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Abstract: In this paper, a robust adaptive backstepping control scheme using fuzzy neural networks, called FNN-ABC, is
proposed for a class of nonlinear uncertain systems with cascade structure. Each subsystem is in the form of lower triangular
and non-affine systems which contains of external disturbance, uncertainties, or parameters variations. By the backstepping
approach, a fuzzy neural network (FNN) based robust adaptive controller is designed in a step by step manner for each
subsystem. Two kinds of FNN systems are used to estimate the subsystems’ unknown functions. According to the FNNs’
estimations, the FNN-ABC control input can be generated by Lyapunov approach such that system output follows the desired
trajectory. To enhance the control performance (or FNNs’ approximation accuracy), a Taylor expansion method are adopted
to derive the update laws of FNNs’ antecedent-part parameters. Based on the Lyapunov approach, the adaptive laws of
FNNs’ parameters and stability analysis of closed-loop system are obtained. Finally, the proposed FNN-ABC is applied to
the tracking control of a single-link flexible-joint robot. A simulation study is proposed to illustrate the performances of our
approach.
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1. INTRODUCTION

Over the past decade, both fuzzy logic systems and neural
networks have found extensive applications for plants that
are complex and ill-defined. In most of these cases, they
have been used as universal approximators [1-6]. Recently,
they have been merged to obtain the fuzzy neural network
(FNN) systems (or neuro-fuzzy systems) and have the
advantages of both fuzzy logic and neural networks. Based
on the approximation ability, many adaptive control
techniques are accompanied with them for approximation
of system functions or controllers [4, 7-20].

The backstepping design provides a systematic
framework and recursive design methodology for nonlinear
systems [7, 8, 11, 16, 21]. The design procedure treats the
state variables as virtual control inputs, to design step by
step to design the virtual controllers and prove the stability
by Lyapunov stability theorem. The actual control input can
be obtained in the final step. However, the major constraint
is that the system functions must be known. If the internal
uncertainty and external disturbance exist, then the system
maybe become unstable. Therefore, the FNNs are used to
approximate the unknown functions to solve this problem.

Recently, newly backstepping control schemes that
combine the backstepping technique and neural networks
were proposed for nonlinear systems with the lower
triangular form (or the nested lower triangular form) [6, 11,
15, 19]. However, most of these approaches still have some
constraints, e.g., the gain functions of control input were

assumed to be constants (or exactly known). Besides, they
are also limited to the feedback linearizable nonlinear
systems, which mean that the unknown nonlinearities must
satisfy a matching condition. However, many real-world
systems do not satisfy such a condition, especial non-affine
system. The problem of controlling non-affine system is a
difficult one [14, 17-20]. To treat the problem, widely used
in practice, is that based or linearization of the nonlinear
plant model around an operating point. While the
linearization may result in the design of sufficiently accurate
controllers in the case of stabilization, in the case of tracking
of desired trajectories the problem becomes much more
difficult. Hence there is a clear need for the development of
systematic control design techniques for nonlinear models
that are non-affine in u, and are suitable for the case of
tracking of desired trajectories.

In this study, we proposed an FNN-based robust
adaptive backstepping control scheme (FNN-ABC) for a
class of nonlinear cascade systems with lower triangular non-
affine form, i.e., it is not in feedback linearizable form. This
controller is designed in the concept of the backstepping
control procedure, and the FNNs are used to estimate the
unknown system functions online. The adaptive laws of
FNNs’ parameter are obtained by the Lyapunov approach;
therefore the tracking error can be guaranteed uniformly
ultimately bounded (UUB).

This paper is organized as follows. Section 2 introduces
the problem formulation, design procedure of backstepping
controller, and FNN systems. The FNN-ABC robust control
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scheme is introduced in Section 3. The stability analysis is
guaranteed by the Lyapunov theorem. Section 4 shows the
simulation results of a single-link flexible-joint robot. Finally,
conclusion is given in Section 5.

2. PRELIMINARIES

2.1. Problem Formulation and Backstepping Controller

Consider the following nth-order nonlinear cascade system
as
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where � �1 2,  ,  ,  
T

i ix x x x� � i�� , i = 1, 2, …, n denote the

system state vectors; u�� and y�� are the input and output,
respectively. F

i
 and d

i,
 (i=1, 2) are the nonlinear smooth

functions and bounded external disturbance, respectively.
System (1) cannot be stabilized by feedback linearization
approach. Note that system (1) can be viewed as two
subsystems in cascade structure, each subsystem is lower
triangular and non-affine. The problem of controlling
nonlinear non-affine system is a difficult one. In this paper,
the control objective is to design the control input u such
that the output y follows a desired bounded trajectory y

d
.

The following assumptions are made for the controllability
of system (1).

Assumption 1:  The inequality

� �1 1 1 1, ,  0p p pF x x d x� �� � �  hold for all 1
1

p
px �
� �� .

Assumption 2: The inequality � �2 , ,  0n nF x u d u� � �

holds for all � �,n xx u �� ��  with a controllability region

�
x
.

The above assumptions imply that the

� �1 1 1 1, ,  p p pF x x d x� �� �  and � �2 2, ,  nF x u d u� �  are strictly

either positive or negative.

We define the state transformation z
i
 = x

i
, q

j
 = x

p+j
, i = 1,

..., p, j = 1, ..., m, p + m = n. System (1) can be viewed as
two connected subsystems
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and
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According to the concept of literature [14], subsystems
(2) and (3) can be written as
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where � �1 1 1 1 1 1, ,  ph F z q d c q� � ,

� �2 2 2 2, , ,  p mh F z q u d c u� � , and c
1
, c

2
 are design nonzero

constants. Then subsystems (4) and (5) are lower triangular

and affine-like. Let � �1
1 1 1   

Tpz z z �� �� � �z � �  1 2   
T

pz z z� �� � ��

p�� , q = � �1
1 1 1   

Tmq q q �� �� �� � � �1 2   
T m

mq q q� ��� . TheThe

desired output dz  of z-subsystem and its derivative are

assumed to be bounded. In this paper, we use the
backstepping design procedure to design the stabilizing
controller for system (4)-(5).

Step 1: Define the tracking error e
z 
= y–y

d 
= z 

1
– z

d
 and

the corresponding error  vector  as

� �1   
Tp p

z z ze e e �� �� ��� �ze � � , then

� � � � � � � �
1 1 1 1

p p p p
z d de z z h c q z� � � � � . (6)

There exists a stabilizing virtual controller for (6)

� �� �1 1
1

1 pT
d dq z h

c
� � � �zk e (7)
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where k
1
 = [k

1p
, ..., k

11
]T is determined such that sp + k

11
sp–1

+...+ k
1p

 is Hurwitz. Let e
q
= q

1
– q

d
, thus

� �
1

p T
z qe c e� � �1 zk e (8)

or

1 qc e� �z 1 z 1e A e b� (9)

where
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Since A
1
 is stable (Hurwitz), there exists a positive

definite symmetric matrix P
1
 satisfies

1 1 1 1 1
T � � �A P P A Q (10)

for an arbitrary positive definite matrix Q
1
. The Lyapunov

candidate function is chosen as

1

1

2
V � T

z 1 ze P e (11)

such that

1 1

1
.

2 qV c e� � � �T T T
z 1 z z 1 z z 1 1e P e e Q e e P b� � (12)

Step 2: As the definition in step 1, e
q
= q

1
–q

d
 and the

corresponding error vector as e
q
= � �1   

Tm m
q q qe e e �� � ��� �� � .

The derivative of ( 1)m
qe � is

� � � � � �( )
1 2 2

m m mm
q d de q q h c u q� � � � � . (13)

Actual control input u is designed as
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where � �2 2 21,  , 
T

mk k�k �  is determined such that

sm + k
21

sm–1 + ... + k
2m

 is Hurwitz. Substitute (14) into (13)
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A
2
 is Hurwitz, there exists a positive definite symmetric

matrix P
2
 satisfies
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2 2 2 2 2A P P A Q (17)

for positive definite matrix Q
2
. The following Lyapunov

candidate function is chosen
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q 2 qe P e , (18)

we then have
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Therefore, the asymptotically stability of system (1) is
guaranteed. However, since F

i
 (i=1, 2 ) are not exactly

known that include both internal uncertainties and external
disturbance, i.e., h

i
 (i=1, 2) are also unknown and controller

(14) maybe results unstable. Therefore, fuzzy neural network
(FNN) systems are used to estimate the unknown functions
h

1 
and h

2
. In addition, h

2
 depends on u and u appears in both

the left- and right-hand sides of (14). Therefore, a dynamic
neural network¡ÐRFNN is introduced to estimate h

2
.

Figure 1: Schematic Diagram of Recurrent Fuzzy Neural Network
(R Denotes the Amount of Rule Numbers)
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2.2. Fuzzy Neural Network Systems

Herein, we introduce the used recurrent fuzzy neural network
(RFNN) systems [9]. The schematic diagram of RFNN is
shown in Fig. 1. There are four layers. Layer 1 is input layer
and each node represents an input linguistic variable. The
nodes in this layer only transmit input variables to the next

layer, i.e., � � � �(1)
i iO k x k� . Layer 2- membership layer, is

used to calculate Gaussian membership grade, i.e.,

� � � �
� � � � � � � �� �� �
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2
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2
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ij

ij

O k O k m
O k
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(20)
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where m
ij
 and �

ij 
are the center and the width of the Gaussian

function, �
ij
 is the adjustable feedback parameter. It is worth

to mention, if we set �
ij
=0, the RFNN can be reduced as the

FNN system [4, 9]. Nodes in layer 2 represent the terms of
the respective linguistic variables. Nodes in layer 3 represent
fuzzy rules, i.e., layer 3 forms the fuzzy rule base. Links
before layer 3 represent the antecedent part of fuzzy rules,
and the links after layer 3 represent the consequence part.
The product operation is used, i.e.,

� � � �(3) (2)
j ij

i

O k O k�� . (21)

Layer 4 is the output layer. Each node is for actual output
to be pumped out this system. The links between layer 3
and layer 4 are connected by the weighting value w

j
, i.e.,

� �
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where w = [w
1
 w

2
, …, w

R
]T is the weighting vector;

1 2 , ..., R� �� � �ψ ψ ψ ψ , � � � �(3) (3)
R

j
j j

j

O k O k� �ψ  represents

the normalized value. By the results of [9], the RFNN is
suitable for on-line estimation. That is, for any given real
function hi : �n � �p, there exists optimal parameters, the
function h

i
 can be described by the output of the RFNN with

a reconstruction error. From (22), the FNN’s and RFNN’s
outputs are
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therefore, the unknown functions h
i
 are
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2 2 2 2 2 2, , ,T Th m x� � � � � � � �w ψ w ψ (24b)

where �
i
(i=1, 2) are the approximation errors; *

iw , � �* im ,

� �* i� , � �* i�  are the optimal vectors of w
i
, m(i), �(i), �(i) of the
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The linearization technique is employed to partially linear
form [12], we have
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or
� � � �1 1
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T T
mO m O H�� � � �ψ �� � (27a)
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where O
mi

, O�i
, and O�i

 are derivatives of ˆ
iψ  with respective

to � �* im , � �* i� , and � �* i�  at � � � � � �  i i im� �� �� �  = � � � � � �* * *  i i im� �� �� � ;
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where � � � �� �* 1 * 1*
1 1 1 1 1 1 1

T T T T
mH O m O�� � � � � � �w w�  and

� � � �* 2 * 2*
2 2 2 2 2 2(T T T T

mH O m O�� � � � �w w� � �* 2
2 2)TO� � � �  a re

assumed to be bounded by |�
i
| � D

i
, i=1, 2.

Our objective is to design a control scheme for system
(1) under unknown system functions such that the output y
follows a desired trajectory y

d
. FNNs are used to estimate

the unknown functions as above discussion, and then the
FNN based adaptive backstepping control scheme can be
designed.

3. ROBUST ADAPTIVE BACKSTEPPING CONTROL
USING FNNS (FNN-ABC)

The block diagram of our proposed robust FNN-based
adaptive backstepping control scheme (FNN-ABC) for
nonlinear cascade systems (1) is shown in Fig. 2. Each virtual
controller and actual controller contains three parts- linear
state feedback controller, FNN’s nonlinear function
estimation, and robust controllers. The inputs of FNN and

RFNN are 1 2[ , ,..., ]T
p px x x x�  and 1 2[ , ,..., ]T

n nx x x x� .

They are used to estimate the unknown functions h
1
 and h

2
,

denote as 1̂h  and 2̂h , respectively. Thus, we have the

following theorem.

Theorem 1: Consider nonlinear cascade system (1)
satisfying Assumptions 1 and 2, the corresponding virtual
controller and control input are designed as

� �� �1 1 1
1

1 ˆpT
d d rq z h u

c
� � � � �zk e (29)

� �1

2 2 2
2

1 ˆq mT
d r

c e
u q h u

c

� �
� � � � � �� �

� �

T
z 1 1

q T
q 2 2

e P b
k e

e P b (30)

� �1 1 1
ˆ sat ,  Jru � �� T

z 1 1e P b (31)

� �2 2 2
ˆ sat ,  Jru � �� T

q 2 2e P b (32)

where u
ri
 (i = 1, 2) represent the robust control inputs, îh

are the FNNs’ approximation of function h
i
 (i = 1, 2), ˆ

i�
are the estimations of �

i
 (i=1, 2), the estimated errors is

defined as ˆ
i i i� � � � �� . The following corresponding

parameter update laws of FNNs are chosen

� � � �� �1 1
1 1 1 1 1

ˆˆˆ ˆT T
mr O m O�� � � �T

w z 1 1w e P b ψ� (33)

� �1
1 1 1ˆ ˆm mm r O� T

z 1 1e P b w� (34)

� �1
1 1 1

ˆ ˆr O� �� � T
z 1 1e P b w� (35)

� � � � � �� �2 2 2
2 2 2 2 2 2 2 2

ˆˆˆˆ ˆT T T
mr O m O O� �� � � � � �T

w qw e P b ψ� (36)

� �2
2 2 2 2 2ˆ ˆm mm r O� T

qe P b w� (37)

� �2
2 2 2 2 2

ˆ ˆr O� �� � T
qe P b w� (38)

� �2
2 2 2 2 2

ˆ ˆr O� �� � T
qe P b w

� (39)

1 1
ˆ a� � T

z 1 1e P b
�

(40)

2 2
ˆ a� � T

q 2 2e P b
�

(41)

where r
wi

, r
mi

, r�i
, i = 1, 2 and r�2

 are the parameter adaptive
rates. Then, the tracking error is guaranteed uniformly
ultimately bounded (UUB) if J

1 
> 0 and J

2 
> 0

 
keep

sufficiently small.

Proof: Herein,  we prove it by the concept of
backstepping approach.

Step 1: According to equations (4) and (29), the error
dynamics is

� � � � � �
1

1 1 1

p p p
z d

T
q r

e z z

c e h u

� �

� � � � �1 zk e � (42)

or in matrix representation

� �
� � � �� �

� � � �� � �

1 1 1

1 1
1 1 1 1 1

1 1
1 1 1 1 1

ˆˆ ˆ    

ˆ

q r

T T T
q m

T T T
m r

c e h u

c e O m O

O m O u

�

�

� � � �

�� � � � � ��

� � � �� �

z 1 z 1

1 z 1

e A e b

A e b w ψ

w

��

�

��
(43)

Design the Lyapunov candidate function

� � � �

� � � �

1 1
1 1 1

1 1

1 1 2
1

1 1

1 1 1

2 2 2

1 1

2 2

TT

m

T

V m m
r r

r a�

� � �

� � � � �

T
z 1 z

w

e P e w w� � � �

�� �
(44)

such that

� � � � � � � �1 1 1 1
1 1 1 1 1

1 1 1 1

1 1 1 1 ˆˆˆ ˆ
T TT

m

V m m
r r r a�

� � � � � � � � �T
z 1 z

w

e P e w w
��� � �� �� � �
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� � � �� �
� � � �� �

1 1
1 1 1 1 1

1 1
1 1 1 1

1
ˆˆ ˆ

2

ˆ

T T T
q m

T T T
m

c e O m O

O m O

�

�

�� � � � � � ��

� � � � �

T T
z 1 z z 1 1e Q e e P b w ψ

w

�

��

� � � � � � � � �

� � � �� �
� � � �

� � � � � � � � �

1 1 1 1
1 1 1 1 1

1 1 1 1

1 1
1 1 1 1 1

1 1
1 1 1 1

1 1 1 1
1 1 1 1 1 1

1 1 1 1

1 1 1 1 ˆˆˆ ˆ     

1
ˆˆ ˆ    

2

ˆ ˆ

1 1 1 1 ˆˆˆ ˆ       

T TT
r

m

T T T
q m

T T

m

T TT
r

m

u m m
r r r a

c e O m O

m O O

u m m
r r r a

�

�

�

�

� � � � � � � � �

�� � � � � � ��

� � �

� � � � � � � � � � �

w

T T
z 1 z z 1 1

w

w w

e Q e e P b w ψ

w w

w w

��� � ��� �

�

��

��� � ��� �

� � � �� �
� � � � � � � �

� �

1 1
1 1 1 1 1

1

1 1 1 1
1 1 1 1

1 1

1 1 1 1 1
1

1 1
ˆˆ ˆ ˆ    

2

1 1 ˆˆ ˆ ˆ       

1 ˆ       .

T T T
m

T T

m
m

q r

O m O
r

m O m O
r r

c e u
a

�

�
�

� �
� � � � � � �� �

� �
� �� �

� � � � � �� � � �� � � �

� � � � � � �

T T
z 1 z z 1 1

w

T T
z 1 1 z 1 1

T
z 1 1

e Q e w e P b ψ w

e P b w e P b w

e P b

��

�� ��

��

(45)
Substituting (33)-(35) into (45), we obtain

� �1 1 1 1 1 1
1

1 1 ˆ
2 q rV c e u

a
� � � �� � � � �T T

z 1 z z 1 1e Q e e P b
��� (46)

Step 2: Finally, we have

� � � � � �� �
� � � � � �� �

1 2 2 2
2 2 2 2 2

2 2 2
2 2 2 2 2 2

ˆˆˆ ˆ

ˆ        .

q T T T T
m

T T T T
m r

c e
O m O O

O m O O u

� �

� �

�
� � � � � � � � ��

��
�� � � � � � � � �

T
z 1 1

q 2 q 2 T
q 2 2

e P b
e A e b w ψ

e P b

w

� �

���
(47)

Choose the Lyapunov candidate function

� � � �

� � � � � � � �

2 2
2 1 2 2

2 2

2 2 2 2 2
2

2 2 2

1 1 1

2 2 2

1 1 1

2 2 2

TT

m

T T

V V m m
r r

r r a� �

� � � �

� � � � � � � �

T
q 2 q

w

e P e w w� � � �

�� �� �
(48)

such that

� � � � � � � � � � � �

� � � � � �� �
� � � � � �� �

2 2 2 2 2 2
2 1 2 2 2 2

2 2 2 2 2

1 2 2 2
1 2 2 2 2

2 2 2
2 2 2 2 2 2 2

2

1 1 1 1 1 ˆˆˆˆ ˆ

1
ˆ

2

1ˆˆˆ ˆ

T T TT

m

q T T T T
m

T T T T
m r

V V m m
r r r r a

c e
V O m O O

O m O O u
r

� �

� �

� �

� � � � � � � � � � � � �

�
� � � � � � � � ��

��

�� � � � � � �� � ��

T
q 2 q

w

T
z 1 1T T

q 2 q q 2 2 T
q 2 2

w

e P e w w

e P b
e Q e e P b w

e P b

w ψ w

���� � ��� � �� � �

�� ��

� � � � � �

� � � � � � � �

2 2
2 2

2

2 2 2 2
2 2

2 2 2

1
ˆ ˆ

1 1 1 ˆˆˆ

TT

m

T T

m m
r

r r a� �

�

� � � � � � � � �

w� ��

��� ���

� � � � � �

� � � � � �� � � � � �

� � � � � � � �

1 2 2 2
1 2 2 2 2 2 2

2 2 2 2 2
2 2 2 2 2 2 2 2 2

2 2

2 2 2 2
2

2 2 2

1
ˆ ˆ ˆ    

2

1 1ˆˆˆ ˆ ˆ ˆ       

1 1 1 ˆˆˆ       

T T Tq T
m

TT T T T T
m r

m

T T

c e
V m O O O

O m O O u m m
r r

r r a

� �

� �

� �

�
� � � � � � � � ��

��

�� � � � � � �� � � ��

� � � � � � � � �

T
z 1 1T T

q 2 q q 2 2 T
q 2 2

w

e P b
e Q e e P b w w w

e P b

w ψ w w

�� ��

� �� � �

��� ���
2

(49)

By substituting (36)-(39) and (46) into (49), we obtain

� �

� �

2 1 1 1 1
1

2 2 2 2
2

1 1 ˆ
2

1 1 ˆ .
2

r

r

V u
a

u
a

� � � � � � � �

� � � � � � �

T T
z 1 z z 1 1

T T
q 2 q q 2 2

e Q e e P b

e Q e e P b

���

�� (50)

The robust controllers and �̂ ’s adaptive laws are

designed as (31), (32), (40) and (41). Therefore, we obtain

� � � �
� � � �

2 1 1 1 1 1

2 2 2 2 2

1 ˆ ˆsat ,  J
2
1 ˆ ˆ       sat ,  J
2

V � �� � � � � � � � � �� �

� �� � � � � � � � �� �

T T T T
z 1 z z 1 1 z 1 1 z 1 1

T T T T
q 2 q q 2 2 q 2 2 q 2 2

e Q e e P b e P b e P b

e Q e e P b e P b e P b

�

� � � � � �

� � � � � �

1 1 1 1 1

2 2 2 2 2

1 ˆ ˆ    sat ,  J
2

1 ˆ ˆ      sat ,  J
2

� � �� � � � � � �

� �� � � � � � �

T T T T T T
z 1 z z 1 1 z 1 1 z 1 1 z 1 1 z 1 1

T T T T T T
q 2 q q 2 2 q 2 2 q 2 2 q 2 2 q 2 2

e Q e e P b e P b e P b e P b e P b

e Q e e P b e P b e P b e P b e P b

� � � � � �

� � � � � �

1 1 1 1

2 2 2 2

1 ˆ    sat ,  J
2

1 ˆ      sat ,  J
2

� �� � � � � � � � �� �

� �� � � � � � � �� �

T T T T T T
z 1 z z 1 1 z 1 1 z 1 1 z 1 1 z 1 1

T T T T T T
q 2 q q 2 2 q 2 2 q 2 2 q 2 2 q 2 2

e Q e e P b e P b e P b e P b e P b

e Q e e P b e P b e P b e P b e P b

� � � �

� � � �

1 1 1 1

2 2 2 2

1 ˆ    sat ,  J
2

1 ˆ      sat ,  J
2

� �� � � � � � � � �� �

� �� � � � � � � �� �

T T T T T T
z 1 z z 1 1 z 1 1 z 1 1 z 1 1 z 1 1

T T T T T T
q 2 q q 2 2 q 2 2 q 2 2 q 2 2 q 2 2

e Q e e P b e P b e P b e P b e P b

e Q e e P b e P b e P b e P b e P b

� � � � � �

� � � � � �

1 1 1 1

2 2 2 2

1 ˆ    sat ,  J
2

1 ˆ      sat ,  J
2

� �� � � � � � � � �� �

� �� � � � � � � �� �

T T T T T
z 1 z z 1 1 z 1 1 z 1 1 z 1 1

T T T T T
q 2 q q 2 2 q 2 2 q 2 2 q 2 2

e Q e e P b e P b e P b e P b

e Q e e P b e P b e P b e P b

� � � �

� � � �

1 1

2 2

1 ˆ    sat ,  J
2

1 ˆ      sat ,  J
2

� �� � � � �� �

� �� � � �� �

T T T T
z 1 z z 1 1 z 1 1 z 1 1

T T T T
q 2 q q 2 2 q 2 2 q 2 2

e Q e e P b e P b e P b

e Q e e P b e P b e P b
(51)

where � �1sat ,  JT
z 1 1e P b  and � �2sat ,  JT

q 2 2e P b  are the saturate

functions that define as

� �
� � 1

1

1
1

sign ,  J

sat ,  J
        ,  J

J

� �
�

� �
��

�

T T
z 1 1 z 1 1

T T
z 1 1 Tz 1 1

z 1 1

e P b e P b

e P b e P b
e P b , (52)

� �
� � 2

2

2
2

sign ,  J

sat ,  J
        ,  J

J

� �
�

� �
��

�

T T
q 2 2 q 2 2

T T
q 2 2 q 2 2 T

q 2 2

e P b e P b

e P b e P b
e P b . (53)

Thus, the condition 1J�T
z 1 1e P b  and 2J�T

q 2 2e P b

imply 2 0V �� , the errors e
z
 and e

q
 are guaranteed UUB within

a small region if J
1
 and J

2 
are positive and keep arbitrarily

small. This completes the proof. ¡%

4. SIMULATION RESULT

In this section, a single-link flexible-joint robot is presented
to show the performance of our proposed adaptive
backstepping control scheme. The single-link flexible-joint
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robot arm is shown in Fig. 3 [22] and the corresponding
system model is

� �
� �

1 1 1 1 2

2 2 1 2

sin 0

                  

I mgl k

I k u

� � � � � � � �

� � � � � �

��

�� (54)

where �
1
 and �

2
 are the angles of the link and of the motor

shaft, respectively; m is the total mass of the link; I
1
 and I

2

are rotor inertias of the link and the motor, respectively. l
denote the distance from the motor shaft to the center of
mass of the link, g is the acceleration constant due to gravity,
k is the torsional spring constant, and u is the torque applied
to the motor shaft. System (54) can be expressed in the form

of (1) by 1 1 2 1 3 2 4 2, , ,x x x x� � � � � � � �� �

� �

� �

1 2

2 1 1 3
1 1

3 4

4 1 3
2 2

sin

1
.

x x

mgl k
x x x x

I I

x x

k
x x x u

I I

�

� � � �

�

� � �

�

�

�

�

(55)

The desired trajectory is x
1d

 = sin(t). The parameters
values are given by mgl=10, k=100, I

1
=100, I

2
=10. The

design parameters are k
1
 = k

2
 = [64, 16]T; c

1 
= 1, c

2 
= 0.1; P

1

= P
2 
= 

1   0

0   1

� �
� �
� �

; �
1
 = �

2
 = 0.01; � � � �1 2

ˆ ˆ0 0 2� � � � ; J
1 
= J

2 
=

0.1. And the parameters of RFNN and FNN are chosen as
shown in Table 1.

Figure 2: The Robust FNN-based Adaptive Backstepping Control Scheme for Nonlinear Cascade System (1)

Figure 3: Single-link Flexible-joint Robot Arm [22]

Table 1
Network Structures and Initializations of the FNN and RFNN

FNN RFNN

Network structure [3-15-5-1] [4-20-5-1]

m
ij

[-2, -1, 0, 1, 2] [-2, -1, 0, 1, 2]

�
ij

1 1

�
ij

None 0

Simulation 1: Stability illustration.

The comparison of these two approaches (FNN-ABC
1

and FNN-ABC
2
) is introduced in Table 2. The initial

condition is set to be � � � �4 0 /12,  0, / 6 ,  0
T

x � � � . Figure 4

shows the simulation results with tracking error- RMSE=
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4.1525×10–4. Figure 4(a) shows reference and output
trajectories x

d
 and x

1
, respectively (dashed-line: desired

trajectory; solid-line: FNN-ABC result). Figures 4(b) and
4(c) show the tracking error and control effort, respectively.
These indicate that the closed-loop system is stable and
tracking error approaching to zero. The tracking control can
be achieved and performs well by our approaches.

Simulation 2: Robustness of FNN-ABC

Herein, the robustness of FNN-ABC is discussed.
Parameters I

1
 and I

2
 of nominal plant have 20% modeling

error, i.e., nominal plant- I
1
=100, I

2
=10; actual plant- I

1
=80,

I
2
=8. In addition, parameter k has 50% error, i.e., nominal

plant- k=100; actual plant- k=150. Figure 8 shows the

simulation results of FNN-ABC (state trajectory, tracking
error, and control effort). The stabilizing time is larger than
the simulation-1. The FNN-ABC performs well even if the
system modeling error occurs.

5. CONCLUSION

This paper has presented an FNN-based adaptive
backstepping control scheme (FNN-ABC) for a class of
nonlinear uncertain systems with cascade and lower
triangular non-affine form. Two kinds of FNN systems (FNN
and RFNN) are used to estimate the unknown functions. By
the Lyapunov stability approach, the stability of the control
system is guaranteed and the adaptive laws of FNNs’
parameters have been obtained. Besides, Taylor expansion
also has used to derive another kind of parameter adaptive
laws for reducing the effect of initialization and improving
the control performance. A single-link flexible-joint robot
has been presented to illustrate the effectiveness and
performance of FNN-ABC. By the backstepping design
procedure, FNN-ABC approach can be extended to the
nonlinear cascade system more than two subsystems.
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