransfer functions of the plantsto be
controlled.

Fuzzy PID controllers are designed for all the above
three plants. Thevalues of sampling period T, proportional
gain K¢ ,integral gain K, derivativegain K§, maximum
absolute displacement (error) |d| , maximum absolute
velocity |v| . and maximum absolute acceleration |a| _ are
giveninTable4 for al thethree processes.

The parameters N, N, N, N, , N, |, and M of the
fuzzy PID controllers, which gave rise to the responses in
Figures 7-9, arelisted in Table5in which M, t, andt_denote
peak overshoot, rise time and settling time, respectively.
Figures 7-9 al so show the responseswith conventional PID
controllers. Upon comparison, it is evident from the plots
that thefuzzy PID controllers perform better, demonstrating
their superiority over their counterparts- conventional PID
controllers. The parameter N takes only odd integer val ues
with the minimum value being 3. Since the basic objective
of this simulation study is to demonstrate the influence of
the parameter N on the performance of the fuzzy PID
controller, thevalues of functional parametersarefixed and
only Nisvaried asshown in Table 5. From the time-domain
performancedatain Table5, it is observed that asthevalue
of N increases from 3 to 7, there is some improvement in
performance, in general. The best performanceis obtained
with N =5 for the plants Gpl(s) and sz(s), andwithN=7
for the nonlinear plant.
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Figure 7: Unit Step Response of Closed Loop System with G ()
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Figure9: Step (Magnitude 4) Response of Closed Loop System
with Nonlinear Process

7. CONCLUSION

In this paper, mathematical modeling of fuzzy PID
controllers with multiple fuzzy sets has been considered.
First, a model is derived using symmetric triangular
membership functions for fuzzification of input variables
and output variable, linear control rules, algebraic product
triangular norm, bounded sum triangular conorm, Mamdani
minimum inference method and COS defuzzification. It has
been shown that the resulting controller isequivalent to the
sum of a global three-dimensional multi-level relay and a
local nonlinear PID controller. Properties of the fuzzy
controller have been investigated. Next, mathematical model
of generalized fuzzy PID controller has been derived
analytically using asymmetric trapezoidal membership
functions for inputs and output. The mathematical model
obtained with asymmetric trapezoidal output fuzzy setsis
complex in nature and thus cannot be separated into global
and local parts. But, when modd with asymmetric triangular
output fuzzy sets is considered, it is found to be less
complicated than that with trapezoidal output fuzzy sets, and
its expressions are decomposed into global and local parts.
The superiority of fuzzy PID controller over linear PID
controller has been demongtrated through a simulation study
on three different processes. Influence of N on system
performance has been studied for all the processes.
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