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Abstract: In this paper, an adaptive fuzzy wavelet neural network control (AFWNNC) system composed of a neural controller
and a robust compensator is proposed. The neural controller using a fuzzy wavelet neural network (FWNN) is designed to
approximate anideal controller, and therobust compensator is designed to ensure system stable. In many previous published
papers, to ensure the stability of the intel ligent control system, a switching compensator isdesigned to dispel the approximation
error introduced by the neural controller. However, the switching compensator usually causes chattering phenomena. The
proposed robust compensator is designed to eliminate the approximation error without occurring chattering phenomena.
Moreover, a proportional-integral-derivative (PI D) type adaptation tuning mechanismisderived to speed up the convergence
of the tracking error and controller parameters. Finally, the proposed AFWNNC system is applied to a chaotic system and a
DC motor. The smulation and experimental results verify the system stabilization, favorable tracking performance and no

chattering phenomena can be achieved by the proposed AFWNNC system.
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1. INTRODUCTION

Neural network technology is an effective tool for dealing
with complex nonlinear processesthat are characterized with
ill-defined and uncertain factors. The key factorsfor the use
of neural networksin the control fidd arethe propertiesthat
they have such as: learning and generalization abilities,
nonlinear mapping, parallelism of computation, and vitality
(Lin and Lee, 1996). Several adaptive neural network
controllers have been successfully applied to solve the
problem of identification and control for the uncertain
nonlinear systems (Lin, 2005; Tang et al., 2006; Wang et
al., 2008; Hsu, 2009). These approaches hinted the neural
networks as a “black box”. It means neural networks can
approximate a continuous function arbitrarily closely over
acompact set. The basic issue of the adaptive neural network
contral providesonlinelearning a gorithmsthat don't require
preliminary off-linetuning. Some onlinelearning algorithms
are based on the Lyapunov stability theorem and someonline
learning algorithmsare based on thegradient decent method.

For solving the majority of approximation problems,
the neural networks require a large number of neurons.
Furthermore, the neural networks may get stuck on alocal
minimum of theerror surface, and the network convergence
rate is generally dow. A suitable approach for overcoming
these disadvantages is the use wavelet functions in the
network structure to construct the wavel et neural network
(WNN) (Zhang, 1997; Billingsand Wei, 2005; Chauhan et

al., 2009; Lin et al., 2009). The wavelet function is a
waveform that haslimited duration and an average val ue of
zero. Then, the WNN has a nonlinear regression structure
that uses localized basis functions in the hidden layer to
achieve the desired input-output mapping. The integration
of the localization properties of wavelets and the learning
abilities of neural network result in the advantages of WNN
over neura network for complex nonlinear system modelling
(Billings and Wei, 2005; Lin et al., 2009). There has been
considerable interest in exploring the applications of the
WNN to deal with the non-linearity and uncertainty of
control problems (Sousa et al., 2002; Lin et al., 2006 and
2009; Hsu et al., 2006 and 2009; Khan and Rahman, 2008).
To achieve better learning performance, Ho et al. (2001)
have proposed a fuzzy wavelet neural network (FWNN)
based on multi-resolution analys s of wavel et transformsand
fuzzy concepts. The goal of the introduction of fuzzy model
into WNN isto improve function approximation accuracy.
Based on thisadvantage, several published papers used the
FWNN to deal with the uncertain nonlinear systems (Lin,
2006 and 2009; Zekri et al., 2008).

Since the number of hidden neurons in the neural
network isfinitefor thereal-time practical applications, the
approximation error introduced by the neural network is
inevitable. To ensure the system stability, a switching
compensator was designed todispel the approximation error.
However, the switching compensator will cause chattering



38

phenomena to wear the bearing mechanism (Lin and Hsu,
2004). To reduce the chattering phenomenon, the sign
function in compensator can be replaced by a saturation
function (Lin and Hsu, 2004). However, thereis atrade off
problem between chattering and control accuracy rises. Some
researchers using a fuzzy system to estimate the
approximation error bound; however, the fuzzy rules should
be pre-congtructed by time-consuming trial -and-error tuning
procedure(Lin et al., 2005).

Moreover, though these FWNN-based adaptive neural
network control systems (Lin, 2006 and 2009; Zekri et al.,
2008) can guarantee the system’s stability, the convergence
of the controller parametersand tracking errors may be slow.
If thelearning-rate parametersaretoo small, the convergence
of thetracking error and controller parameterscan beeasily
guaranteed but the convergence speed is very sow. If the
learning-rate parameters are too large, the parameter
adaptation laws may become unstable. To solvethis problem,
avariablelearning rateisdetermined (Lin and Peng, 2004;
Lin et al., 2007). Lin and Peng (2004) used a discrete-type
Lyapunov function to determine thelearning-rate parameters
of the adaptation laws. However, the exact calculation of
the Jacobian term of the system cannot be determined due
to the unknown control dynamics. Lin et al. (2007) used a
genetic algorithm to determinethe learning-rate parameters
of the adaptation laws,; however, thecomputation loading is
heavy.

In thispaper, an adaptivefuzzy wavel et neural network
control (AFWNNC) system composed of aneural controller
and arobust compensator is proposed. The neural controller
uses a FWNN to approximate an ideal controller; and the
robust compensator isutilized to eliminate the approximation
error between neural controller and ideal controller without
occurring chattering phenomena. To speed up the
convergence of the tracking error and the controller
parameters, this paper derives a proportional-integral-
derivative (PID) type adaptation law based on the Lyapunov
stability theory, thus not only the system stability can be
guaranteed but also the convergence can be speeded up.
Finally, the proposed AFWNNC system is applied to a
chaotic system and a DC motor. The simulation and
experimental results show thehigh tracking performanceand
no chattering phenomena can be achieved by the proposed
AFWNNC system.

2. DESCRIPTION OF FWNN
Assume there are m rules in FWNN can be described as
(Zékri et al., 2008; Lin, 2009)

Rulei:Ifzis A ...andz is A,, ThenZisoy,(z) (1)
wherez=[z,z, ..., z]" and Z aretheinput vector and output
variable of FWNN, respectively; A; arethelinguisticterms

characterized by their corresponding fuzzy membership
functions of thefuzzy sets; and o,y (z) isthe output weight.

International Journal of Computational Intelligence in Control

vi(2) =] [0-0;iZ)is defined as the “Mexican hat”
k=1

mother wavel et function. The FWNN performsthe mappings
according to

= iaiwi(z)q)i (o, llz—c I 2

where ¢, =[c,0,...0,] and ¢, =[c,C,...c,]" are the

width and center vectors of the Gaussian membership,
respectively; and the Gaussian membership ¢, represents
as

bl ) =ﬁexp{—(zjc_—°;‘] RNES

ji
For ease of notation, (2) can be expressed in a vector
form as

2 =a"0(z, 0,¢) 4

where  a=[a,a,,...,0,]; 0=1[0,,0,,....0,]" =

Vi1 Wobpr o dls 6=[6,,06,,....6,]"  and

c=[c,,¢,,...,c,]" . Thereisanideal FWNN can uniformly

approximate any nonlinear function Q such as (Ho et al.,
2001)

Q=a"0"(z,6 ,¢)+A (5)
wherea” and 6* arethe optimal parameter vectors of a and
0, respectively; o* and c* arethe optimal parameter vectors
of o and c, respectively; and A isthe approximation error.
However, the optimal parameter vectors areunknown, so it
is necessary to estimate the values by an estimated FWNN
asfollowing

E=a"0(2,6,0) (6)
where g and @ are the estimated parameter vectors of a

and 0, respectively; and g and ¢ aretheestimated parameter
vectors of ¢ and ¢, respectively. Then, the estimation error
isobtained as

[1]:

=Q-9=0"0"-G"0+A
=(@+0)" (0+0)-a"0+A
=@0+3'0+a"0+A (7
where g=q¢ —q and §g=¢ -¢. To speed up the
convergence of the FWNN learning, the optimal parameter
vector o and the estimated parameter vector g decompose
intothree parts as (Goleaet al., 2002)
@ = Nply + M, 0 + N0 8

o= nP&P + nlal + nD&D 9)
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where a,, o, and o, are the proportional, integral and
derivativetermsof o', respectively; @, , a,and a, arethe

proportional, integral and derivativetermsof g, , respectively;
and n,, n, and n, are positive coefficients specified by
designers. Thus, g can be expressed as

a=n,0, - npap - ﬂoan +9 (10)
where @, = a, —a, and & = n,a, + nya,, . Substituting (10)
into (7), it isobtained that

[1]:

=@ 0+(n, 6, —Np0, —Nply +0) 0+a"0+A
=16 0-1,000-1,000+a0+a'0+50+A (12)

The Taylor expansion linearization technique is
employed totransform the nonlinear functioninto a partially
linear form, so (Lin, 2009)

0=A"6+B"¢+h

where g =¢" —6; é¢=c¢ —¢; hisavector of high order

(12)

20, 0 o0
; A=|S Lz Py
ter ms, |: 06 06 o6 j| |G—G and
pe[ @ B Ball e 12
dc  Oc e .-¢ . Substitute (12) into (11),
yields

= 1,810 -1,al0 - 1,0 0+6 Ad+E Ba+e (13)

where G"A"6=6"'A¢gand ¢'B'¢=¢'Bg are used since
they are scalars; and ¢ = G"h+&"0+ 570 + A denotes the
approximation error which is assumed to be bounded by

0<|e|< E inwhich Eisapositive constant.

3. DESIGN OF THE AFWNNC SYSTEM
Consider aclassof n-th order nonlinear systems

X0 = f(x) + gu (14)

where x =[x, X,..., xX"V]" is the state vector of the system
which isassumed to be available for measurement; f(x) isa
real continuous function; gisthe control gain of the system;
and uisthe control input. The control objectiveistofind a
control law so the state trajectory x can track a trajectory
command x . Todetermine the control law, atracking error
isdefined as
e=Xx —X (15)
If the system parametersin (14) areknown, there exists
an ideal controller as(Slotineand Li, 1991)

U =g [-f(x)+x”+ke"P+..+k _e+ke (16)

wherek, i =1, 2,..., narenonzero positive constant. Apply
thisideal controller (16) into system dynamic (14), it can be
obtained

e +ke" +. . .+k _e+ke=0. (17)
If the parameter k is selected to satisfy that all roots
will lie on left half side of s-plane, it implies lime=0,

However, because the system dynamicsin (14) areactually
unknown, theideal controller (16) cannot be utilized.

In this paper, the AFWNNC system shown in Fig. 1is
designed toresolvethis problem which the controller output
isdesigned as

adaptive fuzzy wavelet neural network control
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Figure 1: The Block Diagram of the AFWNNC System

uFWC = unc + l"lrc (18)
wherea dliding surfaceisdefined as
s=e"" +ke"? +..+k e+ knj Ot g(t)dt (19)

Theneural controller u _utilizesa FWNN to mimic the
ideal controller, and the robust compensator u,_isdesigned
to compensatefor the difference between theideal controller
and neura contraller. In the sliding-mode control approach,
the diding condition is derived as ss< 0 such that the
stability and convergence of s > 0 ast — o can be
guaranteed for the closed-loop system (Sotineand Li, 1991).
Substituting (18) into (14) and using (16) and (19), yields

e” +ke" Y +..+k _e+ke=gU -u,.-u,)=3 (20)
By using the approximation property (13), (20) can be
rewritten as
$=9g(N,6/0-Mpat0 -1, 0+6 Ad+& Ba+c—Uu,)
(21)
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In this paper, the robust compensator is designed as

Esgn(s) for |g>®
Eps+é,jsdt=§T§ for |[§<®

urc =

(22)

where E , ép and é, arefree controller parameters, ® >0
is the thickness of the boundary layer; & =[E,,E,]"; and
§=[S,Isdt]T. When the sliding surface is within the
boundary layer (|s < ® ), therobust compensator is defined
as U, = éps+ Eljsdt ; and when the dliding surface is
outsidetheboundary layer (|5 > @ ), therobust compensator
is defined as u,, = Esgn(s) . The parameters £, E, and

é, arenot known in advance. To guarantee the stability of

the proposed AFWNNC system, two cases are considered
separately depending on the value of |g].

Case1: For |g| > @, aLyapunov function isdefined as

£\
] @3

2 ~T

V=—+g (n a,a +n—Daa +2°
2 2 2n,

¢'e
+—+
znc an

where g — g_ E . Differentiating (23) with respect totime
and using (21), it isobtained that

V, = s$+ gn,(ﬂﬁl +gnD&lT,(A1P+£G g iéé
No Ne Ne

= gn,a; (56+fx,)+ g6’ {SA&+£}+ gc’ |:SB&+TIL:|

G

+39(—np(ﬂ»9 - nDalT)B +e-U.)+ gnD&LaP + T]i EE (29)
E

Choose the adaptive laws as

i =—a, =9 (25)
6=-6=-1,5Ad (26)
¢=—-c=-nsBa (27)

then (24) can be obtained

V, = 8g(e — U) — g5 S0 — g, 80 + gnp 630, +ni EE (28)
E

Since @, , a, and a, arethe proportional, integral and
derivativetermsof g , respectively; the controller parameter
vectors are chosen as

a, =9 (29)
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=0, (30)

and the approximation error bound estimation law is
designed as

E=—E=n|s @
then (28) can be obtained
V; = ge s- GE|§ - gn,fréi, - 9(E - E)|9
= geS—E[g - gns08,
< glels - gE[§
=—g|(E-[e)) <O. (32)

Since V,(s,@,,0,,6,¢ E,t) is negative semi-definite,

that is V(s @,,0,,6,¢ Et) <V(sd,,a,,6,¢E0), it
impliesthat s, @,,a,,6,¢ and g are bounded. Define the
following term

O(t) = gs(E—e) < -V, (33)

and integrate O(t) with respect to time, then it is obtained
that

& E 1)
(34

[ 0@dr<Vy(s.d,,d,,6.8 E,0V,(.d,,8,.6.

Because V,(s,&,,d,,6,¢,E,0) is bounded and

V,(s,@,,0,,6,¢ E,t) is nonincreasing and bounded, the
following result can be obtained

) t
1LrL1IO®(r)dr<w. (35)
By Barbalat's Lemma, it shows lIm® =0 That is

s—> 0ast —» o (Slotine and Li, 1991). As a result, the
AFRWNNC system is asymptatically stable when the sliding
surfaceis outside the boundary layer (|5] > @).

Case 2: For |g| < @, aLyapunov function isdefined as

2 ~T~
V2=_+g &&Ta +n_Da a, +2+2 ﬁ (36)
2 2 2 2n, 2n, 211g
wherethepositive constant n_isthelearning rate; ¢ = ¢ -c

and ¢ isthe optimal valuefor ¢ as defined
§' =arg min [suglé% - Esgn(s)l} . 37)

Taking the derivative of Lyapunov function (36) and
using (25)-(30), yields
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V, = S84 g, 608, + gngond, + 266+ L &Ter 2 gTé

Mo e M

= gn,al (sB+a,)+ gé" {sA& +i} +gc¢’ {sB& +i}

no' T]C

+Sg(—ﬂp&;é - HD&LQ +e—U;)+ gnD&I’aP + géTé
S

= Sg(g - urc) - gnP&I’&P +%§Té

S

< sg(a—éTa)+niéTé

S

—sg(e—&E+gTE—¢TE) +2&TE

S

= sg(e—é%—g”éhnié%

S

- 1. x
=g {Shn—@}wgs—sg@ g (39)
S
It can find "¢ liesin thefirst and third quadrant and

e =0 for s = 0. It concludes Sg*T§=|s||g*T§|. If the
adaptation lawsis chosen as

{=—8=-n% (39)
then (38) can be rewritten as
V, <lef|s|g - 50578
<E[gg-|d|s7e[g
=—(<"g-E)|§g<0. (40)

Similar to the proof of (32), it can be similarly shown
that s— 0 ast —» «. Asaresult, the AFWNNC system is
asymptotically stable when the diding surfaceiswithin the
boundary layer (|s| < D).

4. SIMULATION AND EXPERIMENTAL RESULTS

In this section, the proposed AFWNNC system is applied to
achaotic system and a DC motor to verify its effectiveness.
It shoul d be emphasized the devel opment of the AFWNNC
system doesn’t need to know the knowl edge of the system
dynamics. For practical implementation, the parameters of
the AFWNNC system can be online tuned by the proposed
adaptivelaws.

Example 1: chactic system

Chaotic systemisanonlinear deterministic system that
displays complex, noisy-like and unpredictable behavior

(Peng and Hsu, 2009). It can be observed in many nonlinear
circuits and mechanical systems. For control engineers,
control of achaotic system has becomeasignificant research
topicin phys cs, mathematics and engineering communities.
Consder asecond-order chaotic system such asthe Duffing's
equation describing aspecia nonlinear circuit or apendulum
moving in aviscous medium (Peng and Hsu, 2009)

Xx=f(x)+u (41)

where f(x) = —px— px— p,X* +qcos(wt) is the system
dynamics, t isthetime variable, wis the frequency, uisthe
control effort and p, p,, p, and g are rea constants. For
observing the chactic unpredictable behavior, the open-loop
system behavior with u = 0 was simulated with p = 0.4,
p,=-1.1, p,=1.0and w= 1.8. The phase plane plots from
an initial condition point (O, 0) areshown in Figs. 2(a) and
2(b) for g= 2.1 and q = 7.0, respectively. It is shown the
uncontrolled chaotic system has different chaotic trgjectories
with different q val ues.

4

3F

N
T

Figure 2: Phase Plane of Uncontrolled Chaotic System
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The proposed AFWNNC system isapplied to the chaotic
sysem. Thereare5 rulesin the used FWNN with the diding
surface s as the input variable. The parameters o, in the
“Mexican hat” mother wavelet function arefixed as o, = 2
fork=21andi = 1,2,..., 5; the parameter vectors of the
Gaussian membership functions are initialized from
¢ =[03,0.3,0.3,0.3,0.3"and ¢ = [-1.0, 0.5, 0.0, 0.5,
1.0]"; and theinitial output connections o, areinitiated from
zeros. The choices of these initial values are through some
trial sto achieve satisfactory control performance. Thereare
15 parameters can be online tuned by the derived adaptive
laws in the used FWNN. The control parameters of the
AFWNNC system are selected ask = 2, k, = 1, n, = 10,
n,=1,1,=01,n=n=1,®=05andn_=ng= 0.1 All
the gains in the ARWNNC system are chosen to consider
therequirement of stability condition. Properly choosing the
valuesof k, and k,, the desired system dynamics such asrise
time, overshoot, and settling time can beeasily designed by
the second-order system. The parametersm_, n,, n,, n_ and
n, are the leaning rates of the interconnection weights of
FWNN; and the parametersm_ and n aretheleaning rates
of the robust compensator. If the leaning rate parameters
are chosen to be small, then the parameters convergence of
the ARWNNC system will be easily achieved; however, this
will result in dlow learning speed.

A performanceindex | isdefined as | =Y (e + &%) . As
N, =N, = 0, thelearning algorithm of the proposed method
isthe same as conventional AFWNNC system with integral
type adaptation lawsin the previous published papers (Lin,
2006; Zekri et al., 2008; Lin, 2009). The simulation results
of the AFWNNC system with integral type adaptation laws
are shown in Figs. 3 and 4 for g = 2.1 and q = 7.0,
respectively. The tracking responses of state x areshown in
Figs. 3(a) and 4(a); the tracking responses of state x are
shown in Figs. 3(b) and 4(b); the associated control efforts
are shown in Figs. 3(c) and 4(c); the performance indexes
areshown in Figs. 3(d) and 4(d); and the output connections
¢ are shown Figs. 3(e) and 4(e) for q=2.1and g = 7.0,
respectively. The simulation results show there is no
chattering phenomena in the control effort; however, the
convergence of controller parameter and tracking error is
slow. Then, thedeve oped PID type adaptation law isapplied
to the AFWNNC system. The simulation results of the
AFRWNNC system with PID type adaptation laws are shown
in Figs. 5and 6 for g =2.1 and q = 7.0, respectively. The
tracking responses of state X are shown in Figs. 5(a) and

6(a); the tracking responses of state x are shown in Figs.
5(b) and 6(b); the associated control efforts are shown in
Figs. 5(c) and 6(c); the performance indexes are shown in
Figs. 5(d) and 6(d); and the output connections g areshown
in Figs. 5(e) and 6(e) for g = 2.1 and q = 7.0, respectively.
The simulation results show the proposed PID type
adaptation laws can achieve faster convergence of the
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tracking error and controller parameters than that using
integral typeadaptation laws.

Example 2: DC motor

The equation of a DC motor can be simplified as
(Damianoet al., 2004; Nouri et al., 2008)

(42)

JO+BO=Kki, (43)
wherer, |, k and k arethe DC motor parametersthat are
unknown; v_ and i_are the DC motor voltage and current,
respectively; 0 is the rotor position; J is the moment of
inertia; and B is the damping coefficient. The standard
canonical form of DC motor can be expressed as

x=f(x)+gu (44)
where x=[60,6,0]"; u = Vo
f(x) = LE AN {Br +"t"b}xz and 9= The

experimental setup as shown in Fig. 7 is based on afied
programmable gate array (FPGA). FPGA is a fast
prototyping | C component. It consists of thousands of logic
gates, some of which are combined together to form a
configurable logic block thereby simplifying high-level
circuit design ([Onling] http://www.altera.com/). The
advantage of a controller implemented by FPGA includes
shorter development cycles, lower cost, small size, fast
system execute speed, and high flexibility. The proposed
AFWNNC system is applied to the DC motor. Thereare 7
rulesin the used FWNN with the diding surface s as the
input variable. The parameters w,, in the “Mexican hat”
mother wavel et function are fixed as o, = 1 for k=1 and
i =1,2,..., 7; the parameter vectors of the Gaussian

membership functions are initial from ¢ = [0.2, 0.2, 0.2,

o
| B
|

AD/DA N A® pr :
and e ) A ]
motor dr o - = \ W
Altera Cyclone III DC encoder
FPGA board motor

Figure 7: The Experimenta Setup
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0.2,0.2,0.2,0.2]"and ¢ = [-1, -0.6, -0.3, 0, 0.3, 0.6, 1]T;
and theinitia output connections o, areinitiated from zeros.
The choices of theseinitial values arethrough sometrialsto
achieve satisfactory control performance. Moreover, a
second-order transfer function is chosen as the reference
model for a periodic step command

W, 64

S+ 28w, S+wW.  S®+16S+64
where Sis the Laplace operator; £ and w_ are the damping
ratio and undamped natural frequency. To illustrate the
effectiveness of the proposed design method, a comparison
between a supervisory recurrent fuzzy neural network control
(Lin & Hsu, 2004), the proposed AFWNNC system with
integral type adaptation law and the proposed AFWNNC
system with PID type adaptation law ismade.

(45)

First, the supervisory recurrent fuzzy neural network
control (Lin & Hsu, 2004) isapplied to the DC motor. The
experimental results of thesupervisory recurrent fuzzy neura
network control system are shown in Fig. 8. The tracking
responseis shown in Fig. 8(a); the associated control effort
is shown in Fig. 8(b); and the tracing error is shown in

4

-tracking response

. position
. command

- rotor
. position :
27rad - -
I i ©lisec -
B . R R
(a)
“control effect-
M[ﬂl- (It |.|Ildmﬂll- (| )
- IDmEENN (MDD NI/ | | ] | —
v e
X T © lIsec -
(b)
itrackirflg error
N wnd n Y
1dau

UL N M ) — A .

. At A <

7 rad

—

Figure 8: Experimental Results of Supervisory Recurrent Fuzzy
Neurad Network Control

Fig. 8(c). The experimental results show favorabl etracking
performance can be achieved; however, the convergence of
thecontraller parameter and tracking error isdow. And, there
existsthe undesirable control chatteringin Fig. 8(b). Then,
the AFWNNC sysem is applied tothe DC motor again. The
control parametersare selected ask = 6,k,=12,k,=8,n_
=n.,=1,®=05andn, = n =01 All the gainsin the
AFWNNC system are chosen to achieve good transient
control performance in the experiment considering the
requirement of stability condition. The experimental results
of the AFWNNC system with integral type adaptation law
(n, = 30, n, = n, = 0) are shown in Fig. 9. The tracking
responseis shown in Fig. 9(a); the associated control effort
isshownin Fig. 9(b); and thetracing error isshown in Fig.
9(c). The experimental results show favorable tracking
performance can be achieved; however, the convergence of
the controller parameter and tracking error is sow. The
experimental results of theARWNNC system with PID type
adaptation law (n, = 30, n, = 5, n, = 0.1) are shown in
Fig. 10. The tracking response is shown in Fig. 10(a); the
associated control effort is shown in Fig. 10(b); and the
tracing error isshown in Fig. 10(c). Theexperimenta results
show the favorabl e tracking performance and no chattering
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* rotor -tracking response -
7 position :
-position ’ -
command

........ i

12 77 rad -~

J'. ; Isec

(W%

SRR ot -~ ;
: lsv i -~
T -~ 1sec
(b)
/\ tracking error
S B : AL - : " . .
Orad) | e i .
) A w\ r”“"*l' v D e
VI . : :
RN A S
V: Irz.rad i —
: : i  lsec -
(©)

Figure 9: Experimental Results of AFWNNC with Integral Type
Adaptation Laws
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Figure 10: Experimental Results of AFWNNC with PID Type
Adaptation Laws

phenomena can be achieved and the convergence of
controller parameter and tracking error converge quickly
with pay the price of a little larger computational load. In
summary, a comparison of the control performance and

International Journal of Computational Intelligence in Control

control characteristics between the supervisory recurrent
fuzzy neural network control, the AFWNNC system with
integral type adaptation law and theARWNNC system with
PID type adaptation law issummarized in Table 1. It isseen
the PID type adaptation law can achieve better tracking
performance than integral type adaptation law. Moreover,
the robust compensator not only can guarantee system
stability but alsodoesnot result in any chattering phenomena.

5. CONCLUSIONS

This paper has successfully implemented an adaptive fuzzy
wave et neural network control (AFWNNC) system for a
chaotic system and a DC motor. The proposed ARNNNC
system iscomposed of aneura controller with PID learning
law and a robust compensator. The PID learning law can
speed up the convergence of controller parameter and
tracking error, and the robust compensator can dispd the
approximation error to guarantee system stablebased on the
Lyapunov stability theorem. Finally, the effectiveness of the
proposed AFWNNC system has been verified by some
simulation and experimental results. The simulation and
experimental resultsverify (1) alearning algorithmin aPID
type form can achieve better tracking performancethan the
conventional learning algorithm; (2) the robust compensator
can guarantee system stability and it does not result in any
chattering phenomena; (3) the successful applications of the
AFWNNC system to control a chaotic system and a DC
motor.
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Table 1
Performance and Characteristic Comparison

controller maximum tracking computational stability chattering convergence
error (rad) time (msec) analysis phenomena speed

supervisory recurrent fuzzy neural network 1.809 0.371 Yes serious slow

control (Lin and Hsu, 2004)

AFWNNC system with integral type adaptation law 4.227 0.392 Yes none slow

AFWNNC system with PID type adaptation law 0.615 0.396 Yes none fast
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