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Abstract: In this paper, a robust adaptive backstepping control scheme using fuzzy neural networks, called FNN-ABC, is
proposed for a class of nonlinear uncertain systems with cascade structure. Each subsystemisin the form of lower triangul ar
and non-affine systems which contains of external disturbance, uncertainties, or parametersvariations. By the backstepping
approach, a fuzzy neural network (FNN) based robust adaptive controller is designed in a step by step manner for each
subsystem. Two kinds of FNN systems are used to estimate the subsystems' unknown functions. According to the FNNS
estimations, the FNN-ABC control input can be generated by Lyapunov approach such that system output follows the desired
trajectory. To enhance the control performance (or FNNS approximation accuracy), a Taylor expansion method are adopted
to derive the update laws of FNNs antecedent-part parameters. Based on the Lyapunov approach, the adaptive laws of
FNNs' parameters and stability analysis of closed-loop system are obtained. Finally, the proposed FNN-ABC is applied to
the tracking control of a single-link flexible-joint robot. A simulation study is proposed to illustrate the performances of our

approach.
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1. INTRODUCTION

Over the past decade, both fuzzy logic systems and neural
networks have found extensive applicationsfor plantsthat
are complex and ill-defined. In most of these cases, they
have been used asuniversal approximators[1-6]. Recently,
they have been merged to obtain the fuzzy neural network
(FNN) systems (or neuro-fuzzy systems) and have the
advantages of both fuzzy | ogic and neural networks. Based
on the approximation ability, many adaptive control
techniques are accompanied with them for approximation
of system functions or controllers[4, 7-20].

The backstepping design provides a systematic
framework and recursive design methodol ogy for nonlinear
systems[7, 8, 11, 16, 21]. The design procedure treats the
state variables as virtual control inputs, to design step by
step to design thevirtual controllersand provethe stability
by Lyapunov stability theorem. The actual control input can
be obtained in thefinal step. However, the major constraint
isthat the system functions must be known. If the internal
uncertainty and external disturbance exist, then the system
maybe become unstable. Therefore, the FNNs are used to
approximate the unknown functionsto solvethis problem.

Recently, newly backstepping control schemes that
combine the backstepping technique and neural networks
were proposed for nonlinear systems with the lower
triangular form (or the nested | ower triangular form) [6, 11,
15, 19]. However, most of these approaches till have some
congtraints, e.g., the gain functions of control input were

assumed to be constants (or exactly known). Besides, they
are also limited to the feedback linearizable nonlinear
systems, which mean that the unknown nonlinearities must
satisfy a matching condition. However, many real-world
systems do not satisfy such a condition, especial non-affine
system. The problem of controlling non-affine system is a
difficult one[14, 17-20]. Totreat the problem, widely used
in practice, is that based or linearization of the nonlinear
plant model around an operating point. While the
linearization may result in the design of sufficiently accurate
controllersin the case of stabilization, in thecase of tracking
of desired trajectories the problem becomes much more
difficult. Hencethereisaclear need for the devel opment of
systematic control design techniques for nonlinear models
that are non-affine in u, and are suitable for the case of
tracking of desired trajectories.

In this study, we proposed an FNN-based robust
adaptive backstepping control scheme (FNN-ABC) for a
class of nonlinear cascade sysemswith [ower triangular non-
affineform, i.e., itisnot in feedback linearizableform. This
controller is designed in the concept of the backstepping
control procedure, and the FNNSs are used to estimate the
unknown system functions online. The adaptive laws of
FNNs' parameter are obtained by the Lyapunov approach;
therefore the tracking error can be guaranteed uniformly
ultimately bounded (UUB).

Thispaper isorganized asfollows. Section 2 introduces
the problem formul ation, design procedure of backstepping
controller, and FNN systems. The FNN-ABC robust contral
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schemeisintroduced in Section 3. The stability analysisis
guaranteed by the Lyapunov theorem. Section 4 shows the
smulation results of asingle-link flexible-joint robot. Finally,
conclusion isgiven in Section 5.

2. PRELIMINARIES

2.1. Problem Formulation and Backstepping Controller

Consider thefollowing nth-order nonlinear cascade system
as

&

where X =[x, %,, ..., %|' e%'.i=1,2, ..., ndenotethe

system statevectors, ueR and yeR aretheinput and output,
respectively. F and d. (i=1, 2) are the nonlinear smooth
functions and bounded external disturbance, respectively.
System (1) cannot be stabilized by feedback linearization
approach. Note that system (1) can be viewed as two
subsystems in cascade structure, each subsystem is lower
triangular and non-affine. The problem of controlling
nonlinear non-affine system isadifficult one. In this paper,
the control objective isto design the control input u such
that the output y follows a desired bounded trajectory y,.
The following assumptions are madefor the controllability
of system (1).

Assumption 1 The

‘8F1(¥p, Xpoz Oy} /0%,

inequality

0 holdfor all X,,, eR"?.

Assumption 2: The inequality |oF, (X,,u, d,)/au|= 0

holds for all (in,u) eQ, xR with a controllahility region
Q.

X

The above assumptions imply that the

OF, (Ry: X1 0) /0%y, and OF,(X,,u, d,)/ou are strictly
either positive or negative.

We definethe statetransformationz = x, g =x ., i =1,
Py j=1,...,m p+ m=n. System (1) can beviewed as
two connected subsystems
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2=1,
2,=1

)

and

G =09,

0, =0

©)
G = F>(Z,, G, d).

According to the concept of literature [14], subsystems
(2) and (3) can bewritten as

=2
z,=1z
4
2,=h(2,,q, d)+cq
and
G =09,
G =0
©)
qm = hz(zp'_m'u' d2)+C2U
where h=F(z,q d)-cq,

h,=F, (fp.ﬁm.u. dz)—czu , and ¢, ¢, are design nonzero
congtants. Then subsystems (4) and (5) arelower triangular

T

andaffinelike. Let z=[z 2 2"V | =[z2 - z,]

e’ q =[G Oim’l)]T =la.q, - q,] en". The

desired output Z; of z-subsystem and its derivative are

assumed to be bounded. In this paper, we use the
backstepping design procedure to design the stahilizing
controller for system (4)-(5).

Step 1: Define the tracking error e, = y-y =z —z and

the corresponding error vector as
T
e, :|:eZ e - e(zpfl):| eRP  then
ez(p) — ép) —Z&p) —h+cq - ng)_ (6)

Thereexistsa stahilizing virtual controller for (6)

Oy = é(—klez +77 -h) @)
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wherek, = [k ..., k;]"is determined such that &° + ks
+..+ k1p isHurwitz. Let €= 0,— 0y thus

e/” = —kJe, +Cg, (8)
or
¢, =Ae, +b,ce, (9)
where
0 1 0 -+ 0 0 0
A= 0 O 1 -+ 0 0 b < 0
! N : R : and ' |:f.
_klp _k1p—l _klp—Z _ku _k11 1

Since A, is stable (Hurwitz), there exists a positive
definite symmetric matrix P, satisfies
AP +PA =-Q, (10)

for an arbitrary positive definite matrix Q,. The Lyapunov
candidatefunction ischosen as

1
v, = Ee: Pe, (11)
such that
. 1
V,=elPe, = —EeIQlez +e,Pbce,. (12)

Step 2: As the definition in step 1, e= 0,4, and the
. _ . m-1) T m
corresponding error vector ase = [eq & e{1 ] eR",

The derivativeof €™ is

e =" )" =h, +cu-q”. (13)
Actual control input uisdesigned as
1( . ePbce o )
u=—|-kje, —————+q," —h,
o ey, T 09
where k, =[K,,, ....k,] is determined such that

s"+ Kk, s™ + ... + Kk, isHurwitz. Substitute (14) into (13)

TP b, ce
(m) T e bG q
& =k ———— 15
“ * " elPb, (15)
or
[ elPb,ce, )
e, =Ae +b,| - e:szz (16)
where
0 1 0
0 1 0 O 0
A2= oo and b, =
_k2m _k2m—l k2w2 _k22 _k21 1

A, isHurwitz, there exists a positive definite symmetric
matrix P, satisfies
AP, +P,A, =-Q, (17)

for positive definite matrix Q,. The following Lyapunov
candidate function ischosen

1
A =V1+§e:P2eq, (18)
wethen have
V, =V, +e;Pé,
-1
=V, —Ee:Qzeq -e,Pbce,
(19)

1 1
= _EezTQlez - Ee:QZeq "

Therefore, the asymptotically stability of system (1) is
guaranteed. However, since F, (i=1, 2') are not exactly
known that include both internal uncertaintiesand external
disturbance, i.e., h (i=1, 2) arealso unknown and controller
(14) maybe results ungtable. Therefore, fuzzy neural network
(FNN) systems are used to estimate the unknown functions
h and h,. In addition, h, depends on uand u appearsin both
the left- and right-hand sides of (14). Therefore, adynamic
neural networkiDRFNN isintroduced to estimate h,.

T

Layer 4

Layer 3

Layer 2

Layer 1

Figure 1: Schematic Diagram of Recurrent Fuzzy Neural Network
(R Denotes the Amount of Rule Numbers)

2.2. Fuzzy Neural Network Systems

Herein, weintroduce the used recurrent fuzzy neural network
(RFNN) systems [9]. The schematic diagram of RFNN is
showninFig. 1. Therearefour layers. Layer 1isinput layer
and each node represents an input linguistic variable. The
nodesin thislayer only transmit input variables to the next

layer, i.e., Q¥ (k) =x (k). Layer 2- membership layer, is
used to cal cul ate Gaussian membership grade, i.e.,

2

([0 (k-2)-6, + 0 (k) -m)

("u )2

o? (k) = exp| -

]

(20)
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where m, and o, are the center and the width of the Gaussian
function, 0, istheadjustablefeedback parameter. Itisworth
tomention, if we set 0,=0, the RFNN can bereduced asthe
FNN system [4, 9]. Nodesin layer 2 represent the terms of
the respectivelinguigtic variables. Nodesin layer 3 represent
fuzzy rules, i.e., layer 3 forms the fuzzy rule base. Links
before layer 3 represent the antecedent part of fuzzy rules,
and the links after layer 3 represent the conseguence part.
The product operationisused, i.e,

07 (k) =1 101" (k). 1)

Layer 4 isthe output Iayer. Each nodeisfor actual output
to be pumped out this system. The links between layer 3
and layer 4 are connected by the weighting val uew, i.e,

R
> w09 (K)

y, =0 (k) =w'y = =

Sorw

i=1

(22)

where w = [w, w,, ..., W.]" is the weighting vector;

v! =00 (k / 2.0 (K) represents

the normalized value. By the results of [9], the RFNN is
suitable for on-line estimation. That is, for any given real
function hi : R" — $RP, there exists optimal parameters, the
function h can be described by the output of the RFNN with
areconstruction error. From (22), the FNN’s and RFNN’s
outputsare

h(X) = Yp

v=[v v vt

=Wy, =W, (233)

R(X) = v, = Wo, = Why (%, 67,67, ), (230)
therefore, the unknown functionsh, are

h=wy,+A, = wiT\y(m*(l), c®, X) +A (24a)
2) G*(Z), e*(z) ,X)+A2

where A (i=1, 2) are the approximation errors; w;, m,

hy = Wiy, + A, = W y(m' (24b)

, 9'() arethe optimal vectors of w, m?, o®, 69 of the
|th FNN, respectivey. From (23), thefunction estimated error
h satisfies

h=h-h
= w:T\l’: +A, _VAViT\T’i

- VAViT"l\’i + Ai (25)
i=12.
The linearization technique is employed to partially linear
form [12], we have

o oA oA
SEWO W W YWY,

= w:T\T’i +V~ViT\T’i + A4,
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i aﬁll(l) 1 i aﬁll(l) 7
S0 | o ac"
v ) )
. oy 21 oy 20
=Y = o (m® =)+ 5o (" -5")+H,
~ R . ) . .
G\TlRu) G\IIRu)
L 8m(1) | (LY L 36(1) Jgo_s0
(26a)
_aﬁll(z) 1 _aﬁll(z) 1
' om? o6
o aq’z(z) aq’z(z)
L I (m® - ) 3 (o -5
V=" |=|ém +| oc' s -o
-~ R(2) : ) . )
v a\iletz) a\ilém
L amkz) A2 -2 L actz) dlg2_52
_5\Tll(2) T
50?2
a‘pz(z)
+ 2 (e’(Z) 76(2))+ H
00 2
: (26b)
a‘T’R(Z)
L 60®@ | 0§
or
~ T (1) T ~(1
¥, = oMY + 05" + H, (27a)
T (2 T ~(2 T A(2
=0L,M? +0,6% +OL0% + H, (27b)

whereO _, O_, and O, arederivatives of , with respective

to m, 50, and o) at [m(i) o 9“)] = [m*(i) o' G*U)J;
Wo=w-w, mloml_g, &0=gl_gl,
o —g ™ _g; H, i=1, 2 are higher-order terms.

Substitute (27) into (25), we have
ﬁl =W,y W A,
=w, (O:ﬂm“) +0[6" + Hl) WL A,
—m? ) Lo (G*tl) &9 )}
+w1T H, + Wy, + A,
- o —0f6% )+ wi (o + 015"

= (W, + ¥, )" [ O] (mi®

+w, H, + W, (O;le* +0lc 1)+A1

= W] (q;l—o;ﬂm ~os" )+6v1 (o;lm +0O,6% )+u)1

(28a)
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HZ = W;T‘T’z +V~V;‘i’2 +4,
=w, (O;Zrh(z' +0,67 +0L,8% + H2)+ Wol, + A,
(m® =)+ O, (" ~62) + O, (0% 5 )}
W, H, +Wo g, + A,

= ‘i’; (‘i’z - O;zrh(z' - 0126(2' - OeTzé(z')

m2

=(W,+ v*vz)T [OT

+W] (O,m? + 01,57 + 0,8 )+ W) H,
+ W) (Of,m® +0Lc™@ + 06 )+ a,
; (‘i’z - O;zm(z' 70126(2' - OeTzé(z')

+W) (O;Zrh(z' +0[,6% + 06" ) +0,

(28b)

_ *T ~T T *(1) T *(1)
whereo, =w, H, +W, (Omlm +0,,0 )+A1 and
w, =wy H, + W (QL,m? +OT,c? OL,0@)+A, are

assumed to be bounded by |w,| <D, i=1, 2.

Our objective isto design a control scheme for system
(1) under unknown system functions such that the output y
follows a desired trgjectory y,. FNNs are used to estimate
the unknown functions as above discussion, and then the
FNN based adaptive backstepping control scheme can be
designed.

3. ROBUST ADAPTIVE BACKSTEPPING CONTROL
USING FNNS (FNN-ABC)
The block diagram of our proposed robust FNN-based
adaptive backstepping control scheme (FNN-ABC) for
nonlinear cascade sysems (1) isshown in Fg. 2. Each virtua
controller and actual controller containsthree parts- linear
state feedback controller, FNN’s nonlinear function
estimation, and robust controllers. The inputs of FNN and

RFENN are X, =[%,%,...X,]" and X, =[X,%,,... %]
They are used to estimate the unknown functionsh, and h,,
denote as h and h,, respectively. Thus, we have the
following theorem.

Theorem 1: Consider nonlinear cascade system (1)
satisfying Assumptions 1 and 2, the corresponding virtual
controller and control input are designed as

1 -
Oy = E(_kIeZ + Zx(jp) -h+ url) (29)
1( . ePbce o - )
u=—|-k,e, ————+ -h,+u
c, L 2% e:Psz (o hz r2) (30)
U, = -5, (elPb,, ) (31)
Uy, = ~8,5 (e} P;b,, J,) (32)

whereu, (i = 1, 2) represent the robust control inputs, ﬁ

are the FNNs' approximation of function h, (i = 1, 2), Si
are the estimations of 5, (i=1, 2), the estimated errors is
defined as Si =, _Si . The following corresponding
parameter update |aws of FNNs are chosen

VAVl = wle:PIbl (‘i’l - O;lm(l) - Olla(l)) (33)

A =1 _e"Pb,0 W, (34)

&(1) = o'le:PIbloo'lv,ill (35)

VAVz = rwzequzbz (‘i’z - O;zm(Z) - 0128(2) _OeTzé(Z)) (36)
P =1 ,elP,b,0,,W, (37)

g = czequzbzosz‘i'z (38)

0" = 1264 P2D,0,, W, (39)

81 =8 efl’lbl (40)

5, =a,elP,b,| (42)

wherer ,r . r_,i=1,2andr  arethe parameter adaptive
rates. Then, the tracking error is guaranteed uniformly
ultimately bounded (UUB) if J,> 0 and J,> O keep
sufficiently small.

Proof: Herein, we prove it by the concept of
backstepping approach.

Step 1: According to equations (4) and (29), the error
dynamicsis
ez(p) _ Zip) _ if)
=—kje, +ce +h+u,
or in matrix representation

(42)

¢, = A, +b, (qeq +h+ url)
_ (6 —orm? _oral
=A.e, +b, [CleG| +Ww, (\|11 o,,m”-0,c ) 43)
+W, (O;&rﬁ(l) +0 5" ) +®, +U,, |

Design the Lyapunov candidate function

(44)



1 1 (A A -
= —EeZTQ,eZ +e,Pb, [c:leOI +W, (\|11 —Op A" —Ollcs(l))
+W] (O m® +0L6" )+,
RSV TSR
lo1 a
= —EeTQ e +e'Pb [ e +w! (¢, —0O".mY -0
_2LlLLlquwllIll It 610)

1 ;=
+u,1]—r—w1w1

wl ml

U ~ ~T ~
+rit? OpW, +6% O,,w,

=0T A1)

1 ;s 1 _q7x 1 12
+ o, +U, |- —Www, - —m A - =Y M - =355,
rwl rml r(sl al
1 ~ o ~ 1.
= _EeIQ@l +V~VI |:eIP1b1 (‘l’l _O:v—nm(l) _Ollc’(l))_rwl:|
wl
([ ~ 1 a0) ool A 1)
+ril? LefPlbIOmlw1 ——m(l)J +6% LeIPlblOdw1 ——GmJ
rml ol
T 1:4
+e,Pb, (qeq + o, +u,1) -—3,9,.
a
(45)
Substituting (33)-(35) into (45), we obtain
7 1. T 1:32
V, = —Eeleez +e,Pb, (cleq + o, + url) —56161 (46)
Step 2: Finally, wehave
e,Pb.ce . .
€, =Ase, +b, |:lelC1q +W, (‘i’z - OrTnzm(Z) - OIZG(Z) 70329(2))
equb2 (47)
W (OT w2 T ~(2) T A(2)
w,(0,,M7 +0,,67 + 0,0 |+ w, + U, |.
Choose the Lyapunov candidate function
= T 1w ()" =(2)
V,=V,+_-e Pe + —wW,W,+ m< m
w2 m2
bt s, L ogerge, L (49)
rcz 2r92
such that
VyoVs et —Latd, - L Laege Lyerga L
w2 rm2 r(iZ rl)Z a?
o1 e'Pbce . - . ~
=V, - Ee:Qzeq +ejPyb, [—e:‘T‘bf‘ +W) (o;zmm +0,69 + OJzefﬂ)
4] (1, ~ O ~ 01,57 ~ 050 )+, + u,z}-riw;v*vz -rimfzfr*nm
w2 m2
_Lserge _ Lgerge 155
r(iZ rl)Z a'z
. Pb -
V- LerQue, +epp, | -9 5T G 4500w, + 6270w,
PAAREE e'Pb,

ST (A - ~ A 1 _;x 1 T
+ W) (\|l2 —O;Zm[zl —0:25[2] —O;ZG[Z])erZ + u,z}—r—w;w2 —r—rﬁm m?
w2 m2

1 _Tx 1 T4
_ = 5@T50 _ = @@

154,
rnz rSZ aQ

(49)
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By substituting (36)-(39) and (46) into (49), we obtain

; 1 1-2
V, = _Ee:Qlez +e;rP1b1 (031 + url)_gslsl
1 1:12
—Ee:Qzeq +erPb, (w, + urz)—géSzSz-

The robust controllers and §'’s adaptive laws are
designed as (31), (32), (40) and (41). Therefore, we obtain

V, = 7%ezTQlez +elPb, [0, -5,sa(e[Pb,, )| -(8,-5,)

e/Pb,|

,%eqTQzeq +el b, [0, ~5,5(e] Py, 3,) |- (5, -3, ) erpib|

I
|
K
©
o
N
+
e
=
—_
o
NS
el
=
|
(=2}

(e/Pb,)sat (e[ Pb,, 3,) -5, [e/ P, [ +3,

e/ Pb,|

-=elQ,e, +, (eqTszz)f 82(eT

1P.b,)st(elP,b,, J,) -5, [elP;b, |+ 5,[elP,b,|

1
= 7EeIQ1ez +o, (eIPlbl ) -5,

el b, [ +3,]

e/P,b,|~(¢/Pb, )sat(e]Pb,, 3,)]
—ZelQ,e, + , (¢IP,b, )~ 3, |eTP,b, |+ 5, [ |eTP,b, |~ (eI P,b, )sat (e[ P;b,, J,) ]

< 7%eIQlez +|o,] e:Plbl‘*(ezTPnbn)Sat(ele)nbnv J1)J

ePb,| -5,

el Pb,|+35,

- %e:Qzeq + o, |erP.b,| 8, e} P.b, |+ 8, ey P.b, |~ (e B,b, )sat (e b, 3,)]

1
= _EeIQlez + (‘0)1‘ _51)

eIPb, [+,

¢IPb,|~(e]Pb, ) (e]Pb,, 1 )]
_%e:Qzeq (0] =8, )[esByby |+ 3, [[er By |~ (€] P.b, )sat (e Bob,, 3, ]

1 ~
< —Eelee[ + 81[

ePb, |~ (cIPb, )sat(e]Pb,, Jl)]

R 51
_%e:Qzeq +8,][e1P,b,|~(esP,b, )sat(e]P;b,, 3, )| (51)

where sat(efP,bl, Jl) and sat(eqTszz, JZ) arethesaturate
functionsthat define as

sign(efPlbl), e:P1b1|2‘]1
sa(ePb,, 1)=1 eTpp, e'pb,[<3 > (5
—Jl v Yz R 1

sign(elP,b, ), [elP;b,[>J,
Sat(equzbz! ‘]2) = e:szz

5, |e:P2b2|<J2 SCE)

Thus, the condition [e}P,b,|>J, and |eqTP2b2|2 J,

imply V, <0, theerrorse, and e, areguaranteed UUB within
asmall region if J, and J,are positive and keep arbitrarily
small. Thiscompletes the proof. {%

4. SIMULATION RESULT

In thissection, asingle-link flexible-joint robot is presented
to show the performance of our proposed adaptive
backstepping control scheme. Thesingle-link flexible-joint
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robot arm is shown in Fig. 3 [22] and the corresponding
system model is

1,0, + mgl sin@, +k(6,-0,)=0
1,0,-Kk(6,-6,)=u

where 0, and 0, are the angles of the link and of the motor
shaft, respectively; mis the total massof thelink; |, and |,
are rotor inertias of the link and the motor, respectively. |
denote the distance from the motor shaft to the center of
mass of thelink, gisthe accd eration constant dueto gravity,
kisthetorsional spring constant, and uisthetorque applied
tothe motor shaft. System (54) can be expressed in theform

of (1) by X, =0,,% =0,,%,=0,,x, =6,

(54)

5(1=X2

. | K

xz=—”|'g snxl—l—(xl—xg)
1 1

X3=X4

(55)
.k 1
X, =|—(xl—x3)+|—u.

2 2

The desired trajectory is X, = sin(t). The parameters
values are given by mgl=10, k=100, 1,=100, 1,=10. The
design parametersarek, = k,=[64, 16]"; ¢, =1,¢,= 0.1, P,

10 “ “
=P,= {O 1};(11:(12:0.01; 8,(0)=58,(0)=2;3,=J,=

0.1. And the parameters of RFNN and FNN are chosen as
shown in Table 1.

| 1
1 . 11 i
I —>5 = a,|efPb 1 >0, =a,e;P.b I
; 1 1€, 540y —l X . > 2[€q 120, —I . ;
o 0,
| 11 |
1 11 1
I —dsatle’b,.1,) 1o ~dsatlePb,.1,) 1
| 11 |
| I 1 |
1 o 11 o 1
l‘ll} " Hl,
| 11 |
Z | e + i 1 1 e e"Phce + . I Pl ¥ .
d 2 LT (») ,}é_, le |22 a _kle — 2 U1 L (m) ,gé > e, A1 ant "oy
R ke, +z; o Gl _|_|"SI * X_ 2&q eIszz 44 o'y 2 | > >
| 11 |
| I 1 |
| I 1 I
I X, P 3 1 %, P— i !
I P > FININ 1 I I RKIEININ 2 I
| 1 1 |
1 11 i
| (| |
. . . 1
1 1 1 i
b oom om oo mm mm mm em e mm mm mm em e e Em = - 4 L oon om o om o mm e mm mm e mm mm e mm e e e |

Figure 2: The Robust FNN-based Adaptive Backstepping Control

mg

Figure 3: Single-link Flexible-joint Robot Arm [22]

Scheme for Nonlinear Cascade System (1)

Table 1
Network Structures and Initializations of the FNN and RFNN
FNN RFNN
Network structure [3-15-5-1] [4-20-5-1]
m, [2,-1,0,1,2] [-2,-1,0,1, 2]
S, 1 1
0. None 0

Simulation 1: Stability illustration.

The comparison of these two approaches (FNN-ABC,
and FNN-ABC) is introduced in Table 2. The initial

condition is set to be X, (0) =[x /12, 0,7/6, 0] . Figure4
shows the simulation results with tracking error- RM SE=



8

4.1525%10*“. Figure 4(a) shows reference and output
trajectories x, and x,, respectively (dashed-line: desired
trajectory; solid-line: FNN-ABC result). Figures 4(b) and
4(c) show thetracking error and contral effort, respectively.
These indicate that the closed-loop system is stable and
tracking error approaching to zero. Thetracking control can
be achieved and performswell by our approaches.

Simulation 2: Robustness of FNN-ABC

Herein, the robustness of FNN-ABC is discussed.
Parameters |, and I, of nominal plant have 20% modeling
error, i.e., nominal plant- I =100, 1,=10; actual plant- | =80,
[,=8. In addition, parameter k has 50% error, i.e., nominal
plant- k=100; actual plant- k=150. Figure 8 shows the
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Figure 4: Simulation Results of Single-link Robot Arm, (8) State

Trajectories x,(Dashed-line: Reference Trajectory X,

and silid-line: FNN-ABC Result); (b) Tracking Error;

(c) Control Effort
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Figure 5: Simulation Result-2 of FNN-ABC (State Trajectory,
Tracking Error, and Control Effort)
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simulation results of FNN-ABC (state trajectory, tracking
error, and contral effort). The stabilizing timeislarger than
the simulation-1. The FNN-ABC performswell even if the
system modeling error occurs.

5. CONCLUSION

This paper has presented an FNN-based adaptive
backstepping control scheme (FNN-ABC) for a class of
nonlinear uncertain systems with cascade and lower
triangular non-affineform. Two kinds of FNN systems (FNN
and RFNN) are used to estimate the unknown functions. By
the Lyapunov stability approach, the stability of the control
system is guaranteed and the adaptive laws of FNNsS
parameters have been obtained. Besides, Taylor expansion
also has used to derive another kind of parameter adaptive
lawsfor reducing the effect of initialization and improving
the control performance. A single-link flexible-joint robot
has been presented to illustrate the effectiveness and
performance of FNN-ABC. By the backstepping design
procedure, FNN-ABC approach can be extended to the
nonlinear cascade system more than two subsystems.
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