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Abstract: In this paper we study the robust D-stability of single-parameter polynomially-dependent matrices. D-stability of
a matrix means that all the eigenvalues are in a prescribed open region, which is symmetric with respect to the real axisin
the complex plane. We propose a method based on generalization of the stability feeler. The proposed method enables one to
derive complete D-stability intervals for a class of single-parameter polynomially-dependent matrices. This method does
not require that a nominal matrix is stable. Numerical example shows that both Hurwitz stability intervals and Schur
stability intervals of single-parameter polynomially-dependent matrices can be obtained by using the proposed method.
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1. INTRODUCTION

In many engineering applicationsit isrequired that uncertain
systems arerobustly stable In this paper we study the robust
‘D-gtability of parameter-dependent real matrices. D-gability
of amatrix meansthat all the eigenvaluesarein aprescribed
open region D, which is symmetric with respect to the real
axisin thecomplex plane. D-stability containsvarioustypes
of stability. For example, D-stability correspondsto Hurwitz
stability if D isthe open | €ft half of thecomplex plane. When
D istaken asaunit circle, D-stability correspondsto Schur
stability.

Variousrobug stability conditions of sysemsfor agiven
domain in the parameter space have been given [3], [6], [1],
[7], [14]. Bidas gave a necessary and sufficient condition
for stahility of convex combinations of stable matrices[7].
Lyapunov-type necessary and sufficient conditions for
Hurwitz stability of single-parameter polynomially-
dependent matricesin the case that the parameter belongs
toacompact interval aregivenin[14].

Not only robug stability conditions for agiven domain,
but al so computation methodsfor stability domain have been
given. A formulafor computation of thereal stability radius
has been given by Qiu et al. [11]. Bounds on the system
uncertainty that guaranteethat the perturbed system remains
stable are given in [10], [15], [18], [4], [5], [12] and [16].
Theresultsin [10], [15], [18], [4] and [5] are all based on
Lyapunov stahility theory. The result in [12] is based on
guardian maps. The result in [16] is based on generalized
Lyapunov theory. Fu and Barmish [8] gave a method to
synthesize the maximal Hurwitz stability interval for a
convex hull of two matrices around a nominally stable
matrix, based on aresultin [7]. Saydy et al. [13] presented
closed-form expression for the maximal interval of D-

stability of single-parameter polynomially-dependent
matrices around a nominally stable matrix, using guardian
maps. Resultsin [17] are also based on guardian maps. A
method to find complete Hurwitz stability domain for multi-
parameter offinely-dependent matricesisgivenin [17]. This
method does not require that a nominal matrix is stable.
However, methods to derive complete D-stability domain
for single-parameter polynomially-dependent matrices have
not been proposed yet.

In this paper, we propose a method based on
generalization of the stability feeler [9]. The stability feeler
is a tool for robust stability analysis of uncertain
characteristic polynomials. By using this method, we can
obtain complete D-stability intervalsfor a class of single-
parameter polynomially-dependent matrices. This method
does not requirethat anominal matrix is stable. Comparison
of [14], [11], [12], [16], [8], [13] and [17] with this paper
is shown in Table 1. We also show some numerical
examples.

The notations used in this paper are asfollows: R, R"
and R"*" denotethe set of real numbers, n-dimensional real
vectors and n-by-n real matrices, respectively. The
superscript T stands for matrix transposition.

2. PRELIMINARIES

2.1. Stability Fedler

We propose a method to derive complete intervals of
parameter r such that single-parameter polynomially-
dependent matrices given by

A(r)::zmlri A,reR, AeR™ (1)
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Table 1
Comparison of the References with this Paper

References  Sability domains  Sability types Methods
Tsiotras[ 14] Given domain  Hurwitz stability  Lyapunov
Qiu[11] Sability radius D-stability —
Rern[12] Bounds Hurwitz stability Guardian maps
Yedavalli[16] Bounds D-stability Lyapunov
Fu[8] Maximal Hurwitz stability Resultin [7]

interval
Saydy[13] Maximal interval D-stability ~ Guardian maps
Zhang[17] Complete Hurwitz

intervals stability Guardian maps
This paper  Complete intervals D-stability  Sability feeler

are D-stable based on generalization of the stability feeler
[9].
The stahility feeler isatool to derive completeintervals

of parameter r that keep D-stahility of a characteristic
polynomial of theform

P(S) + 1Py (9), T € R, (2

where py(s) =", pp;S and p(s) =21, py;S are fixed

real polynomials with degree n and n,(< n), respectively.
The stability feeler approach needsthefollowing two results:

Lemmal. Letq:=[q,q,
of g(s) = zinzoqis'. Then, x € Risazero of q() if and only
if

q,]" be a coefficient vector

elq=0 ©)
issatisfied, wheree : = [1xx*-- x"".
Lemma 2. [2] Let g :=[q,q, - q]"be a coefficient

vector of q(s)=X",qs. Then, x+ jy, j =v-1, Xy €R,
y# 0isazeroof g(s) if and only if

E,,q=0 4

is satisfied, where
E = hiﬂy cR2X(+D

X+jy hx2+jy ! (5)

ey = h hy R, (6)

x+Jy _[0 hO hl hn l] (7)

h:=2xh —(+y)h_, i=2..,n, (8)

h,:=1 h1:=2x. 9

Let 0D, and 0D, bethe sets of real numbers and complex
conjugates that constitute the boundary of the region D,
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respectively. From the above two lemmas, the sets of
parameter r such that (2) has a zero on 0D, and 0D, are

given by
R, ={r|e (p,+rp)=0,xedD,r € R}, (10)
R, ={T[E, (P, *1P) = 0,X +]y € 0D, Xy, r € R}, (1)

respectively, where p; = [p,, - po’rJT P =[Py Py
0 - -0]". Then, thefollowing lemmais satisfied [9].

Lemma 3. Assume that R, and RC are sets consisting
of finite real numbersandletr <r,<-.-<r beall thereal

numbersin R w R_. Definer: —oo, M., :=+ocand
Z:={ie{0,1, -, Kk} |Thereexistsr < (r, r,,,) suchthat
po(s) +r1p,(s) isD-stable}. (12
Then, p(s) + rp,(s) is D-stableif and only if
r GU(ri Ti)- (13)

iel
Therefore, complete intervalsof parameter r such that
(2) isD-stable can be derived by checking D-stahility of a
single polynomia in{p,(s) +rp,(s),r € (r,,r,,)},i =0,
k, respectively.

3. MAIN RESULT

We now generalizethe stability feder to derive the complete
D-stahility intervals of A(r) given by (1). The eigenval ues
of A(r) are equivalent to the zeros of the following
characteristic polynomial:

in:ri[lssz---s”]pI :=det[s| —zm:riA],

where p, € R™, i =0, - -, mn are constant vectors and
| € R™"isthe identity matrix. The coefficient vector of the

above characteristic polynomial is given by .

Therefore, from Lemma 1 and 2, the setsof parameter r such
that A(r) hasan eigenvalueon 6D, and 0D, are given by

R, A:={r
Rea ::{r

respectively. Because of continuity of the eigenval ues of A(r)
with respect to parameter r, the following main theorem is
satisfied.

Theorem 1. Assume that R _, and R_, are sets
consisting of finite real nun"bersandletr <r, < ~<r, be
all thereal numbersin R , U'R_,. Defmer ——oork+1 =
+o00 and

7,.={i {01, -
that A(r) isD-stable} .

(14)

el [Zri pij =0, xedD,, r eR} (15)
i=0

EXW(Zri p'] =1 X+ jyedD,, X, y,r ER} (16)
i=0

-, K} [ There existsr < (r,, r,,,) such

(17)

i+1
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Then, A(r) is D-stable if and only if

re U (rh)-

ey

(18)

Therefore, the complete intervals of parameter r such
that A(r) isD-stable can bederived by checking D-stability
of asingle matrix in {A(r), r e(r, r, )} 1 =0, -,K
respectively if wecan derive R _,and R _,.

Thisresult has been obtained by generalization of the

stability feeler because R, , and R, coincide with R and
R, respectively inthecaseof p =0, > 2.

4. EXAMPLES

In this section we show examples, which show that complete
D-stahility intervals are derived by the proposed method.
Sets R, , and R, of the examples are all derived by the
“solve” commandin MATLAB.

4.1. Hurwitz Sability

Thefollowing three numerica exampl es show that compl ete
Hurwitz stability intervals of matrices can be obtained by
the proposed method. These examplesarefrom [17].

Example 1. Consider the matrix

A(r)=A +TA, (19)
where
-1 0
A= {o B J' (20)
01
A= {o 0}- (21)

We obtain the complete intervals of parameter r such
that A(r) isHurwitz; all the eigenvalues of A(r) arein

D={x+jy|x<0,xYyeR}. (22)
In thiscase, 0D, and 0D, are given by

0D ={0}, (23)
oD, ={jyly#0yeR}, (24)

respectively. From (14), p, i =0, 1,2 aredefined as
p,:=[12 1], (25)
p,:=0, (26)
p,:=0, (27
respectively. Hence, from (15) and (16), one can easily see
R, =, (28)
Roa=, (29)

where ¢ denotes the empty set. Therefore, one obtains
r,=—oo, I, = +oo. Itisaso easily seen that A(Q) is Hurwitz
by the direct calculation of the eigenvalues. Hence, the
stability intervals of parameter r can be concluded to be

(o0, +00) (30)
by Theorem 1.
Example 2. Consider the matrix
A(r)=A,+TA, (31
where
-2 0
A= {O _J, (32
10
A= {O _J- (33)

We obtain the complete intervals of parameter r such
that A(r) isHurwitz. From (14), p, i = 0, 1, 2 are defined
as

p,=[23 1" (34)
p,:=[100[, (35)
p,==[-1 0 0], (36)
respectively. From (15) and (16), one obtains
R .={-12}, (37
Roa= 0. (38)

Hence, oneobtainsr = —o,r, ==1,1,=2,r,= +oo. Itis
easily seen that A(r, — 1) and A(r, + 1) are not Hurwitz and

A(“5%)is Hurwitz. Therefore, the stability intervals of
parameter r can be concluded to be

(-1,2) (39)
by Theorem 1.
Example 3. Consider the matrix
A(r)=A,+TA, (40)
where
1064 3395 8841 4558 -10.25
1128 -01536 1467 9.852 -1353
A =|07320 3811 -0.6047 2408 —10.44
_1214 4938 9649 1152 -6297| 4D
1166 6451 1170 9453 -17.28
1109 -247.0 1624 -57.61 1942
24182 7313 -4466 87.68 -5118
A=| 3668 9875 -617.4 1819 -777.1
3853 11185 -666.7 1374 -800.4| (42
1008 2371 -1424 57.89 -2343]
From (14), p,i =0, ---, 5aredefined as
p, = [5653 3540 1352 280.9 27.52 1.000]", (43)
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p, = [-1.190 x 10°-6.615x 10° —1.764 x 10°

—1.145x 10* 93.90 0], (44)
p, = [-9.599 x 10° —1.759 x 10" —1.910 x 10°

2793 x 10* 0 Q], (45)
p, = [-3.131x10° —6.574x10" 1.446x10° 000]", (46)
p, = [-6.869x 10° 2738 x 10’ 0 0 0 0], (47)
p, :=[1.810x10° 0 00 O Q" (48)

respectively. Hence, from (15) and (16), one obtains
R, ,={-0.382, 0.0159, 4.21}, (49)
R, ,={-1.60, - 0.0463, 0.00241} . (50)

Therefore, oneobtainsr = —o, r, =-1.60, r,=-0.382,
r,=-0.0463, r,= 0.00241, r,= 0.0159, r, = 4.21, r_ = +0.

f3+0y,

It is shown that A(r) isHurwitz for r = <

,r=r,+1land

fy+I3

A(r) is not Hurwitz for r = r, — 1, r=2% r=2%

2

r=2%, r == fromthedirect calculation of eigenval ues.

Therefore, the stability intervals of parameter r can be
concluded to be

(—0.0463, 0.00241) U (4.21, + )
by Theorem 1.

(51)

We claim that the obtained intervals are complete
stability interval s because these are almost the same as the
complete stability intervals shown in [17].

4.2. Schur Sability

Now we show an example for Schur stability. In this case,
stability region D is the interior of the unit circle. The
following example shows stability analys s of adiscrete-time
system by the proposed method.

Example4. Consider the matrix

Ar) =A,+ 1A + A, (52)
where

0.2895 -1.2919 0.4978 —0.2463]
14789 -0.0729 14885 0.6630

A= 11380 -0.3306 -0.5465 -0.8542 (53)
-0.6841 -0.8436 -0.8468 -1.2013
0.9863 0.0215 -1.1859 -1.2173]
-0.5186 -1.0039 -1.0559 -0.0412

A= 0.3274 -0.9471 14725 -1.1283 (54)
0.2341 -0.3744 0.0557 -1.3493]
-0.2611 -1.1678 -1.3194 0.8057 |
0.9535 -0.4606 0.9312 0.2316

"] 01286 -02624 00112 -0.9898 (55)
06565 -1.2132 -0.6451 1.3396 |
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We obtain the complete intervals of parameter r
such that A(r) is Schur stable; all the eigenvalues of A(r)
arein

D={x+jy[Ix+jy|<LlxyeR}. (56)

In thiscase, 0D, and 0D, are given by
oD ={-1, 1}, (57)
0D ={x+jy[Ix+jy|=1y=#0,x,yeR},  (58)

respectively. From (14), p,i=0, 1, -, 8 aredefined as

p,:= [1.3601 2.8352 1.7605 1.5312 1.0000]", (59)
p,:= [-2.0142 —6.7561 —1.2606 —0.1056 O], (60)
p,:= [-3.1604 7.6615 2.8649 —0.62910]", (61)
p,: =[18.1577 -7.8512 2.1904 0 QT (62)
p,: =[9.4088 —2.4744 -0.1986 0 O], (63)
p,: =[0.6822 —4.1540 0 0 O], (64)
p,:= [-2.2548 -3.7253 0 0 O], (65)
p,:=[3.0073 0 0 0 O], (66)
p,:=0, (67)
respectively. From (15) and (16), one obtains
R, ,={-1.2262,0.0769}, (68)
R, ,={0.2544, 0.2608, 0.5328} . (69)

Hence, one obtainsr, = —o, r = -1.2262, r, = 0.0769,
r,=0.2544,r,=0.2608, r, = 0.5328, r, = + c. It is shown

that A(r) is Schur stable for r = %2 and A(r) isnot stable

forr=r-1r=2%r=2%r=2% r=r+1fromthe

direct calculation of eigenvalues. Therefore, we conclude
that the Schur stability interval is

(0.2544, 0.2608)

(70)
by Theorem 1.

5. CONCLUSION

In this paper we study the robust D-stability of parameter-
dependent real matrices. We propose a method based on
generalization of the stability feder [9]. By this method,
we can obtain complete D-stahility intervals for a class
of single-parameter polynomially-dependent matrices.
This method does not require that a nominal matrix is
stable,
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