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Abstract
An existence of solution theorem is obtained for stochastic differ-

ential inclusions given in terms of the so-called current velocities (di-
rect analogs of ordinary velocity of deterministic systems) and quadratic
mean derivatives (giving information on the diffusion coefficient) on the
flat n-dimensional torus. The set-valued current velocity part has a
smooth selector and the set-valued quadratic part takes values in sym-
metric (2, 0) tensor fields with given (constant) determinant. The values
of current velocity parts are closed and bounded. The right-hand side of
quadratic part is upper semi-continuous, its values are closed, bounded
and satisfy some additional hypotheses that replace the convexity con-
dition.
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Introduction
In [2] an existence theorem for differential inclusions with current velocities
having single-valued part for quadratic mean derivative, was obtained under
some very strong conditions. Then in [8] in some sense the opposite problem
was considered, i.e., the current velocity part was single-valued and smooth
while the quadratic part was set-valued and took values in the symmetric
(2, 0)-tensors with unit determinant.
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In this paper we deal with the case where both current velocity and quad-
ratic parts are set-valued. We assume that the current velocity part has a
smooth selector (some conditions, under which this happens, are obtained,
say, in [1, 4]). For the set-valued quadratic right-hand side we assume that
it takes values in the symmetric (2, 0)-tensors with constant (equal to some
C > 0) determinant. The values of current velocity parts are closed and
bounded. The right-hand side of quadratic part is upper semi-continuous and
its values are closed, bounded and satisfy some additional hypotheses that
replace the convexity condition.

To avoid some technical difficulties we consider the inclusions on a flat
n-dimensional torus T n. This means that the torus is considered as a quotient
space of Rn relative to the integral lattice and that the Riemannian metric on
T n is inherited from the Euclidean metric in Rn. Everywhere below we use the
operations of addition and subtraction of points and integration in T n as in
Rn modulo factorization relative to the integral lattice. The construction and
notation of stochastic integrals and stochastic differential equations on T n are
the same as in Rn because of the use of Euclidean metric.

The detailed exposition of preliminary notions and facts used in the paper,
can be found in [7].

For convenience, here we repeat some basic definitions and constructions
from [8].

Everywhere in the paper we use Einstein’s convention of summation rela-
tive to a shared upper and lower index (see, e.g., [7]).

1 Preliminaries on mean derivatives
Consider the n-dimensional flat torus T n. We shall deal with stochastic
processes in T n given on a certain probability space (Ω,F , P), t ∈ [0, T ] ⊂ R.

Denote by Pξ
t the sub-σ-algebra of F generated by preimages of Borel sets

from ђ T n by all mappings ξ(s) : Ω → Rn for 0 ≤ s ≤ t; Pξ
t is called the “past”

for ξ(t).
Denote by N ξ

t the sub-σ-algebra of F generated by preimages of Borel sets
from T n by the mapping ξ(t) : Ω → T n; N ξ

t is called the “present” for ξ(t).
The sub-σ-algebras Pξ

t and N ξ
t for all t are supposed to be complete, i.e.,

containing all sets of probability zero. Obviously N ξ
t is a sub-σ-algebra in Pξ

t .
For the sake of convenience we denote by Eξ

t the conditional expectation
E(·|N ξ

t ) with respect to N ξ
t for ξ(t).

As in [9, 10, 11], we introduce the following notions of forward and back-
ward mean derivatives.

Definition 1.1. (i) The forward mean derivative Dξ(t) of ξ(t) at the time
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instant t is an L1 random element of the form

Dξ(t) = lim
4t→+0

Eξ
t (

ξ(t +4t)− ξ(t)

4t
), (1.1)

where the limit is supposed to exist in L1(Ω,F , P) and 4t → +0 means that
4t tends to 0 and 4t > 0.

(ii) The backward mean derivative D∗ξ(t) of ξ(t) at t is the L1-random
element

D∗ξ(t) = lim
∆t→+0

Eξ
t (

ξ(t)− ξ(t−∆t)

∆t
) (1.2)

where (as well as in (i)) the limit is assumed to exist in L1(Ω,F , P) and ∆t →
+0 means that ∆t → 0 and ∆t > 0.

As usual in the machinery of conditional expectation (see, e.g., [12]), there
exist Borel measurable vector fields aξ(t,m) and aξ

∗(t,m) such that Dξ(t) =
aξ(t, ξ(t)) and D∗ξ(t) = aξ

∗(t, ξ(t)), respectively (see [9, 10, 11]).

Definition 1.2. The derivative DS = 1
2
(D+D∗) is called the symmetric mean

derivative. The derivative DA = 1
2
(D −D∗) is called the antisymmetric mean

derivative.

Consider the vectors

vξ(t, x) =
1

2
(aξ(t, x) + aξ

∗(t, x))

and
uξ(t, x) =

1

2
(aξ(t, x)− aξ

∗(t, x)).

Definition 1.3. vξ(t) = vξ(t, ξ(t)) = DSξ(t) is called the current velocity of
the process ξ(t); uξ(t) = uξ(t, ξ(t)) = DAξ(t) is called the osmotic velocity of
the process ξ(t).

The physical meaning of current velocity is a direct analog of the ordinary
velocity of a deterministic process. The osmotic velocity measures how fast
the randomness increases. This interpretation becomes clear from the following
features of vξ and uξ (see [11]).

Consider an autonomous smooth field of non-degenerate linear operators
A(x) : Rn → Rn, x ∈ T n. Suppose that ξ(t) is a diffusion type process whose
diffusion integrand is A(ξ(t)). Then its diffusion coefficient A(x)A∗(x) is a
smooth field of symmetric positive definite (2, 0)-tensors with matrices α(x) =
(αij(x)). Since all those matrices are non-degenerate, the field of inverse matri-
ces (αij) exists and is smooth and at any x the matrix (αij)(x) is symmetric and
positive definite. Thus it defines a new Riemannian metric (symmetric positive
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definite (0, 2)-tensor field) α(·, ·) = αijdxidxj on Rn. Consider the Riemannian
volume form of this Riemannian metric Λα =

√
det(αij)dx1 ∧ dx2 ∧ · · · ∧ dxn.

Denote by ρξ(t, x) the probability density of ξ(t) with respect to the volume
form dt∧Λα =

√
det(αij)dt∧ dx1 ∧ dx2 ∧ · · · ∧ dxn on [0, T ]×T n, i.e., for any

continuous bounded function f : [0, T ]× T n → R the relation
T∫

0

E(f(t, ξ(t)))dt =

T∫

0

(

∫

Ω

f(t, ξ(t))dP)dt =

∫

[0,T ]×Rn

f(t, x)ρξ(t, x)dt∧Λα (1.3)

holds. Then

uξ(t, x) =
1

2
Grad log ρξ(t, x) = Grad log

√
ρξ(t, x), (1.4)

where Grad denotes the gradient with respect to the Riemannian metric α(·, ·).
For vξ(t, x) and ρξ(t, x) the so called equation of continuity

∂ρξ(t, x)

∂t
= −Div(vξ(t, x)ρξ(t, x)) (1.5)

holds, where Div denotes divergence with respect to the Riemannian metric
α(·, ·).

Following [2] we introduce the differential operator D2 that differentiates
an L1 random process ξ(t), t ∈ [0, T ] according to the rule

D2ξ(t) = lim
4t→+0

Eξ
t (

(ξ(t +4t)− ξ(t))(ξ(t +4t)− ξ(t))∗

4t
), (1.6)

where (ξ(t + 4t) − ξ(t)) is considered as a column vector (vector in Rn),
(ξ(t +4t) − ξ(t))∗ is a row vector (transposed, or conjugate vector) and the
limit is supposed to exists in L1(Ω,F , P). We emphasize that the matrix
product of a column on the left and a row on the right is a matrix with rank 1
but after passing to limit and taking conditional expectation D2ξ(t) becomes a
symmetric semi-positive definite matrix function on [0, T ]×Rn (in many cases
positive definite). We call D2 the quadratic mean derivative. It takes values
in the set (2, 0)-tensors having symmetric positive semi-definite matrices.

As mentioned above, the notion of current velocity is analogous to ordinary
velocity for a non-random process. Thus, from the physical point of view, it is
an important problem to study equations and inclusions with current velocities.

Let v(t,m) be a vector field and α(t,m) be a symmetric positive semi-
definite (2, 0)-tensor field on T n. The system

{
DSξ(t) = v(t, ξ(t))
D2ξ(t) = α(t, ξ(t))

(1.7)

is called the first order differential equation with current velocities.
Note that equation (1.7) on the flat torus T n can be considered as an

equation on Rn periodic in space variables.
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Definition 1.4. We say that (1.7) on T n has a solution on [0, T ] with initial
condition ξ(0) = ξ0 if there exists a probability space (Ω,F , P) and a process
ξ(t) given on (Ω,F , P) and taking values in T n such that ξ(0) = ξ0 and for
almost all t ∈ [0, T ] equation (1.7) is satisfied P-a.s. by ξ(t).

Theorem 1.1. Let v : [0, T ] × T n → Rn be smooth and α : T n → S+(n)
be smooth and autonomous (so it determines the Riemannian metric α(·, ·)
on T n, introduced above). Let ξ0 be a random element with values in T n

whose probability density ρ0 with respect to the volume form Λα of α(·, ·) on
T n (see above) is smooth and nowhere equal to zero. Then for the initial
condition ξ(0) = ξ0 equation (1.7) has a solution that is well-defined on the
entire interval t ∈ [0, T ].

Theorem 1.1 is a simple corollary to [2, Theorem 4.1] (see also [7, Theorem
8.50]). Here we use the fact that on the compact manifold T n the right-hand
sides of (1.7) are uniformly bounded and so the hypothesis of [2, Theorem 4.1]
is fulfilled.

Introduce p0 = log ρ0 and consider p(t,m) = log ρξ(t,m) where ρξ(t,m) is
the density (1.3) corresponding to the solution ξ(t) of (1.7). It is shown in the
proof of [2, Theorem 4.1] (see also [7, Theorem 8.50]) that p(t,m) is well-posed
and takes the form

p(t,m) = p0(g−t(m))−
∫ t

0

(Div v)(s, gs(g−t(m)) ds (1.8)

where Div is the divergence with respect to α(·, ·) and gt is the flow of smooth
vector field v(t,m).

2 Some technical constructions
Everywhere below we denote by S+(n) the set of symmetric positive definite
n× n matrices.

In [2], on the basis of Hauss decomposition (see [14]), every matrix α ∈
S+(n) is represented in the form α = ζδζ∗ where ζ is a lower-triangle matrix
with units on the diagonal, ζ∗ is its transposed matrix, i.e., an upper-triangle
matrix with units on the diagonal, and δ is a diagonal matrix whose angular
minors (note that they all a positive) coincide with those of α. Denote the
diagonal elements of δ by δ1, . . . δn. Then the matrix A = ζ

√
δ where

√
δ is

the diagonal matrix with
√

δ1, . . . ,
√

δn on the diagonal, is such that α = AA∗.
If we deal with a continuous (smooth, measurable) field α(t,m), t ∈ R and
m ∈ T n, of the above matrices, the corresponding matrices A(t,m) are also
continuous (smooth, measurable, respectively).

Denote by T−(n) the set of lower-triangle n × n matrices with zeros on
the diagonal that is obviously a linear subspace in Rn2 , the linear space of all

105



n × n matrices. It is evident that the matrix ζ introduced above, belongs to
the linear submanifold T−(n) + I in Rn2 where I is the unit n × n matrix.
Denote by T : S+(n) → T−(n) the smooth mapping that sends α ∈ S+(n) to

Tα = ζ − I ∈ T−(n). (2.1)

Now specify some C > 0 and denote by SLC the set of matrices from S+(n)
having determinants equal to C. In particular, this means that δ1 · ... · δn = C
and

√
δ1 · ... ·

√
δn =

√
C where the dot denotes multiplication.

Denote by L0(n) the linear subspace in Rn consisting of vectors X =
(X1, . . . , Xn) such that X1 + ... + Xn = 0.

Introduce the smooth mapping LC : SLC → L0, that sends a symmetric
matrix α ∈ SLC to

LC(α) = (log

√
δ1√
C

, ..., log

√
δ1√
C

) ∈ L0(n). (2.2)

Note that T−(n) and L0(n) are linear spaces and so the notion of convex
set is well-posed in them.

Lemma 2.1. For every smooth autonomous (2, 0)-tensor field α(m) on flat
torus T n with values in SLC:

(i) The volume form Λα of the corresponding Riemannian metric α(·, ·)
(see above) equals

√
CΛE where ΛE is the volume form of the Euclidean metric

on T n inherited from Rn after factorization with respect to the integral lattice.
(ii) For every smooth vector field v(t,m) on T n its divergence Div v with

respect to Λα coincides with ordinary divergence div v (i.e., with respect to
ΛE).

(iii) For every random element having values in T n, its distribution with
respect to Λα equals the distribution with respect to ΛE divided by

√
C.

Proof. Indeed, Λα =
√

det(αij)dq1 ∧ · · · ∧ dqn and since det(αij) = C, we
obtain that it equals

√
CΛE = Cdq1 ∧ · · · ∧ dqn.

Recall that the divergence Div v is found from the equality

LvΛα = (Divv)Λα

where Lv is the Lie derivative by v (see details, e.g., in [7]). Recall also that
LvΛα = d(vcΛα) where c denotes the internal multiplication of vectors and
differential forms. Since C is constant, d(vcΛα) = ∂vi

∂qi

√
CΛE = ∂vi

∂qi Λα. Hence
Divv = ∂vi

∂qi = divv.
Assertion (iii) follows from (i).
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3 The main result
Let v(t,m) be a set-valued vector field and α(t,m) a set-valued symmetric
positive semi-definite (2, 0)-tensor field on T n. The system of the form

{
DSξ(t) ∈ v(t, ξ(t)),
D2ξ(t) ∈ α(t, ξ(t)).

(3.1)

is called a first order differential inclusion with current velocities. The notion
of solution of (3.1) is quite analogous to that from Definition 1.4.

Below we suppose that the set-valued field α satisfies the following condi-
tion:

Condition 3.1. (i) The set-valued (2, 0)-tensor field α on T n takes values in
SLC; it is autonomous and upper semicontinuous.

(ii) The values of α are closed and uniformly bounded.
(iii) For every m ∈ T n the set T(α(m)) (see (2.1)) is convex in T−(n) and

the set LC(α(m)) (see (2.2)) is convex in L0(n).

For v(t, m) we suppose that it has a smooth single-valued selector denoted
by v(t,m). Recall that some conditions, under which a set-valued mapping
has a smooth selector, are obtained in [1, 4].

Theorem 3.1. Let v(t,m) be a set-valued vector field on T n having smooth
single-valued selector v(t,m) for t ∈ [0, T ]. Let also α(m) be a set-valued
(2, 0)-tensor field that satisfies Condition 3.1. Consider a random ξ0 element
with values in T n whose probability density with respect to the volume form
ΛE equals

√
Cρ0 where ρ0 is smooth and nowhere equal to zero. Then for the

initial condition ξ(0) = ξ0 inclusion (3.1) has a solution that is well-defined
on the entire interval t ∈ [0, T ].

Proof. Specify a sequence of positive numbers εk → 0. Since the mappings T
and LC are smooth, the set-valued mappings Tα with values in T−(n) and LCα
with values in L0(n) are upper semicontinuous since such is α. By Condition
3.1 their values are convex, closed and uniformly bounded. Then by [3, The-
orem 2] (see also [7, Theorem 4.11]) there exist the sequences of single-valued
continuous εk-approximations that point-wise converge to Borel measurable
selectors of Tα and LCα, respectively. Without loss of generality those ap-
proximations can be supposed as smooth. Thus there exists a sequence αk of
single-valued smooth uniformly bounded (2, 0)-tensor fields with values in SLC

that point-wise converges to a Borel measurable selector α(m) of α(m). The
components of αk(m) will be denoted as αij

k .
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Construct the Riemannian metrics αk(·, ·) from tensor fields αk(m).
Consider the sequence of equations

{
DSξ(t) = v(t, ξ(t))
D2ξ(t) = αk(t, ξ(t))

. (3.2)

Note that by Lemma 2.1 for those equations we can consider the same initial
value ξ0 since its densities with respect to all αk(·, ·) coincide with ρ0. All
equations (3.2) satisfy the conditions of Theorem 1.1, so there exist solutions
ξk(t) of those equations.

From Lemma 2.1 it follows that the functions p(t,m) defined by (1.8) for
all ξk(t) coincide (in particular this means that the densities ρ(t,m) coincide
as well).

For a solution ξk(t) the osmotic velocity takes the form

uk(t,m) =
1

2
Gradkp(t,m)

where Gradk is the gradient calculated with respect to αk(·, ·). One can eas-
ily show by the definition of gradient that the coordinate presentation of
Gradkp(t,m) has the form (Gradkp(t,m))i = αij

k
∂p
∂qj . Thus, from the hypothe-

sis and from Condition 3.1 it follows that all uk(t,m) are smooth and uniformly
bounded. Since the components αij

k point-wise converge to the components αij

of α(m), the vectors uk(t,m) point-wise converge to u(t,m) with components
ui = 1

2
αij ∂p

∂qj .
Introduce the vector fields ak(t,m) = v(t,m) + uk(t,m), denote its point-

wise limit by a(t,m). As it is mentioned in Section , every αk(m) can be
represented as αk(m) = Ak(m)A∗

k(m). By construction the sequence Ak(m)
point-wise converge to the Borel-measurable field A(m) such that α(m) =
A(m)A∗(m).

Consider the sequence of Itô type stochastic differential equations

ξk(t) = ξ0 +

∫ t

0

ak(s, ξ(s))ds +

∫ t

0

Ak(s, ξ(s)dw(s) (3.3)

on T n. Since the coefficients of (3.3) for all k are smooth and bounded, all the
equations have unique strong solutions well-defined on the entire interval [0, T ].
On the Banach manifold C0([0, T ], T n) of continuous curves in T n introduce
the σ-algebra C generated by cylinder sets and denote by µk the measure on
(C0([0, T ], T n), C) generated by the solution ξk(t) of (3.3). Introduce also the
family of complete sub-σ-algebras Pt generated by cylinder sets with bases in
[0, t], t ∈ [0, T ].
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Since equations (3.3) can be considered as the ones in Rn with space-
periodic coefficients, one can apply [6, Corollary III.2] and show that the set
{µk} of measures on (C0([0, T ], T n), C) is weakly compact. Hence we can select
a sub-sequence that weakly converges to a certain measure µ. Without loss or
generality we can suppose that the sequence µk weakly converges to µ. Con-
sider the coordinate process ξ(t) on the probability space (C0([0, T ], T n), C, µ),
i.e., for every elementary event x(·) ∈ C0([0, T ], T n), by definition ξ(t, x(·)) =
x(t). Note that Pt is the “past” for ξ(t). As usual, N ξ

t is a sub-σ-algebra of Pt.
By construction, DSξk(t) = v(t, ξk(t)) for all k. This means that for every

bounded continuous real-valued function f on C0([0, T ], T n) measurable with
respect to N ξ

t , the equality

lim
∆t→0

∫

C0([0,T ],T n)

[x(t + ∆t)− x(t−∆t)− v(t, x(t))]f(x(·))dµk = 0

holds for all k.
Specify an arbitrary ε > 0. Since µk weakly converges to µ, there exists

K(ε) such that for all k > K(ε)

‖
∫

C0([0,T ],T n)

[x(t + ∆t)− x(t−∆t)− v(t, x(t))]f(x(·))dµk

−
∫

C0([0,T ],T n)

[x(t + ∆t)− x(t−∆t)− v(t, x(t))]f(x(·))dµ‖ < ε.

Hence,

‖ lim
∆t→0

∫

C0([0,T ],T n)

[x(t + ∆t)− x(t−∆t)− v(t, x(t))]f(x(·))dµ‖ < ε.

Since ε is an arbitrary positive number and f is an arbitrary function, mea-
surable with respect to N ξ

t , this means that

DSξ(t) = v(t, ξ(t)). (3.4)

By construction, for every ξk(t) its quadratic derivative equals αk(ξk(t)).
This means that for each f(x(·)) as above we obtain the equality

lim
∆t→0

∫

C0([0,T ],T n)

[(x(t+∆t)−x(t))(x(t+∆t)−x(t))∗−αk(x(t))]f(x(·))dµk = 0.

Since αk(t,m) tends to α(t,m) as k → ∞ point-wise, it tends a.s. with
respect to all µk and with respect to µ. Specify δ > 0. By Egorov’s theorem
(see, e.g., [13]) for any i there exists a subset K̃i

δ ⊂ C0([0, T ], T n) such that
(µi)(K̃

i
δ) > 1 − δ, and the sequence αk(x(t)) converges to α(x(t)) uniformly
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on K̃i
δ. Introduce K̃δ =

∞⋃
i=0

K̃i
δ. The sequence αk(x(t)) converges to α(x(t))

uniformly on K̃δ and µi(K̃δ) > 1− δ for all i and µ(K̃δ) > 1− δ.
Note that α(x(t)) is continuous on a set of full measure µ on C0([0, T ], T n).

Indeed, consider a sequence δi → 0 and the corresponding sequence K̃δi
. By

the above construction α(x(t)) is a uniform limit of continuous functions on
each K̃δi

. Thus it is continuous on each K̃δi
and so, on every finite union

n⋃
i=1

K̃δi
. Evidently lim

n→∞
µ(

n⋃
i=1

K̃δi
) = 1.

Because of the above uniform convergence on K̃δ for all k and boundedness
of f(x(·)) we get that for k large enough

‖
∫

K̃δ

[αk(x(t))− α(x(t))]f(x(·))dµk‖ < δ.

Since f(x(·)) is bounded, there is some Ξ > 0 such that |f(x(·))| < Ξ for all
x(·). Recall that all αk(m) and α(m) are uniformly bounded, i.e., their norms
are not greater than a certain Q > 0. Then, since µk(C

0([0, T ], T n)\K̃δ) < δ
for all k large enough, we obtain that

‖
∫

C0([0,T ],T n)\K̃δ

[αk(x(t))− α(x(t))]f(x(·))dµk‖ < 2δQΞ

for all k large enough. Since δ is an arbitrary positive number, we obtain that

lim
k→∞

∫

C0([0,T ],T n)

[αk(x(t))− α(x(t))]f(x(·))dµk = 0.

The function α(x(t)) is µ-a.s. continuous and bounded on C0([0, T ], T n) (see
above). Since in addition the measures µk weakly converge to µ, by Lemma
from [5, Section VI.1] we obtain that

lim
k→∞

∫

C0([0,T ],T n)

α(x(t))f(x(·))dµk =

∫

C0([0,T ],T n)

α(x(t))f(x(·))dµ.

Obviously

lim
k→∞

∫

C0([0,T ],T n)

[(x(t + ∆t)− x(t))(x(t + ∆t)− x(t))∗]f(x(·))dµk

=

∫

C0([0,T ],T n)

[(x(t + ∆t)− x(t))(x(t + ∆t)− x(t))∗]f(x(·))dµ.

Thus

lim
∆t→0

∫

C0([0,T ],T n)

[(x(t + ∆t)− x(t))(x(t + ∆t)− x(t))∗− α(x(t))]f(x(·))dµ = 0.
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Since f(x(·)) is an arbitrary bounded continuous function, measurable with
respect toN ξ

t , this means that D2ξ(t) = α(ξ(t)). But by construction α(ξ(t)) ∈
α(ξ(t)) µ-a.s.

Together with (3.4) this means that ξ(t) is a solution of inclusion (3.1) we
are looking for.
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