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Abstract: Mathematical model for fuzzy PID controllers employing N
1
 (� 3) number of symmetric fuzzy sets for the input

variable ‘displacement’, N
2
 (� 3) number of symmetric fuzzy sets for the input variable ‘velocity’, N

3
 (� 3) number of

symmetric fuzzy sets for the input variable ‘acceleration’ and (N
1
 + N

2
 + N

3
 – 2) number of symmetric fuzzy sets for the

output variable is revealed in this paper. The basic components used to derive this model are symmetric trapezoidal membership
functions for fuzzification of inputs and output, algebraic product triangular norm, bounded sum triangular conorm and
Mamdani minimum inference method for the evaluation of the control rules, and center of sums (COS) method for
defuzzification. Properties of such a model are investigated. Mathematical model with N

1
 (� 3) ,N

2
 (� 3) and N

3
 (� 3)

number of asymmetric fuzzy sets for the three input variables and N
1
 + N

2
 + N

3
 – 2 number of asymmetric output fuzzy sets

is also presented. The fuzzy PID controller model derived via symmetric fuzzy sets becomes a special case of the mathematical
model obtained with asymmetric fuzzy sets. Finally, to demonstrate the effectiveness of the fuzzy PID controllers, some
numerical examples along with their simulation results are included.
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1. INTRODUCTION

A fuzzy PID controller structure (configuration 1 in
Figure 1) which retains the characteristics similar to the
conventional PID controller was proposed [2]. Moreover,
in order to improve further the performance of the fuzzy
controller, a parameter adaptive method was introduced to
tune the parameters of the fuzzy controller on line.

In [3], fuzzy PID elements were proposed and different
fuzzy PID structures were constructed. Expressions for the
outputs of fuzzy PID elements were deduced based on linear
like and nonlinear like fuzzy logic controllers. Using these
expressions, apparent linear and apparent nonlinear fuzzy
PID gains were deduced while considering two levels of
tuning. The fuzzy PID structures were evaluated in terms of
two levels of tuning. A quantitative model for fuzzy PID
control, consisting of a nonlinear relay and a nonlinear PID
controller, was developed [5] for mathematical analysis and
gain design. Under certain approximations, this nonlinear
model was found to have PID nature around the equilibrium
state. The connection between the scaling gains and the
control actions was expressed in an explicit mathematical
form by directly comparing the proposed fuzzy PID control
with the conventional PID control. This theoretical analysis
revealed that fuzzy PID had led to more damping and hence
less oscillations than did its conventional counterpart.

A fuzzy PID controller comprising fuzzy P, fuzzy I, and
fuzzy D controllers in parallel has been proposed [6]. Fuzzy
P and fuzzy I controllers have been implemented in

incremental form while fuzzy D controller has been realized
in position form. A fuzzy inference algorithm has been
developed [7] to produce a closed-form solution of a
three-input fuzzy PID system using Zadeh-Mamdani’s
min-max-gravity fuzzy reasoning. An input transformation
technique has been proposed to reduce the number of
input conditions required in defining the fuzzy output. It
has been shown that with this technique the solution can
be represented using a minimum number of nonlinear
expressions.

Recently, optimal fuzzy reasoning technique [8] has
been proposed and integrated with a PID control structure
for better robust control. This fuzzy PID controller has been
analyzed quantitatively and compared with other existing
fuzzy PID control methods to show its improved robustness.

It is evident from the literature that

• fuzzy PID controllers of configuration 1 (Figure 1) have
been developed using asymmetric triangular input fuzzy
sets [2], and symmetric triangular input and output fuzzy
sets [8].

• fuzzy PID controllers of different configurations have
been studied [3, 5, 6] using symmetric triangular input
and output fuzzy sets.

• fuzzy PID controllers of different configurations have
been investigated [7] using asymmetric triangular input
fuzzy sets, symmetric triangular output fuzzy sets, and
unevenly distributed singleton output fuzzy sets.
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• fuzzy PID controller of configuration 2, shown in
Figure 1, is not yet studied with multiple, asymmetric
input and output fuzzy sets.

Therefore, the objectives of this paper are: (i) to
derive mathematical model of fuzzy PID controller by
employing symmetric triangular membership functions
(N

1
 for displacement, N

2
 for velocity, N

3
 for acceleration,

and N
1
 + N

2
 + N

3
 – 2 for incremental control), linear control

rules, algebraic product triangular norm, bounded sum
triangular conorm, Mamdani minimum inference, and COS
defuzzification, (ii) to investigate the properties of this
controller, (iii) to repeat (i) to obtain fuzzy PID controller
model by employing asymmetric trapezoidal/triangular
membership functions with the assumption that the
membership sum of two neighbouring fuzzy sets is equal to
unity, and (iv) to demonstrate the superiority of fuzzy
controller over the conventional controller through
simulation study on some examples.

This paper is organized as follows: The next section
describes the principal components of a typical fuzzy PID
controller. Section 3 presents mathematical model of the
fuzzy PID controller with symmetric fuzzy sets. In
Section 4 properties of fuzzy PID controller model are
studied. Section 5 presents mathematical models of fuzzy
PID controller with asymmetric triangular and trapezoidal
fuzzy sets. Section 6 includes simulation results while the
last section considers concluding remarks.

2. COMPONENTS OF A FUZZY THREE-TERM
CONTROLLER

The principal structure of a fuzzy three-term (PID)
controller is shown in Figure 2 which consists of the
components such as scaling factors, fuzzification and
defuzzification modules, rule base and inference engine.
Components of the fuzzy controller are discussed in the
following sections.

2.1. Scaling Factors

Normalization is the process of mapping physical values of
actual inputs and outputs of the controller into a normalized

domain. N
d
, N

v
, N

a
 and N�u

 are the normalization factors for
the inputs d, v, a, and the output � u respectively.
Denormalization maps the normalized output value into its
physical output domain. 1

uN �
�  is the reciprocal of N�u

, called
denormalization factor. These scaling factors play a role
similar to that of the gain coefficients d

PK , d
IK  and d

DK  in a
conventional PID controller.

2.2. Fuzzification Module

Let the number of fuzzy sets on normalized input variables
“displacement d

N
(kT)”, “velocity v

N
(kT)” and “acceleration

a
N
(kT)” be N

1
, N

2
 and N

3
 respectively. Assume that there are

J
1
 number of fuzzy sets on negative displacement (J

2
 on

negative velocity, J
3
 on negative acceleration), one fuzzy

set for zero displacement (velocity or acceleration) and J
1

number of fuzzy sets on positive displacement (J
2
 on positive

velocity, J
3
 on positive acceleration). Therefore, there is a

total of

N = 2J + 1 � 3 (1)

number of fuzzy sets on each normalized input variable,
where N is N

1
 (on displacement), N

2
 (on velocity) and N

3

(on acceleration), and J is J
1
 (for displacement), J

2
 (for

velocity) and J
3
 (for acceleration). The fuzzy sets on each

normalized input variable are as shown below:

( 1) 1 0 1 1{ }J J J JX X … X X X … X … X X� � � � � �� � � � � � � � � � (2)

where X is D (for displacement), V (for velocity) and A
(for acceleration) and � is i (for displacement), j (for
velocity) and n (for acceleration).The membership
functions corresponding to members in Eq. (2) are
considered as

( 1) 1 0 1{ ( ) ( ) ( ) ( ) ( )J N J N N N Nx x … x x x� � � �� � � � � � � � � � �

1( ) ( ) ( )}N J N J N… x … x x� �� � � � � � � (3)

where x
N
 is d

N
 (for displacement), v

N
 (for velocity) and a

N

(for  acceleration). The membership function ��(x
N
)

corresponding to the input fuzzy set X� in Eq. (2) is defined
as follows:

For ( 1) ( 2) ( 2) ( 1)J J … J J� � � � � � � � � � � �

Figure 1: Fuzzy PID Controller Configurations
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where x is d (for displacement), v (for velocity) and a (for
acceleration), and L is L

1
 (for displacement), L

2
 (for velocity)

and L
3
 (for acceleration).

For � = J

( 1)

( 1)

( 1)

( 1)

0

( )

( ) ( )

1

0

J

J

J J

J J

J

N b

N b
b N a

J N a b

a N
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�
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�
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�
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� � �

� � �
� �

(6)

Notice that

1( ) ( ) 1 [ ]N N Nx x x L L� ��� � � � � � � � (7)

and i + j + n = m (8)

Figure 3 shows membership functions �
i
(d

N
), �

j
(v

N
) and

�
n
(a

N
) corresponding to the input fuzzy sets D

i
, V

j
 and A

n
.

Assume that there are N
1
 + N

2
 + N

3
 – 2 (i.e. 2(J

1
 + J

2
 + J

3
)

+ 1)) number of fuzzy sets on the normalized output variable,
the incremental control effort �u

N
(kT). Among these, J

1
 + J

2

+ J
3
 members are on negative output, J

1
 + J

2
 + J

3
 members

are on positive output and one member for zero output. The
membership functions for normalized output is shown in
Figure 4 and can be described by

0 0 0 0( 1) 1 0 1 1{ }J J m J JO O … O O O … O … O O� � � � �� � � � � � � � � � (9)

where J
0
 = J

1
 + J

2
 + J

3
. Let 

0JM b� . The parameters L
1
, L

2
,

Figure 2: Block Diagram of a Typical Fuzzy PID Control System
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Figure 3: Membership Functions for Inputs d
N
(kT), v

N
(kT) and a

N
(kT)

Figure 4: Output Membership Functions
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L
3
, M, 

iad  and 
ibd  for i = – J

1
 , – (J

1
 – 1), ... – 1, 0, 1, ...

(J
1
 – 1), J

1
; 

jav  and 
jbv  for j = – J

2
 , – (J

2
 – 1), ... – 1, 0, 1, ...

(J
2
 – 1), J

2
; 

naa  and 
nba  for n = – J

3
, – (J

3
 – 1), ... – 1, 0, 1,

... (J
3
 – 1), J

3
; a

m
 and b

m
 for m = – J

0
, – (J

0
 – 1), ... – 1, 0, 1,

... (J
0
 – 1), J

0
 are chosen by the designer.

2.3. Control Rule Base

The following linear control rules are considered in terms
of the abovementioned input and output fuzzy sets.

(R
1
) If d

N
 is D

i
 & v

N
 is V

j
 & a

N
 is A

n
 then �u

N
 is O

m
.

(R
2
) If d

N
 is D

i+1
 & v

N
 is V

j
 & a

N
 is A

n
 then �u

N
 is O

m+1
.

(R
3
) If d

N
 is D

i+1
 & v

N
 is V

j
 & a

N
 is A

n+1
 then �u

N
 is O

m+2
.

(R
4
) If d

N
 is D

i
 & v

N
 is V

j
 & a

N
 is A

n+1
 then �u

N
 is O

m+1
.

(R
5
) If d

N
 is D

i
 & v

N
 is V

j+1
 & a

N
 is A

n+1
 then �u

N
 is O

m+2
.

(R
6
) If d

N
 is D

i
 & v

N
 is V

j+1
 & a

N
 is A

n
 then �u

N
 is O

m+1
.

(R
7
) If d

N
 is D

i+1
 & v

N
 is V

j+1
 & a

N
 is A

n
 then �u

N
 is O

m+2
.

(R
8
) If d

N
 is D

i+1
 & v

N
 is V

j+1
 & a

N
 is A

n+1
 then �u

N
 is O

m+3
.

The & symbol in the above rules represents the fuzzy
‘AND’ operation and the AND operation considered here is
algebraic product triangular norm which is given by

ˆ ( ) ( ) ( ) ( )N N N p N q N r Nd v a d v a� � � � � �� �� (10)

where p � {D
i
, D

i
 
+ 1

}, q � {V
j
, V

j + 1
} and r � {A

n
, A

n +1
} are the

pth, qth and rth fuzzy sets on d
N

, v
N

 and a
N

 respectively. It is
to be noted here that the control rules are linear as the output
fuzzy sets are linearly related to the input fuzzy sets.

2.4. Inference Engine

The degree of match is computed for each rule using
algebraic product triangular norm given by Eq. (10). Then
the degree of match is used to determine the inferred output
fuzzy set via Mamdani minimum inference method, defined
as min ˆ( ( ))u�� � � . The reference output fuzzy set (trapezoid),
and the inferred output fuzzy set (shown with hatching) are
shown in Figure 5.

There are twelve possible input combinations, see Figure
6(a), of the normalized inputs d

N
(kT) and v

N
(kT) in the region

defined by 
1

( )
i ia N bd d kT d

�
� �  and ( )

ja Nv v kT�  
1jbv
�

� ,
twelve possible input combinations of the normalized inputs
d

N
(kT) and a

N
(kT) in the region defined by 

ia Nd d�

1
( )

ibkT d
�

� and 
1

( )
n na N ba a kT a

�
� � , and twelve possible

input combinations of the normalized inputs v
N
(kT)

and a
N
(kT) in the region defined by 

1
( )

j ja N bv v kT v
�

� �  and

1
( )

n na N ba a kT a
�

� � . Similarly there are eight possible input
combinations of the normalized inputs in each of the (d

N
v

N

–, d
N
a

N
 –, and v

N
a

N
 –) plane shown in Figure 6(b). To

represent a state point uniquely in the 3D input space, all
possible input combinations in different planes are
considered and thus 8000 different cells of the form
(n

I
, n

I I
, n

I II
) are obtained where n

I
, n

I I
, n

I II
 = 1, 2, …, 12 in

Figure 6(a) and n
I
, n

I I
, n

I II
 = 13, 14, …, 20 in Figure 6(b).

Not all 8000 cells are valid cells; only a few of them are
valid. A cell (n

I
, n

I I
, n

I II
) is said to be valid if and only if the

relations between d
N
 and v

N
, and d

N
 and a

N
 produce the

relation between v
N
 and a

N
. For example, the cell (4, 1, 4) is

a valid cell because the relations d
N
 � v

N
 and d

N
 � a

N
 produce

the relation v
N
 � d

N
 � a

N
 which is satisfied by the relation

v
N
 � a

N
. The outcomes of the control rules for all the valid

cells with algebraic product triangular norm are listed in
Table 1.

It may be seen from the control rules that each of the
output fuzzy sets O

m+ 1
 and O

m+ 2
 are fired three times. In

such a situation bounded sum triangular conorm is used to
evaluate combined output fuzzy sets corresponding to the
rule sets {(R

2
), (R

4
), (R

6
)} and {(R

3
), (R

5
), (R

7
)}. This

triangular conorm is defined as min{1, �
A
(�u

N
) + �

B
(�u

N
)}

where A and B are the fuzzy sets on the normalized output
�u

N
.
Since the fuzzy controller is having three inputs, and

algebraic product triangular norm is used, sum of all the
outcomes corresponding to either rule set is less than unity.
Therefore the combined membership using bounded sum
triangular conorm is given by

2 4 6( ) ( ) ( ) 1R R R� � � � � �

or 3 5 7( ) ( ) ( ) 1R R R� � � � � �

2.5. Defuzzification

The most commonly used COS method is employed to
defuzzify the incremental control output. This is expressed
as

1 2 3 41 2 3 4

5 6 7 85 6 7 8
8

1

ˆ ˆ ˆ ˆ{ ( )( ) ( )( ) ( )( ) ( )( )

ˆ ˆ ˆ ˆ( )( ) ( )( ) ( )( ) ( )( )}
( )

ˆ( )
N

i
i

A h A h A h A h

A h A h A h A h
u kT

A
�

� � �� � � �
� � � �� � � �

� �
��

(11)
where ˆ( )iA �  is the area of the inferred output fuzzy set
corresponding to the rule R

i
 and h

i
, i = 1, 2, ... 8, is the

centroid of inferred output fuzzy set (shown with hatching
in Figure 5) corresponding to the rule R

i
. As mentioned inFigure 5: Mamdani Minimum Inference Method
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Table 1
The Outcomes of ‘Algebraic Product’ Operation of Premise Part of Fuzzy Control Rules (R1) – (R8)  for Valid 3D Cells

Cells (R
1
) (R

2
) (R

3
) (R

4
) (R

5
) R

6
) (R

7
) (R

8
)

ˆ1� ˆ2� ˆ3� ˆ4� ˆ5� ˆ6� ˆ7� ˆ8�

(1, 1, 1) to (4, 4, 4)* �
1

�
2

�
3

�
4

�
5

�
6

�
7

�
8

(5, 9, 5) 0
jV� 0 0 0 0

1jV �
� 0

(5, 10, 7) 0 0
jV� 0 0 0 0

1jV �
�

(6, 6, 10) 0 0
1iD �

�
iD� 0 0 0 0

(6, 8, 9)
iD� 1iD �

� 0 0 0 0 0 0

(7, 11, 7) 0 0 0
jV� 1jV �

� 0 0 0

(7, 12, 5)
jV� 0 0 0 0

1jV �
� 0 0

(8, 6, 11) 0 0 0 0
iD� 0 0

1iD �
�

(8, 8, 12) 0 0 0 0 0
iD� 1iD �

� 0

(9, 5, 6) 0
nA� 1nA �

� 0 0 0 0 0

(9, 9, 9), (17, 17, 17) 0 1 0 0 0 0 0 0

(9, 10, 10), (17, 18, 18) 0 0 1 0 0 0 0 0

(10, 7, 6)
nA� 0 0

1nA �
� 0 0 0 0

(10, 11, 10), (18, 19, 18) 0 0 0 1 0 0 0 0

(10, 12, 9), (18, 20, 17) 1 0 0 0 0 0 0 0

(11, 7, 8) 0 0 0 0
1nA �

�
nA� 0 0

(11, 11, 11), (19, 19, 19) 0 0 0 0 1 0 0 0

(11, 12, 12), (19, 20, 20) 0 0 0 0 0 1 0 0

(12, 5, 8) 0 0 0 0 0 0
nA� 1nA �

�

(12, 9, 12), (20, 17, 20) 0 0 0 0 0 0 1 0

(12, 10, 11), (20, 18, 19) 0 0 0 0 0 0 0 1

(13, 17, 13) 0
2JV�

� 0 0 0 0
2JV� 0

(13, 18, 15) 0 0
2JV�

� 0 0 0 0
2JV�

(14, 14, 18) 0 0
1JD�

1JD�
� 0 0 0 0

(14, 16, 17)
1JD�

�
1JD� 0 0 0 0 0 0

(15, 19, 15) 0 0 0
2JV�

�
2JV� 0 0 0

(15, 20, 13)
2JV�

� 0 0 0 0
2JV� 0 0

(16, 14, 19) 0 0 0 0
1JD�

� 0 0
1JD�

(16, 16, 20) 0 0 0 0 0
1JD�

�
1JD� 0

(17, 13, 14) 0
3JA�

�
3JA� 0 0 0 0 0

(18, 15, 14)
3JA�

� 0 0
3JA� 0 0 0 0

(19, 15, 16) 0 0 0 0
3JA�

3JA�
� 0 0

(20, 13, 16) 0 0 0 0 0 0
3JA�

�
3JA�

where �
1
 = ,

i j nD V A� � � �
2
 = 

1
,

i j nD V A�
� � � �

3
 = 

1 1
,

i j nD V A� �
� � � ��

4
 = 

1
,

i j nD V A �
� � � �

5
 = 

1 1
,

i j nD V A� �
� � � �

6
 = 1

,
i j nD V A�

� � � �
7
 = 

1 1
,

i j nD V A� �
� � �  �

8
 = 1 1 1i j nD V A� � �
� � �

* only valid cells in (1, 1, 1) through (4, 4, 4)
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Section 2.4, the output fuzzy set O
m+ 1

 is fired three times
for rule set {(R

2
), (R

4
), (R

6
)} and O

m+ 2
 is fired three times

for the rule set {(R
3
), (R

5
), (R

7
)}. In this situation, using the

bounded sum triangular conorm, Eq. (11) can be written as

1 2 4 6 3 5 7 81 2 4 6 3 5 7 8

1 2 4 6 3 5 7 8

ˆ ˆ ˆ ˆ( )( ) ( )( ) ( )( ) ( )( )
( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )N

A h A h A h A h
u kT

A A A A
� � � �� � � �

� � � �

� � �� � � �
� �

� � �� � � �
(12)

where 2 4 6ˆ � ��  and 3 5 7ˆ � ��  are the outcomes obtained using the

triangular conorm. The area A and centroid h of the

inferred output fuzzy set, obtained via Mamdani minimum
inference and shown in Figure 5, are respectively given by

1 1ˆ ˆ( )[2 (1 )] 2m m mA a b� �� � � �� � � � , and

2 2
1 1 1 1

2 2 2
1 1 1 1

1 1

ˆ{3( ) 3 [ ( )

ˆ( )] [( ) ( ) ]}
ˆ3( )[2 (1 )]

m m m m m

m m m m m m m

m m m

a b b a b

a a b a b a b
h

a b

� � � �

� � � �

� �

� � � �

� � � � � ��
�

� �� ��
(13)

where 1 1( ) ( )m m m m mb a a b� �� � � � � (14)

Figure 6: Possible Input Combinations of d
N
(kT), v

N
(kT) and a

N
(kT) (a) in the Region: 

1
( )

i ia N bd d kT d
�

� � , 
1

( )
j ja N bv v kT v

�
� � ,

1
( )

n na N ba a kT a
�

� � (b) Outside the Region: d
b–j1

 � d
N
(kT) � d

aj1
, v

b–j2
 � v

N
(kT) � v

aj2
, a

b–j3
 � a

N
(kT) � 

aaj3
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3. MATHEMATICAL MODELS OF THE FUZZY PID
CONTROLLERS WITH SYMMETRIC TRIANGULAR
FUZZY SETS

In this section mathematical model for fuzzy PID controllers
with symmetric fuzzy sets is presented. For symmetric input

membership functions, we consider 
1 1n n j ja b a ba a v v
� �
� � � �

1
,

i ia bd d S
�
� �  and 0

n n j j i ib a b a b aa a v v d d� � � � � �  for all
i, j and n in Figure 3. Thus, with symmetric triangular input
fuzzy sets, the cells (5, 5, 5) to (12, 12, 12) in Table 1 do not
exist. Symmetric triangular output membership functions can
be obtained by letting a

m
 – b

m–1
 = a

m+1
 – b

m
 = W and b

m
 – a

m

= 0 for all m in Figure 4. This results in �
m
 = �

m+1
 = �

m+2
 =

�
m+3

 = 0, a
m
 = b

m
 = m.W = (i + j + n)W, a

m+1
 = b

m+1
 =

(m + 1)W = (i + j + n + 1)W, a
m+2

 = b
m+2

 = (m + 2)W = (i + j
+ n + 2)W, and a

m+3
 = b

m+3
 = (m + 3)W = (i + j + n + 3)W in

view of Eq. (8), and the expression in Eq. (12) for
incremental control output modifies to

1 2 4 6

3 5 7 8

1 2 4 6 3 5 7 8

ˆ ˆ[ ( )( ) ( )( 1)

ˆ ˆ( )( 2) ( )( 3) ]1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )u

A i j n W A i j n W

A i j n W A i j n W
u

N A A A A

� �

� �

� � � � �

� � � � � �� �

� � � � � � � � � �� �
� � � � � � �� � � �� �

( 1 5)

u

i j n W

N�

� � � �
� �

8 1 2 4 6 3 5 7

1 2 4 6 3 5 7 8

1 5[ ( ) ( )] 0 5[ ( ) ( )]

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )u

A A A AW

N A A A A
� � � �

� � � � �

� � � � � � � � � � �
� � � � �� � � �� �

g lu u� � � � (15)

where
( 1 5)

g
u

i j n W
u

N�

� � � �
� � (16)

and

8 1 2 4 6 3 5 7

1 2 4 6 3 5 7 8

1 5[ ( ) ( )] 0 5[ ( ) ( )]

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )l

u

A A A AW
u

N A A A A
� � � �

� � � � �

� � � � � � � � � � �
� � � � � � �� � � �� �

(17)
In view of Eq. (15) we have
Theorem: The structure of the fuzzy PID controller

with linear control rules is the sum of a global three-
dimensional multi-level relay and a local nonlinear PID
controller.

In the following expressions, for simplicity we define
z

1
(k) = d

N
(k) – (i + 0.5)S, z

2
(k) = v

N
(k) – (j + 0.5)S and z

3
(k)

= a
N
(k) – (n + 0.5)S and consider kT as k. The mathematical

model of fuzzy PID controller in different cells follows now.
Case (a): iS � d

N
(k) � (i + 1)S, jS � v

N
(k) � (j + 1)S,

nS � a
N
(k) � (n + 1)S

1 1 2 2 3 3( ) ( ) ( )( 1 5) 2
( ) m m m

u u

N z k N z k N z ki j n W W
u k

N N D� �

� � � �� � � �
� � � � �

� �
(18)

where

  5 2 2 3 2 2
1 2 3 2 37 4( ( ) ( )) 16 ( ) ( )mN S z k z k S z k z k S� � � � (19)

5 2 2 3 2 2
2 3 1 3 17 4( ( ) ( )) 16 ( ) ( )mN S z k z k S z k z k S� � � � (20)

5 2 2 3 2 2
3 1 2 1 27 4( ( ) ( )) 16 ( ) ( )mN S z k z k S z k z k S� � � � (21)

6 2 2 2 4 2 2
1 2 3 1 2and 15 4( ( ) ( ) ( )) 16( ( ) ( )D S z k z k z k S z k z k� � � � �

2 2 2 2 2 2 2 2
2 3 3 1 1 2 3( ) ( ) ( ) ( )) 64 ( ) ( ) ( )z k z k z k z k S z k z k z k� � � (22)

Case (b): One input lies in the cube defined by
iS � d

N
(k) � (i + 1)S, jS � v

N
(k) � j + 1S, nS � a

N
(k) �

(n + 1)S and the remaining two inputs do not lie within this
cube. The �u(k) in different cells is as follows:

2 2

( 0 5) 2
( )

3 4u u

y W WS x
u k

N N S x� �

� �� �
� � � � � �� �

(23)

with x and y as defined in Table 2.

2 2

2 2

( 2 0 5) 3 2 4
( )

3 4u u

y J W W S Sx x
u k

N N S x� �

� �� � � � �
� � � � � �� �

(24)

with x and y as defined in Table 2.

2 2

2 2

( 2 1 5) 3 2 4
( )

3 4u u

y J W W S Sx x
u k

N N S x� �

� �� � � � �
� � � � � �� �

(25)

with x and y as defined in Table 2.

Table 2
Attributes of x and y

x y Equation (23) Equation (24) Equation (25)
with cells with cells with cells

z
1
(k) i (14, 14, 18), (16, 14, 19) (14, 16, 17)

(16, 16, 20)

z
2
(k) j (13, 17, 13), (13, 18, 15) (15, 20, 13)

(15, 19, 15)

z
3
(k) n (17, 13, 14), (20, 13, 16) (18, 15, 14)

(19, 15, 16)

Case (c): All the three inputs do not lie within the inner
cube defined by iS � d

N
(k) � (i + 1)S, jS � v

N
(k) � ( j + 1)S,

nS � a
N
(k) � (n + 1)S.

( ) for cells (17 17 17) (18 19 18) (19 20 20)
3 u

M
u k

N�

�
� � � � � � � � � �

(26)

( ) for cells (17 18 18) (19 19 19) (20 17 20)
3 u

M
u k

N�

� � � � � � � � � �

(27)

( ) for cell (18 20 17)
u

M
u k

N�

�
� � � � (28)

( ) for cell (20 18 19)
u

M
u k

N�

� � � � (29)
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4. PROPERTIES OF FUZZY PID CONTROLLERS WITH
SYMMETRIC TRIANGULAR FUZZY SETS

The mathematical model of fuzzy PID controller presented
in the previous section is in the form of Eq. (15), in which
�u

g
 represents the global three-dimensional multilevel relay

with respect to i, j, and n, and �u
l
 represents the local

nonlinear PID controller. Since W = M/(3J) and S = l/J,
Eq. (16) can be expressed as

[( 0 5) ( 0 5) ( 0 5) ]
( )

3g g
u

M i S j S n S
u u i j n

N l�

� � � � � � � � �
� � � � � �

�

where 
1 2 3J J Ja a al d v a J� � � �  when J

1
 = J

2
 = J

3
 = J in

Figure 3. Considering symmetric fuzzy sets, the point
((i + 0.5)S, (j + 0.5)S) is the center of the square in the
d

N
v

N
–plane, ((i + 0.5)S, (n + 0.5)S) is the center of the square

in the d
N

a
N
–plane and ((j + 0.5)S, (n + 0.5)S) is the center

of the square in the v
N

a
N
–plane, all shown in Figure 6(a).

The control action produced by the multilevel relay depends
on the current position of squares in the respective scaled
input planes. As the multilevel relay sweeps the entire input
planes when all values of i, j, n are used, the first part of the

incremental control output �u
g
 is known as the ‘global’

multilevel relay. By studying Eqs. (18) to (25), it is found
that the second part of the controller output �u

l
(k) is

calculated based on the relative position of the normalized
inputs with respect to center of each square. Thus, �u

l
 (k)

locally adjusts the control action generated by the global
multilevel relay. Therefore the second part is known as the
‘local’ nonlinear PID controller.

For the fuzzy controller considered in Section 3,
the maximum absolute value of �u

g
 (i, j, n) occurs at

i, j, n = J – 1 or at i, j, n = – J and its value is

( 2)

( 1)g max
u

M N
u

N N�

� �
� � � �

� �
(30)

and the maximum absolute value of ( )lu k� , occurring at
( ) (( 1) ( 1) ( 1) )N N Nd v a i S j S n S� � � � � � � �  or (iS, jS, nS), is
given by

( 1)l max
u

M
u

N N�

� � � �
� �

(31)

To study the roles of global three-dimensional multilevel
relay and local nonlinear PID controller in total control
action, and the degree of nonlinearity of fuzzy controllers
as N changes, we define a constant � as

1
100 100

1
l max

g max l max

u

u u N

� � �
� � � � �

� � � � � � � �
(32)

It can be seen from Eq. (32) that (i) for larger values of
N, � approaches a smaller value which leads to improvement
in the resolution of the global multilevel relay output and

the fuzzy controller becomes less nonlinear, and (ii) as
N � 3, � attains a maximum value of 50% for N = 3 which
implies that the global multilevel relay and the local
nonlinear PID controller play equal roles in total control
action.

5. MATHEMATICAL MODELS OF FUZZY PID
CONTROLLERS WITH ASYMMETRIC
FUZZY SETS

In the following mathematical models of fuzzy PID
controllers with asymmetric fuzzy sets are presented.

5.1. Output Fuzzy Sets–Trapezoidal

Case (a): All the three inputs lie within the 3D input space

defined by 
1

( )
i ib N ad d k d

�
� � , 

1
( )

j jb N av v k v
�

� � , 
nb Na a�

1
( )

nak a
�

�  i.e. cells (1, 1, 1) to (4, 4, 4)

1
( )

3 u

Num
u k

N Den�

� �� � � �
� �

(33)

where
2 2 2 2

1 1 21 2 4 6ˆ ˆ ˆ ˆ3{ ( ) ( )( )m m m mNum a b a b� � �� � � � � �� � � �
2 2

3 13 5 7ˆ ˆ ˆ( )( )m ma b� �� � � �� � �

2 2 2 22 2
4 2 1 1 1 18 1 2 4 6ˆ ˆ ˆ ˆ ˆ( ) [ ( ) ( )] ( )m m m m m m m ma b b a b a a b� � � � � �� � � � � � � � �� � � � �

2 2 2
1 2 2 1 3 5 7ˆ ˆ ˆ[ ( ) ( )] ( )m m m m m mb a b a a b� � � �� � � � � �� � �

[ 1 2 1 3( )m m m mb a b a� � � �� �

2 3 2
3 2 2 3 2 4 4 3 18 1

( )] [ ( ) ( )]} [( )ˆ ˆm m m m m m m m m ma b b a b a a b a b� � � � � � � � �� � � � � � �� �

3 3 3 3 32 2 2
1 1 2 12 4 6 3 5

( ) ] ( )[( ) ( ) ] (ˆ ˆ ˆ ˆ ˆm m m m m ma b a b a b� � � �� � � � � � � � � �� � � � �

3 32 2 2 2
2 1 3 2 3 2 4 37 8

)[( ) ( ) ] [( ) ( ) ]ˆ ˆm m m m m m m ma b a b a b a b� � � � � � � �� � � � � � � �� �

and

1 1 21 1 2 4 6
( )[2 (1 )] ( )[2( )ˆ ˆ ˆ ˆ ˆm m m m mDen a b a b� � �� � � �� � � � �� � � � �

2 2 2
1 3 12 4 6 3 5 7ˆ ˆ ˆ ˆ ˆ ˆ( )(1 )] ( )[2( )m m ma b� � �� � � �� � � � �� � � � � �

2 2 2
2 4 2 33 5 7 8 8ˆ ˆ ˆ ˆ ˆ( )(1 )] ( )[2 (1 )]m m m ma b� � � �� � � � � � � � � �� � � � �

with 1 2 3 4 5 6 7 8ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , and ,� � � � � � � � as defined in Table
1, �

m
 as defined in Eq. (14), and

1 1 2 2 3 3
1 2 3

2 3 1 4 2

m m m m m m
m m m

m m m m m m

b a b a b a

a b a b a b
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� � �
� � � � �

� � �
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� � �

(34)

Case (b): One normalized input is in the 3D input space

defined by 
1

( )
i ib N ad d k d

�
� � , 

1
( )

j jb N av v k v
�

� � , 
nb Na a�

1
( )

nak a
�

�  and the remaining two normalized inputs are
outside this 3D input space, see Figure 6. The terms Num
and Den for different cells are as follows:

In Eq. (33)
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2 2 2 2 2
2 2 1 3 1 2 13{ ( ) ( ) [ ( )m m m m m m mNum k a b k a b k b a b� � � �� � � � � �

2
2 2 1 1 1 2 1 3 3( )] [ ( ) (m m m m m m m ma a b k b a b a a� � � � � � � �� � � � �

3 2 2
2 2 1 2 1)]} [( ) ( ) ]m m m m mb k a b a b� � � �� � � � �

3 2 2
1 2 1 3 2[( ) ( ) ]m m m mk a b a b� � � �� � � � (35)

and

2 2 1 2 1 1 2 3 1[2 (1 )]( ) [2 (1 )]( )m m m m m mDen k k a b k k a b� � � � �� � � � � � � � � �

(36)

where k
1
 and k

2
 are defined in Table 3.

In Eq. (33)
2 2 2 2 2

1 3 1 2 4 2 1 1 2 13{ ( ) ( ) [ ( )m m m m m m mNum k a b k a b k b a b� � � � � � �� � � � � �

2
3 3 2 2 2 3 2 4 4( )] [ ( ) (m m m m m m m ma a b k b a b a a� � � � � � � �� � � � �

3 2 2
2 1 2 1 3 2)]} [( ) ( ) ]m m m m mb k a b a b� � � � �� � � � �

3 2 2
2 3 2 4 3[( ) ( ) ]m m m mk a b a b� � � �� � � � (37)

and

1 1 2 3 1 2 2 3 4 2[2 (1 )]( ) [2 (1 )]( )m m m m m mDen k k a b k k a b� � � � � �� � � � � � � � � �

(38)

where k
1
 and k

2
 are defined in Table 3.

In Eq. (33)
2 2 2 2 2

1 1 1 2 2 1 1 13{ ( ) ( ) [ ( )m m m m m m mNum k a b k a b k b a b� � � � �� � � � � �

2
1 1 2 1 2 2 1( )] [ ( ) ( )]}m m m m m m m m ma a b k b a b a a b� � � � � �� � � � � �

3 2 2 3 2
1 1 1 2 1[( ) ( ) ] [( )m m m m m mk a b a b k a b� � �� � � � � �

2
2 1( ) ]m ma b� �� � (39)

and

1 1 1 1 2 2 1 2[2 (1 )]( ) [2 (1 )]( )m m m m m mDen k k a b k k a b� � � �� � �� � � � �� �

(40)

where k
1
 and k

2
 are defined in Table 3

Case (c): Normalized inputs ( ) ( ) ( )N N Nd k v k a k� �  are

not in the 3D input space defined by 
1

( )
i ib N ad d k d

�
� � ,

1
( )

j jb N av v k v
�

� �  , 
1

( )
n nb N aa a k a

�
� � .

In the cells (9, 9, 9), (10, 11, 10), (11, 12, 12), (17, 17,
17), (18, 19, 18) and (19, 20, 20):

2 2 2 2
2 1 1 1 2 1

2 1

( )
3 ( )(1 )

m m m m m m m m

u m m m

a b a b b a b a
u k

N a b
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� � �
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� �
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(41)

In the cells (9, 10, 10), (11, 11, 11), (12, 9, 12), (17, 18,
18), (19, 19, 19) and (20, 17, 20):

2 2 2 2
3 2 2 1 2 3 1 2

3 1 2

( )
3 ( )(1 )

m m m m m m m m

u m m m

a b a b b a b a
u k

N a b
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� � � �
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� �
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(42)

In the cells (10, 12, 9) and (18, 20, 17):

2 2 2 2
1 1 1 1

1 1

( )
3 ( )(1 )

m m m m m m m m

u m m m

a b a b b a b a
u k

N a b
� � � �

� � �
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� �
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(43)

In the cells (12, 10, 11) and (20, 18, 19):

2 2 2 2
4 3 3 2 3 4 2 3

4 2 3

( )
3 ( )(1 )

m m m m m m m m

u m m m

a b a b b a b a
u k

N a b
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� � � �
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� �
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(44)

The above mathematical model obtained
with asymmetric trapezoidal output fuzzy sets is
complex in nature and thus cannot be separated into global
and local parts. By considering a

m+4
 = b

m+4
, a

m+3
 = b

m+3
,

a
m+2

 = b
m+2

 , a
m+1

 = b
m+1

 , a
m
 = b

m
 , a

m–1
 = b

m–1
 (such that

�
m
 = �

m+1
 = �

m+2
 = �

m+3
 � = 0) in the above model, model

with asymmetric triangular output fuzzy sets can be obtained.
This model, shown below, is less complicated than that with
trapezoidal output fuzzy sets and its expressions can be
decomposed into global and local parts.

5.2. Output Fuzzy Sets–Triangular

Case(a): All the three inputs lie within the 3D input space

defined by 
1

( )
i ib N ad d k d

�
� � , 

1
( )

j jb N av v k v
�

� � , 
nb Na a�

1
( )

nak a
�

�  i.e. cells (1, 1, 1) to (4, 4, 4)

( ) ( )g lu k u u k� � � � � (45)

1 2 1

1

1

3 3
m m

u u

b b Num

N N Den
� �

� �

� ��
� � � �

� �
(46)

Table 3
Attributes of k1 and k2

Equations Cells k
1

k
1

Eq. (35) and (36) for (5, 9, 5), (13, 17, 13) 7�̂ 2�̂
Num and Den

or (6, 6, 10), (14, 14, 18) 3�̂ 4�̂

Eq. (47) and (48) for (7, 11, 7), (15, 19, 15) 5�̂ 4�̂
Num

1
 and Den

1

(8, 8, 12), (16, 16, 20) 7�̂ 6�̂

(9, 5, 6), (17, 13, 14) 3�̂ 2�̂

(11, 7, 8), (19, 15, 16) 5�̂ 6�̂

Eq. (37) and (38) for (5, 10, 7), (13, 18, 15) 3�̂ 8�̂
Num and Den

or (8, 6, 11), (16, 14, 19) 5�̂ 8�̂

Eq. (49) and (50) for (12, 5, 8), (20, 13, 16) 7�̂ 8�̂
Num

1
 and Den

1

Eq. (39) and (40) for (6, 8, 9), (14, 16, 17) 1�̂ 2�̂
Num and Den

or (7, 12, 5), (15, 20, 13) 1�̂ 6�̂

Eq. (51) and (52) for (10, 7, 6), (18, 15, 14) 1�̂ 4�̂
Num

1
 and Den

1
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where
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Case (b): One normalized input is in the 3D input space

defined by 
1

( )
i ib N ad d k d

�
� � , 

1
( )

j jb N av v k v
�

� � , 
nb Na a�

1
( )

nak a
�

�  and the remaining two normalized inputs are
outside this 3D input space, see Figure 6. The terms Num

1

and Den
1
 for different cells are as follows:

In Eq. (46)

1 2 2 1 2 1 3 1 1 2( )(3 2 ) ( )( 2m m m m m m m m mNum k b b b b b k b b b b� � � � � � �� � � � � � �

2 2
3 2 2 1 2 1 3 13 ) ( )(3 4 2 ) ( )m m m m m m m mb k b b b b b k b b� � � � � �� � � � � � �

3 2 2
1 2 3 2 1 2 1(2 4 3 ) [( ) ( ) ]m m m m m m mb b b k b b b b� � � � � �� � � � � �

3 2 2
1 2 1 3 2[( ) ( ) ]m m m mk b b b b� � � �� � � � (47)

1 2 2 2 1 1 3 1[2 ]( ) [2 ]( )m m m mDen k k b b k k b b� � �� � � � � � (48)

where k
1
 and k

2
 are defined in Table 3

In Eq. (46)

1 1 3 1 1 2 3 2 4 2 1( )( 2 3 ) ( )( 2m m m m m m m mNum k b b b b b k b b b� � � � � � � �� � � � � � �

2
2 4 1 3 1 1 2 33 ) ( )(2 4 3 )m m m m m m mb b k b b b b b� � � � � � �� � � � � �

2
2 4 2 1 2 3 4( )( 2 3 3 )m m m m m mk b b b b b b� � � � � �� � � � � �

3 2 2
1 2 1 3 2[( ) ( ) ]m m m mk b b b b� � � �� � � �

3 2 2
2 3 2 4 3[( ) ( ) ]m m m mk b b b b� � � �� � � � (49)

1 1 1 3 1 2 2 4 2[2 ]( ) [2 ]( )m m m mDen k k b b k k b b� � � �� � � � � � (50)

where k
1
 and k

2
 are defined in Table 3

In Eq. (46)

1 1 1 1 1 1 2 2 2( )(3 2 ) ( )m m m m m m mNum k b b b b b k b b� � � � � �� � � � � �

2
1 2 1 1 1 1(3 2 ) ( )(3 3m m m m m m mb b b k b b b b� � � � �� � � � �

2
1 2 2 2 1 22 ) ( )(3 4 2 )m m m m m m mb b k b b b b b� � � � �� � � � � �

3 2 2
2 1 2 1[( ) ( ) ]m m m mk b b b b� � �� � � �

3 2 2
2 1 2 1[( ) ( ) ]m m m mk b b b b� � �� � � � (51)

1 1 1 1 1 2 2 2[2 ]( ) [2 ]( )m m m mDen k k b b k k b b� � �� � � � � � (52)

where k
1
 and k

2
 are defined in Table 3

Case (c): Normalized inputs ( ) ( ) ( )N N Nd k v k a k� �  are

not in the 3D input space defined by 
1

( )
i ib N ad d k d

�
� � , 

jbv

1
( )

jN av k v
�

� � , 
1

( )
n nb N aa a k a

�
� �

In the cells (9, 9, 9), (10, 11, 10), (11, 12, 12), (17, 17,
17), (18, 19, 18) and (19, 20, 20):

2 1( )
3

m m m

u

b b b
u k

N
� �

�

� �
� �

In the cells (9, 10, 10), (11, 11, 11), (12, 9, 12), (17, 18,
18), (19, 19, 19) and (20, 17, 20):

3 2 1( )
3

m m m

u

b b b
u k

N
� � �

�

� �
� �

In the cells (10, 12, 9) and (18, 20, 17):

1 1( )
3

m m m

u

b b b
u k

N
� �

�

� �
� �

In the cells (12, 10, 11) and (20, 18, 19):

4 3 2( )
3

m m m

u

b b b
u k

N
� � �

�

� �
� �

By substituting 
1 1 1n n j j i ia b a b a ba a v v d d S
� � �
� � � � � �

and 0
n n j j i ib a b a b aa a v v d d� � � � � �  for all i, j and n in

Figure 3, and 3 3 ( 3)m ma b i j n W� �� � � � � , 2 2m ma b� �� �
( 2)i j n W� � � , 1 1 ( 1)m ma b i j n W� �� � � � � , m ma b� �
( )i j n W� � , and 1 2 3 0m m m m� � �� � � � � � � � , in the above
mathematical model, the model of fuzzy PID controller in
Section 3 can be obtained.

6. ILLUSTRATIVE EXAMPLES

Comparison of the performances of linear PID controller
and the fuzzy PID controller with multiple symmetric
triangular input and output fuzzy sets is presented here by
considering the following examples:

(i) a linear third-order aircraft attitude-control system
[1]

9

1

2 718 10
( )

( 400 26)( 3008)pG s
s s s

� �
�

� � �
(53)

with unit step reference signal,
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Table 4
Attributes of the Linear, Nonminimum Phase, and Nonlinear Processes

Process T d
PK d

IK d
DK maxd� � maxv� � maxa� �

1( )pG s 0.002 0.309T 4.5T 0.006T 1 18.3066 5016.8934

2 ( )pG s 0.001 10.5T 20000T 0.0005T 1 131.343 19960.067

Nonlinear 0.1 1.8T 1.8T 0.008T 4 4.10676 994.592

Table 5
Attributes and Time-domain Performance Data of Plants with Linear and Fuzzy PID Controllers

Process PID N
d

N
v

N
a

N�u
l = M N M

p
t
r

t
s

controller (%) (sec) (sec)

1( )pG s linear - - - - - - 0 0.146 0.2

fuzzy 38 0.25 0.48 × 10–3 240 38 3 5.58* 0.006 0.0095

fuzzy 38 0.25 0.48 × 10–3 240 38 5 3.405* 0.0057 0.0093

fuzzy 38 0.25 0.48 × 10–3 240 38 7 3.48* 0.0056 0.0091

2 ( )pG s linear - - - - - - 85.2357 0.009 0.4020

fuzzy 1800 4.0 0.41 × 10–4 1.6 3800 3 0.0709 0.0024 0.005

fuzzy 1800 4.0 0.41 × 10–4 1.6 3800 5 0.0257 0.0021 0.0041

fuzzy 1800 4.0 0.41 × 10–4 1.6 3800 7 0.0935 0.0023 0.0042

Nonlinear linear - - - - - - 37.4442 1.0 5.6

fuzzy 3 3 0.045 2.1 20 3 0 1.148 1.75

fuzzy 3 3 0.045 2.1 20 5 0 1.176 1.62

fuzzy 3 3 0.045 2.1 20 7 0 1.144 1.58

* Desired M
p
 � 5%

(ii) a linear third-order nonminimum phase system [4]

2

2 3 2

2
( )

3 10 24p

s s
G s

s s s

� �
�

� � �
(54)

with unit step reference, and
(iii) a nonlinear first-order system [4]

2( ) ( ) ( ( ) ) ( )y t y t sin y t u t� � � � �� (55)

with step input of magnitude 4 as the reference
signal. In Eqs. (53) and (54), G

p1
(s) and G

p2
(s)

represent the transfer functions of the plants to be
controlled.

Fuzzy PID controllers are designed for all the above
three plants. The values of sampling period T, proportional
gain d

PK , integral gain d
IK , derivative gain d

DK , maximum

absolute displacement (error) |d |
max

, maximum absolute
velocity |v |

max
, and maximum absolute acceleration |a |

max
 are

given in Table 4 for all the three processes.

The parameters N
d
, N

v
, N

a
, N�u

, N, l, and M of the
fuzzy PID controllers, which gave rise to the responses in
Figures 7-9, are listed in Table 5 in which M

p
, t

r
 and t

s
 denote

peak overshoot, rise time and settling time, respectively.
Figures 7-9 also show the responses with conventional PID
controllers. Upon comparison, it is evident from the plots
that the fuzzy PID controllers perform better, demonstrating
their superiority over their counterparts- conventional PID
controllers. The parameter N takes only odd integer values
with the minimum value being 3. Since the basic objective
of this simulation study is to demonstrate the influence of
the parameter N on the performance of the fuzzy PID
controller, the values of functional parameters are fixed and
only N is varied as shown in Table 5. From the time-domain
performance data in Table 5, it is observed that as the value
of N increases from 3 to 7, there is some improvement in
performance, in general. The best performance is obtained
with N = 5 for the plants G

p1
(s) and G

p2
(s), and with N = 7

for the nonlinear plant.
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Figure 9: Step (Magnitude 4) Response of Closed Loop System
with Nonlinear Process

7. CONCLUSION

In this paper, mathematical modeling of fuzzy PID
controllers with multiple fuzzy sets has been considered.
First, a model is derived using symmetric triangular
membership functions for fuzzification of input variables
and output variable, linear control rules, algebraic product
triangular norm, bounded sum triangular conorm, Mamdani
minimum inference method and COS defuzzification. It has
been shown that the resulting controller is equivalent to the
sum of a global three-dimensional multi-level relay and a
local nonlinear PID controller. Properties of the fuzzy
controller have been investigated. Next, mathematical model
of generalized fuzzy PID controller has been derived
analytically using asymmetric trapezoidal membership
functions for inputs and output. The mathematical model
obtained with asymmetric trapezoidal output fuzzy sets is
complex in nature and thus cannot be separated into global
and local parts. But, when model with asymmetric triangular
output fuzzy sets is considered, it is found to be less
complicated than that with trapezoidal output fuzzy sets, and
its expressions are decomposed into global and local parts.
The superiority of fuzzy PID controller over linear PID
controller has been demonstrated through a simulation study
on three different processes. Influence of N on system
performance has been studied for all the processes.
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