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Complete �-stability Intervals of Matrices—
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Abstract: In this paper we study the robust �-stability of single-parameter polynomially-dependent matrices. �-stability of
a matrix means that all the eigenvalues are in a prescribed open region, which is symmetric with respect to the real axis in
the complex plane. We propose a method based on generalization of the stability feeler. The proposed method enables one to
derive complete �-stability intervals for a class of single-parameter polynomially-dependent matrices. This method does
not require that a nominal matrix is stable. Numerical example shows that both Hurwitz stability intervals and Schur
stability intervals of single-parameter polynomially-dependent matrices can be obtained by using the proposed method.
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1. INTRODUCTION

In many engineering applications it is required that uncertain
systems are robustly stable. In this paper we study the robust
�-stability of parameter-dependent real matrices. �-stability
of a matrix means that all the eigenvalues are in a prescribed
open region �, which is symmetric with respect to the real
axis in the complex plane. �-stability contains various types
of stability. For example, �-stability corresponds to Hurwitz
stability if � is the open left half of the complex plane. When
� is taken as a unit circle, �-stability corresponds to Schur
stability.

Various robust stability conditions of systems for a given
domain in the parameter space have been given [3], [6], [1],
[7], [14]. Bialas gave a necessary and sufficient condition
for stability of convex combinations of stable matrices [7].
Lyapunov-type necessary and sufficient conditions for
Hurwitz stability of single-parameter polynomially-
dependent matrices in the case that the parameter belongs
to a compact interval are given in [14].

Not only robust stability conditions for a given domain,
but also computation methods for stability domain have been
given. A formula for computation of the real stability radius
has been given by Qiu et al. [11]. Bounds on the system
uncertainty that guarantee that the perturbed system remains
stable are given in [10], [15], [18], [4], [5], [12] and [16].
The results in [10], [15], [18], [4] and [5] are all based on
Lyapunov stability theory. The result in [12] is based on
guardian maps. The result in [16] is based on generalized
Lyapunov theory. Fu and Barmish [8] gave a method to
synthesize the maximal Hurwitz stability interval for a
convex hull of two matrices around a nominally stable
matrix, based on a result in [7]. Saydy et al. [13] presented
closed-form expression for the maximal interval of �-

stability of single-parameter polynomially-dependent
matrices around a nominally stable matrix, using guardian
maps. Results in [17] are also based on guardian maps. A
method to find complete Hurwitz stability domain for multi-
parameter offinely-dependent matrices is given in [17]. This
method does not require that a nominal matrix is stable.
However, methods to derive complete �-stability domain
for single-parameter polynomially-dependent matrices have
not been proposed yet.

In this paper, we propose a method based on
generalization of the stability feeler [9]. The stability feeler
is a tool for  robust stability analysis of uncertain
characteristic polynomials. By using this method, we can
obtain complete �-stability intervals for a class of single-
parameter polynomially-dependent matrices. This method
does not require that a nominal matrix is stable. Comparison
of [14], [11], [12], [16], [8], [13] and [17] with this paper
is shown in Table 1. We also show some numerical
examples.

The notations used in this paper are as follows: �, �n

and �n ×n denote the set of real numbers, n-dimensional real
vectors and n-by-n real matrices, respectively. The
superscript T stands for matrix transposition.

2. PRELIMINARIES

2.1. Stability Feeler

We propose a method to derive complete intervals of
parameter r such that single-parameter polynomially-
dependent matrices given by
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are �-stable based on generalization of the stability feeler
[9].

The stability feeler is a tool to derive complete intervals
of parameter r that keep �-stability of a characteristic
polynomial of the form

p
0
(s) + rp

1
(s), r � �, (2)

where 0 0 0,( ) n i
i ip s p s�� �  and 1

1 0 1,( ) n i
i ip s p s�� �  are fixed

real polynomials with degree n and n
1
(< n), respectively.

The stability feeler approach needs the following two results:

Lemma 1. Let q := [q
0
 q
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··· q

n
]T be a coefficient vector

of 
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ii
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is satisfied, where e
x
 : = [1 x x2 ··· xn]T.
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h
i
 := 2xh

i–1
 – (x2 + y2)h

i–2
,  i = 2, ..., n, (8)

h
0
 : = 1,  h

1
 : = 2x. (9)

Let ��
r
 and ��

c
 be the sets of real numbers and complex

conjugates that constitute the boundary of the region �,

respectively. From the above two lemmas, the sets of
parameter r such that (2) has a zero on ��

r
 and ��

c
 are

given by

�
r
 := {r | eT

x
 (p

0
 + rp

1
) = 0, x � ��

r
, r � �}, (10)

�
c
 : = {r|E

x+jy
(p

0
 + rp

1
) = 0, x + jy � ��

c
, x, y, r � �}, (11)

respectively, where p
0
 := [p

0,0
 ·· · p

0,n
]T , p

1
 := [p

1,0
 ·· · p

1,n1

0 ·· · 0]T . Then, the following lemma is satisfied [9].

Lemma 3. Assume that �
r
 and �

c
 are sets consisting

of finite real numbers and let r
1
 � r

2
 � ·· · � r
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be all the real

numbers in �
r
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c
. Define r

0
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0
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Then, p
0
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Therefore, complete intervals of parameter r such that
(2) is �-stable can be derived by checking �-stability of a
single polynomial in {p

0
(s) + rp

1
(s), r � (r

i
, r

i+1
)}, i = 0, ·· · ,

k, respectively.

3. MAIN RESULT

We now generalize the stability feeler to derive the complete
�-stability intervals of A(r) given by (1). The eigenvalues
of A(r) are equivalent to the zeros of the following
characteristic polynomial:
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where p
i
 � �n+1, i = 0, ·· · , mn are constant vectors and

I � �n×n is the identity matrix. The coefficient vector of the

above characteristic polynomial is given by 0 .mn i
i ir�� p

Therefore, from Lemma 1 and 2, the sets of parameter r such
that A(r) has an eigenvalue on ��

r
 and ��

c
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,
0

: 0, ,
�

� �� �� �� � �� �� �� �� �� �� �
� �
mn

T i
r A x i r

i

r r x r� �e p (15)

,
0

: 1, , , ,�
�

� �� �� �� � � �� �� �� �� �� �� �
� �
mn

i
c A x jy i c

i

r E r x jy x y r� �p (16)

respectively. Because of continuity of the eigenvalues of A(r)
with respect to parameter r, the following main theorem is
satisfied.

Theorem 1. Assume that �
r,A

 and �
c,A

 are sets
consisting of finite real numbers and let r

1
 � r

2
 � ··· � r

k
 be

all the real numbers in �
r,A

 � �
c,A

. Define r
0
 := –� r

k+1
 :=

+� and

�
A 
:= {i � {0, 1, ·· · , k} | There exists r � (r

i
, r

i+1
) such

that A(r) is �-stable}.  (17)

Table 1
Comparison of the References with this Paper

References Stability domains Stability types Methods

Tsiotras[14] Given domain Hurwitz stability Lyapunov

Qiu[11] Stability radius �-stability —

Rern[12] Bounds Hurwitz stability Guardian maps

Yedavalli[16] Bounds D-stability Lyapunov

Fu[8] Maximal Hurwitz stability Result in [7]
interval

Saydy[13] Maximal interval D-stability Guardian maps

Zhang[17] Complete Hurwitz
intervals stability Guardian maps

This paper Complete intervals D-stability Stability feeler
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Then, A(r) is �-stable if and only if
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A
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Therefore, the complete intervals of parameter r such
that A(r) is �-stable can be derived by checking �-stability
of a single matrix in {A(r), r �(r

i
, r

i+1
)}, i = 0, ·· · , k,

respectively if we can derive �
r,A

 and �
c,A

.

This result has been obtained by generalization of the
stability feeler because �

r,A
 and �

c,A
 coincide with �

r
 and

�
c
, respectively in the case of p

i
 = 0, i � 2.

4. EXAMPLES

In this section we show examples, which show that complete
�-stability intervals are derived by the proposed method.
Sets �

r,A
 and �

c,A
 of the examples are all derived by the

“solve” command in MATLAB.

4.1. Hurwitz Stability

The following three numerical examples show that complete
Hurwitz stability intervals of matrices can be obtained by
the proposed method. These examples are from [17].

Example 1. Consider the matrix

A(r) = A
0
 + rA

1
, (19)

where

0

1 0
,

0 1
A

�� �
� � ��� �

(20)

1

0 1
.

0 0

� �
� � �
� �

A (21)

We obtain the complete intervals of parameter r such
that A(r) is Hurwitz; all the eigenvalues of A(r) are in

� = {x + jy | x < 0, x, y � �}. (22)

In this case, ��
r
 and ��

c
 are given by

��
r 
= {0}, (23)

��
c
 = { jy | y � 0, y � �}, (24)

respectively. From (14), p
i
, i = 0, 1, 2 are defined as

p
0 
:= [1  2   1]T, (25)

p
1 
: = 0, (26)

p
2 
: = 0, (27)

respectively. Hence, from (15) and (16), one can easily see

�
r,A

 = �, (28)

�
c,A

 = �, (29)

where � denotes the empty set. Therefore, one obtains
r

0
 = –�, r

1
 = +�. It is also easily seen that A(0) is Hurwitz

by the direct calculation of the eigenvalues. Hence, the
stability intervals of parameter r can be concluded to be

(–�, +�) (30)

by Theorem 1.

Example 2. Consider the matrix

A(r) = A
0
 + rA

1
, (31)

where

0

2 0
,

0 1
A

�� �
� � ��� �

(32)

1

1 0
.

0 1
A

� �
� � ��� �

(33)

We obtain the complete intervals of parameter r such
that A(r) is Hurwitz. From (14), p

i
, i = 0, 1, 2 are defined

as

p
0
 := [2  3  1]T (34)

p
1
 := [1  0  0]T, (35)

p
2
 := [–1  0  0]T, (36)

respectively. From (15) and (16), one obtains

�
r,A

 = {–1, 2}, (37)

�
c,A

 = �. (38)

Hence, one obtains r
0
 = –�, r

1
 = –1, r

2
 = 2, r

3 
= +�. It is

easily seen that A(r
1
 – 1) and A(r

2
 + 1) are not Hurwitz and

� �1 2

2

r rA �
is Hurwitz. Therefore, the stability intervals of

parameter r can be concluded to be

(–1, 2) (39)

by Theorem 1.

Example 3. Consider the matrix

A(r) = A
0
 + rA

1
, (40)

where

0

10.64 3.395 8.841 4.558 10.25

11.28 0.1536 14.67 9.852 13.53

0.7320 3.811 0.6047 2.408 10.44

12.14 4.938 9.649 1.152 6.297

11.66 6.451 11.70 9.453 17.28

A

� �� �
� �� � �� �
� �� � �
� �� �� �
� �� �� �

(41)

1

110.9 247.0 162.4 57.61 194.2

241.82 731.3 446.6 87.68 511.8

366.8 987.5 617.4 181.9 777.1

385.3 1118.5 666.7 137.4 809.4

100.8 237.1 142.4 57.89 234.3

A

� � �� �
� �� �� �
� �� � �
� �� �� �
� �� �� �

(42)

From (14), p
i
, i = 0, ··· , 5 are defined as

p
0

:= [5653   3540   1352   280.9   27.52   1.000]T, (43)
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p
1

:= [–1.190 × 105  – 6.615 × 105   – 1.764 × 105

–1.145 × 104   93.90  0]T, (44)

p
2

:= [–9.599 × 106   –1.759 × 107  –1.910 × 106

2.793 × 104    0  0]T, (45)

p
3

:= [–3.131×108   –6.574×107  1.446×106  0 0 0]T , (46)
p

4
:= [–6.869 × 108   2.738 × 107  0  0  0  0]T, (47)

p
5

:= [1.810 × 108   0   0  0  0  0]T, (48)

respectively. Hence, from (15) and (16), one obtains

�
r,A

 = {–0.382, 0.0159, 4.21}, (49)

�
c,A

 = {–1.60, – 0.0463, 0.00241}. (50)

Therefore, one obtains r
0
 = –�, r

1
 = –1.60, r

2
 = –0.382,

r
3
 = –0.0463, r

4
 = 0.00241, r

5
 = 0.0159, r

6
 = 4.21, r

7
 = +�.

It is shown that A(r) is Hurwitz for 3 4

2 ,r rr �� r = r
6
 + 1 and

A(r) is not Hurwitz for r = r
1
 – 1, 1 2

2 ,r rr �� 2 3

2 ,r rr ��

4 5

2 ,r rr ��  5 6

2

r rr ��  
from the direct calculation of eigenvalues.

Therefore, the stability intervals of parameter r can be
concluded to be

(–0.0463,  0.00241) � (4.21,  + �� (51)
by Theorem 1.

We claim that the obtained intervals are complete
stability intervals because these are almost the same as the
complete stability intervals shown in [17].

4.2. Schur Stability

Now we show an example for Schur stability. In this case,
stability region � is the interior of the unit circle. The
following example shows stability analysis of a discrete-time
system by the proposed method.

Example 4. Consider the matrix

A(r) = A
0
 + rA

1
 + r2A

2
, (52)

where

0

0.2895 1.2919 0.4978 0.2463

1.4789 0.0729 1.4885 0.6630

1.1380 0.3306 0.5465 0.8542

0.6841 0.8436 0.8468 1.2013

A

� �� �
� ��� ��
� �� � �
� �� � � �� �� �

(53)

1

0.9863 0.0215 1.1859 1.2173

0.5186 1.0039 1.0559 0.0412

0.3274 0.9471 1.4725 1.1283

0.2341 0.3744 0.0557 1.3493

A

� �� �
� �� � � �� ��
� �� �
� �� �� �� �

(54)

2

0.2611 1.1678 1.3194 0.8057

0.9535 0.4606 0.9312 0.2316

0.1286 0.2624 0.0112 0.9898

0.6565 1.2132 0.6451 1.3396

� � �� �
� ��� ��
� �� �
� �� �� �� �

A
(55)

We obtain the complete intervals of parameter r
such that A(r) is Schur stable; all the eigenvalues of A(r)
are in

� = {x + jy | | x + jy | < 1, x, y � �}. (56)

In this case, ��
r
 and ��

c
 are given by

��
r 
= {–1, 1}, (57)

��
c 
= {x + jy | | x + jy| = 1, y � 0, x, y � �}, (58)

respectively. From (14), p
i
, i = 0, 1, ··· , 8 are defined as

p
0 
:= [1.3601 2.8352  1.7605  1.5312  1.0000]T, (59)

p
1 
:= [–2.0142  –6.7561  –1.2606  –0.1056  0]T, (60)

p
2 
:= [–3.1604   7.6615  2.8649  –0.6291 0]T, (61)

p
3 
: = [18.1577   –7.8512   2.1904   0   0]T, (62)

p
4 
: = [9.4088   –2.4744   –0.1986  0  0]T, (63)

p
5 
: = [0.6822   –4.1540   0   0   0]T, (64)

p
6 
:= [–2.2548   –3.7253   0   0   0]T, (65)

p
7 
: = [3.0073    0   0   0   0]T, (66)

p
8 
:= 0, (67)

respectively. From (15) and (16), one obtains

�
r,A

 = {–1.2262, 0.0769}, (68)

�
c,A

 = {0.2544, 0.2608, 0.5328}. (69)

Hence, one obtains r
0

= –�, r
1 
= –1.2262, r

2
 = 0.0769,

r
3 
= 0.2544, r

4
 = 0.2608, r

5
 = 0.5328, r

6
 = + �. It is shown

that A(r) is Schur stable for 3 4

2

�� r rr  
and A(r) is not stable

for 2 3 4 51 2

1 52 2 21, , , , 1r r r rr rr r r r r r r� ��� � � � � � �  from the

direct calculation of eigenvalues. Therefore, we conclude
that the Schur stability interval is

(0.2544,  0.2608) (70)

by Theorem 1.

5. CONCLUSION

In this paper we study the robust �-stability of parameter-
dependent real matrices. We propose a method based on
generalization of the stability feeler [9]. By this method,
we can obtain complete �-stability intervals for a class
of single-parameter polynomially-dependent matrices.
This method does not require that a nominal matrix is
stable.
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