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Abstract

We prove a unique solvability of the Cauchy problem for a class of
second order semilinear Sobolev type equations. We use ideas and tech-
niques developed by G.A. Sviridyuk for the investigation of the Cauchy
problem for a class of first order semilinear Sobolev type equations and
by A.A. Zamyshlyaeva for the investigation of the high-order linear
Sobolev type equations. We also use the theory of differential mani-
folds following, say, Lang’s books. In the article we consider two cases.
The first one is where an operator A at the highest time derivative is
continuously invertible. In this case for any point from the tangent bun-
dle of the original Banach space there exists a unique solution lying in
this space as a trajectory. The second case, where the operator A is not
continuously invertible, is of great interest for us. Here we use the phase
space method. It consists in reducing a singular equation to a regular
one which is defined on a subset of the original Banach space consisting
of admissible initial values which is understood as a phase space. Under
the condition of polynomial boundedness of operator pencil in the case
where infinity is a removable singularity of its A-resolvent, a set, which
is locally a phase space of the original equation, is constructed. In the
last section the abstract theory is applied to an initial-boundary value
problem for Boussinesque – Löve equation.
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1 Introduction
Let Ω ⊂ Rn be a bounded domain with boundary ∂Ω of class C∞. We consider
initial-boundary value problem

u(x, t) = 0, (s, t) ∈ ∂Ω× R, (1.1)

u(x, 0) = u0, ut(x, 0) = u1, (1.2)

for the Boussinesque – Löve equation

(λ−∆)utt = α(∆− λ′)ut + β(∆− λ′′)u + ∆f(u), (1.3)

given in the cylinder Ω×R. Here u(x, t) denotes the unknown function, f(u)
is a given nonlinear function, subscript t indicates partial derivative in t and
∆ denotes the Laplace operator in Rn. Equation (1.3) arises in a wide variety
of physical systems. For example, equation (1.3) with n = 1 describes a
continuum limit of a one-dimensional nonlinear lattice, shallow-water waves
[1, p.403], longitudinal vibrations of an elastic rod provided inertia and external
load and the parameter λ can take negative value.[1, p.403]

In suitable Banach spaces U and F problem (1.1) – (1.3) can be reduced to
the operator differential equation

Aü = B1u̇ + B0u + N(u) (1.4)

with initial conditions
u(0) = u0, u̇(0) = u1 (1.5)

where A,B0, B1 ∈ L(U; F) and N ∈ C∞(U; F).
The problem (1.4), (1.5) with noninvertible operator A having nontrivial

kernel, is of great interest for us. Such equations are commonly referred to
as Sobolev type equations. It is well known that the Cauchy problem for the
Sobolev type equation may not solvable for arbitrary initial values. To our
opinion the most fruitful (taking into account the existing applications) way
for investigation of this equation is the phase space method [2] which was
suggested by G.A. Sviridyuk in the study of the first order semilinear Sobolev
type equations. Later this method was developed in [3, 4, 5, 6]. Essence of the
method consists in reducing the singular equation to a regular one given on a
subset of the original Banach space consisting of admissible initial values that
is understood as a phase space of given equation.
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Our purpose is to propagate ideas of the phase space method to the case
of second order equation. In this paper we use the relatively polynomially
bounded operator pencil theory [3], which was developed for investigation of
the higher order Sobolev type equations, and the theory of differential mani-
folds following [7].

Besides introduction and references, the article includes three sections. The
first section presents the relatively polynomially bounded operator pencil the-
ory [3]. The second section contains the main results on the solvability of
abstract problem (1.4), (1.5). In the last section the abstract results are ap-
plied to problem (1.1) – (1.3).

All problems are considered in the real Banach spaces, but for spectral
problem we introduce their natural complexification. By expression TM we
denote the tangent bundle of the set M. All contours are oriented counter-
clockwise motion and they limit a domain lying to the left of the contour.
Symbol I denotes unit operator.

2 Relatively polynomially bounded
operator pencil

By
−→
B we denote the operator pencil of operators B1, B0 [3, 8].

Definition 1. The sets ρA(
−→
B ) = {µ ∈ C : (µ2A−µB1−B0)

−1 ∈ L(F; U)} and
σA(

−→
B ) = C \ ρA(

−→
B ) are called A-resolvent set and A-spectrum of pencil

−→
B ,

respectively.

Definition 2. The operator-function RA
µ (
−→
B ) = (µ2A − µB1 − B0)

−1 with
domain ρA(

−→
B ) is called A-resolvent of pencil

−→
B .

Definition 3. The operator pencil ~B is called polinomially bounded relative
to operator A ( or polinomially A-bounded) if ∃a ∈ R+ ∀µ ∈ C (|µ| >

a) ⇒ (RA
µ ( ~B) ∈ L(F; U)).

Remark 1. If there exists operator A−1 ∈ L(F; U), the pencil ~B is A-bounded.
If A,B1 are null operators and B−1

0 ∈ L(F, U) exists, the pencil ~B is A-bounded.

Introduce the additional condition
∫

γ

RA
µ ( ~B)dµ ≡ O (2.1)

where contour γ = {µ ∈ C : |µ| = r > a}.
Remark 2. If operator A−1 ∈ L(F; U) exists, condition (2.1) is fulfilled.
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Lemma 1. [3] Let the pencil ~B be polynomially A-bounded and condition (2.1)
be fulfilled. Then the operators

P =
1

2πi

∫

γ

RA
µ ( ~B)µAdµ, Q =

1

2πi

∫

γ

µARA
µ ( ~B)dµ

are projectors in spaces U and F respectively.

Introduce the notation U0 = ker P, F0 = ker Q, U1 = im P and F1 = im Q.
By lemma 1 U = U0 ⊕ U1 and F = F0 ⊕ F1. By symbols Ak (Bk

l ) we denote the
restrictions of operators A (Bl) to Uk, k = 0, 1; l = 0, 1.

Theorem 2. [3] Let operator pencil ~B be polynomially A-bounded and con-
dition (2.1) be fulfilled. Then

(i) Ak ∈ L(Uk; Fk), k = 0, 1;
(ii) Bk

l ∈ L(Uk; Fk), k = 0, 1, l = 0, 1;
(iii) operator (A1)−1 ∈ L(F1; U1) exists;
(iv) operator (B0

0)
−1 ∈ L(F0; U0) exists.

By theorem 2 we can construct operators H0 = (B0
0)
−1A0 ∈ L(U0) and

H1 = (B0
0)
−1B0

1 ∈ L(U0).

Definition 4. Define the family of operators {K1
q , K

2
q } by:

K1
1 = H0, K2

1 = −H1,
K1

q+1 = K2
q H0, K2

q+1 = K1
q −K2

q H1, q = 1, 2, . . . .

Definition 5. The point ∞ is called
(i) a removable singularity of A-resolvent of the pencil ~B if K1

1 ≡ O and
K2

1 ≡ O;
(ii) a pole of order p ∈ N of A-resolvent of the pencil ~B if K1

p 6≡ O and
K2

p 6≡ O, but K1
p+1 ≡ O, K2

p+1 ≡ O;
(iii) an essential singularity of A-resolvent of the pencil ~B if K2

k 6≡ O for
all k ∈ N.
Remark 3. Below a removable singularity of A-resolvent of the pencil ~B is
called a pole of order 0 for convenience.

Definition 6. If operator pencil ~B is polynomially A-bounded and the point
∞ is a pole of order p ∈ {0} ∪ N of A-resolvent of the pencil

→
B, operator

pencil ~B is called (A, p)-bounded.

162



3 The abstract problem
Definition 7. If a vector-function u ∈ C∞((−τ, τ); U), τ ∈ R+ satisfies equa-
tion (1.4), it is called a solution of this equation. If a vector-function satisfies
condition (1.5) then it is called a solution of problem (1.4), (1.5).

If operator A−1 ∈ L(F; U) exists, equation (1.4) can be trivially reduced to
the equivalent equation

ü = F (u, u̇) (3.1)

where the operator F is from C∞-class by construction. The existence of a
unique solution of problem (1.4), (1.5) for all (u0, u1) ∈ TU = U × U follows
from classical results [7, p. 104].

If ker A 6= {0}, there arises the problem of constructing a phase space [2,
p.99] for equation (3).

Definition 8. The set P is called a phase space of equation (1.4) if
(i) for all (u0, u1) ∈ TP there exists a unique solution of problem (1.4), (1.5);
(ii) a solution u = u(t) of the equation (1.4) lies in P as a trajectory, i.e.
u(t) ∈ P for all t ∈ (−τ, τ).

Let ker A 6= {0} and operator pencil ~B be (A, 0)-bounded. Then by theorem
2 equation (1.4) can be reduced to equivalent system of equations

0 = (I −Q)(B0 + N)(u0 + u1),
ü1 = A−1

1 QB1(u̇
0 + u̇1) + A−1

1 Q(B0 + N)(u0 + u1),
(3.2)

where u1 = Pu, u0 = (I − P )u.
Now consider the set M = {u ∈ U : (I − Q)(B0u + N(u)) = 0}. Let u0 be

a point of the set M. Introduce the notation u1
0 = Pu0 ∈ U1.

Definition 9. The set M is called a Banach Ck-manifold at point u0 if there
exist neighborhoods O ⊂ M and O1 ⊂ U1 of points u0 and u1

0, respectively,
and Ck diffeomorphism δ : O1 → O such that δ−1 is a restriction of projector
P to O. The set M is called a Banach Ck-manifold simulated by the space U1

if it is a Banach Ck-manifold at any point. Connected Ck-manifold is simple
if any atlas is equivalent to the atlas consisting of only one chart.

Let M 6= ∅ (i.e. there exists a point u0 ∈ M) and the following condition
is fulfilled:

(I −Q)(B0 + N ′
u0

) : U
0 → F

0 is a toplinear isomorphism. (3.3)

Lemma 3. If condition (3.3) is fulfilled then the set M is a C∞-manifold at
the point u0.
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Proof. According to implicit function theorem [9, p.107] there exist neighbor-
hoods O0 ⊂ U0 and O1 ⊂ U1 of points u0

0 = (I −P )u0, u
1
0 = Pu0, respectively,

and the operator B ∈ C∞(O1;O0) such that u0
0 = B

(
u1

0

)
. Construct the

operator δ = I + B : O1 → M, δ
(
u1

0

)
= u0. Then the operator δ−1 together

with the set O1 forms a chart in M and it is a restriction of P on δ[O1] = O ⊂
M. 2

Apply the second order Frechet derivative δ′′(u1,v1) to the second equation
of system (3.2). Then, since

δ′′(u1,v1)ü
1 =

d2

dt2
(
δ(u1)

)
and δ(u1) = u,

we obtain the equation of form (3.1) defined on O where

F (u, u̇) = δ′′(u1,v1)A
−1
1 QB1u̇ + δ′′(u1,v1)A

−1
1 (B0 + N)(u).

By lemma 3 and the regular equations theory [7, p.104] we obtain

Theorem 4. Let the operator pencil ~B be (A, 0)-bounded, condition (2.1) be
fulfilled and N ∈ C∞(U; F). Then for any pair (u0, u1) ∈ TM under condition
(3.3) there exists a unique solution of problem (1.4) – (1.5) lying in M as a
trajectory.

4 Applications
Now let us turn to the Boussinesque – Löve equation (1.3) with boundary
condition (1.1). In order to reduce the problem (1.1), (1.3) to equation (1.4)
we set

U = {u ∈ W l+2
2 (Ω) : u(x) = 0, x ∈ ∂Ω}, F = W l

2(Ω),

where W l
2(Ω) is a Sobolev space and the operators A,B1, B0 are defined by

formulas A = λ−∆, B1 = α(∆−λ′) and B0 = β(∆−λ′′). For any l ∈ {0}∪N
the operators A,B1, B0 ∈ L(U; F) [3].

Denote by {λk}(σ(∆)) the eigenvalues of Dirichlet problem for the Laplace
operator ∆ in non-increasing manner taking into account their multiplicity.
Denote by {ϕk} the corresponding orthonormal (in the sense of the scalar
product of L2(Ω)) eigenfunctions. Since {ϕk} ⊂ C∞(Ω),

µ2A− µB1 −B0 =
∞∑

k=1

[(λ− λk)µ
2 + α(λ′ − λk)µ + β(λ′′ − λk)] < ϕk, · > ϕk

where < ·, · > is the scalar product in L2(Ω).
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Lemma 5. [3] Let one of the following conditions be fulfilled:
(i) λ 6∈ σ(∆);
(ii) (λ ∈ σ(∆)) ∧ (λ 6= λ′);
(iii) (λ ∈ σ(∆)) ∧ (λ = λ′) ∧ (λ 6= λ′′).
Then the pencil ~B is polynomially A-bounded.

Let conditions (i) or (iii) of lemma 5 be fulfilled. Then condition (2.1)
takes place. If (λ ∈ σ(∆))∧ (λ 6= λ′), i.e. condition (ii) of lemma 5 is fulfilled,
(2.1) doesn’t take place, therefore we eliminate it from further consideration.
The A-spectrum of pencil ~B consists of solutions µ1,2

k of the equation

(λ− λk)µ
2 + α(λ′ − λk)µ + β(λ′′ − λk) = 0, k ∈ N.

In further consideration we need regularity theorem [10, p. 282] that in
our case takes the form

Lemma 6. Let f be C∞(R) and l + 2 > n/2 then N : u → ∆f(u) belongs to
C∞(U; F) class.

Thus reduction of problem (1.1) – (1.3) to abstract problem (1.4) – (1.5)
is completed. By lemma 1 we construct projector P :

P =





I if (i) of lemma 6 is fulfilled,

I−
∑

λ=λk

〈·, ϕk〉ϕk if (iii) of lemma 6 is fulfilled.

Projector Q has the same form but it is given on the space F.
Specify l > n/2− 2 and construct the set

M =

{
U if (i) of lemma 6 is fulfilled,

{u ∈ U : 〈Mu + N(u), ϕl〉 = 0} if (iii) of lemma 6 is fulfilled

and space

U
1 =

{
U if (i) of lemma 6 is fulfilled,

{u ∈ U : 〈u, ϕl〉 = 0} if (iii) of lemma 6 is fulfilled.

In the first case, where λ /∈ σ(∆), since the set M coincides with space U, it is
C∞-manifold. In the second case, where λ ∈ σ(∆), if condition (iii) of lemma
6 and condition (3.3) are fulfilled, by lemma 3, M is a Banach C∞-manifold
at the point u0 ∈ M.

Theorem 7. (i) For all λ /∈ σ(∆), l > n/2 − 2, u0, u1 ∈ U and τ > 0 there
exists a unique solution u ∈ C∞(

(−τ, τ), U
)
of problem (1.1) – (1.3).

(ii) Let (λ ∈ σ(∆)) ∧ (λ = λ′) ∧ (λ 6= λ′′), l > n/2 − 2, (u0, u1) ∈ TM and
condition (3.3) be fulfilled. Then for τ > 0 there exists a unique solution
u ∈ C∞(

(−τ, τ), M
)
of problem (1.1) – (1.3).
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By (i) of theorem 6 the set M = U is a phase space of equation (1.3) in the
case λ /∈ σ(∆) . When condition (iii) of lemma 6 is fulfilled any solution of
problem (1.1) – (1.3) lies in M as a trajectory.
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