Global and Stochastic Analysis Vol. 2, No. 1, January-June 2015 Copyright @ MuK Publications www.mukpublications.com

On Solvability of Stochastic Differential Inclusions with Current Velocities. II

Alla V. Makarova

Mathematics Faculty Voronezh State University 394006 Voronezh, Russia allagm@mail.ru

Received by the Editorial Board on April 12, 2012

Abstract

An existence of solution theorem is obtained for stochastic differential inclusions given in terms of the so-called current velocities (direct analogs of ordinary velocity of deterministic systems) and quadratic mean derivatives (giving information on the diffusion coefficient) on the flat *n*-dimensional torus. The set-valued current velocity part has a smooth selector and the set-valued quadratic part takes values in symmetric (2, 0) tensor fields with given (constant) determinant. The values of current velocity parts are closed and bounded. The right-hand side of quadratic part is upper semi-continuous, its values are closed, bounded and satisfy some additional hypotheses that replace the convexity condition.

Key words: Mean derivatives; stochastic differential inclusions; group SL(n)

Mathematics Subject Classification 2010: 58J65 60H10

Introduction

In [2] an existence theorem for differential inclusions with current velocities having single-valued part for quadratic mean derivative, was obtained under some very strong conditions. Then in [8] in some sense the opposite problem was considered, i.e., the current velocity part was single-valued and smooth while the quadratic part was set-valued and took values in the symmetric (2, 0)-tensors with unit determinant.

In this paper we deal with the case where both current velocity and quadratic parts are set-valued. We assume that the current velocity part has a smooth selector (some conditions, under which this happens, are obtained, say, in [1, 4]). For the set-valued quadratic right-hand side we assume that it takes values in the symmetric (2,0)-tensors with constant (equal to some C > 0) determinant. The values of current velocity parts are closed and bounded. The right-hand side of quadratic part is upper semi-continuous and its values are closed, bounded and satisfy some additional hypotheses that replace the convexity condition.

To avoid some technical difficulties we consider the inclusions on a flat *n*-dimensional torus \mathcal{T}^n . This means that the torus is considered as a quotient space of \mathbb{R}^n relative to the integral lattice and that the Riemannian metric on \mathcal{T}^n is inherited from the Euclidean metric in \mathbb{R}^n . Everywhere below we use the operations of addition and subtraction of points and integration in \mathcal{T}^n as in \mathbb{R}^n modulo factorization relative to the integral lattice. The construction and notation of stochastic integrals and stochastic differential equations on \mathcal{T}^n are the same as in \mathbb{R}^n because of the use of Euclidean metric.

The detailed exposition of preliminary notions and facts used in the paper, can be found in [7].

For convenience, here we repeat some basic definitions and constructions from [8].

Everywhere in the paper we use Einstein's convention of summation relative to a shared upper and lower index (see, e.g., [7]).

1 Preliminaries on mean derivatives

Consider the *n*-dimensional flat torus \mathcal{T}^n . We shall deal with stochastic processes in \mathcal{T}^n given on a certain probability space $(\Omega, \mathcal{F}, \mathsf{P}), t \in [0, T] \subset \mathbb{R}$.

Denote by \mathcal{P}_t^{ξ} the sub- σ -algebra of \mathcal{F} generated by preimages of Borel sets from $\mathfrak{H} \mathcal{T}^n$ by all mappings $\xi(s) : \Omega \to \mathbb{R}^n$ for $0 \le s \le t$; \mathcal{P}_t^{ξ} is called the "past" for $\xi(t)$.

Denote by \mathcal{N}_t^{ξ} the sub- σ -algebra of \mathcal{F} generated by preimages of Borel sets from \mathcal{T}^n by the mapping $\xi(t): \Omega \to \mathcal{T}^n; \mathcal{N}_t^{\xi}$ is called the "present" for $\xi(t)$.

The sub- σ -algebras \mathcal{P}_t^{ξ} and \mathcal{N}_t^{ξ} for all t are supposed to be complete, i.e., containing all sets of probability zero. Obviously \mathcal{N}_t^{ξ} is a sub- σ -algebra in \mathcal{P}_t^{ξ} . For the sake of convenience we denote by E_t^{ξ} the conditional expectation

 $E(\cdot|\mathcal{N}_t^{\xi})$ with respect to \mathcal{N}_t^{ξ} for $\xi(t)$.

As in [9, 10, 11], we introduce the following notions of forward and backward mean derivatives.

Definition 1.1. (i) The forward mean derivative $D\xi(t)$ of $\xi(t)$ at the time

instant t is an L_1 random element of the form

$$D\xi(t) = \lim_{\Delta t \to +0} E_t^{\xi} \left(\frac{\xi(t + \Delta t) - \xi(t)}{\Delta t} \right), \tag{1.1}$$

where the limit is supposed to exist in $L_1(\Omega, \mathcal{F}, \mathsf{P})$ and $\Delta t \to +0$ means that Δt tends to 0 and $\Delta t > 0$.

(ii) The backward mean derivative $D_*\xi(t)$ of $\xi(t)$ at t is the L_1 -random element

$$D_*\xi(t) = \lim_{\Delta t \to +0} E_t^{\xi}(\frac{\xi(t) - \xi(t - \Delta t)}{\Delta t})$$
(1.2)

where (as well as in (i)) the limit is assumed to exist in $L^1(\Omega, \mathcal{F}, \mathsf{P})$ and $\Delta t \rightarrow +0$ means that $\Delta t \rightarrow 0$ and $\Delta t > 0$.

As usual in the machinery of conditional expectation (see, e.g., [12]), there exist Borel measurable vector fields $a^{\xi}(t,m)$ and $a^{\xi}_{*}(t,m)$ such that $D\xi(t) = a^{\xi}(t,\xi(t))$ and $D_{*}\xi(t) = a^{\xi}(t,\xi(t))$, respectively (see [9, 10, 11]).

Definition 1.2. The derivative $D_S = \frac{1}{2}(D+D_*)$ is called the symmetric mean derivative. The derivative $D_A = \frac{1}{2}(D-D_*)$ is called the antisymmetric mean derivative.

Consider the vectors

$$v^{\xi}(t,x) = \frac{1}{2}(a^{\xi}(t,x) + a^{\xi}_{*}(t,x))$$

and

$$u^{\xi}(t,x) = \frac{1}{2}(a^{\xi}(t,x) - a^{\xi}_{*}(t,x)).$$

Definition 1.3. $v^{\xi}(t) = v^{\xi}(t,\xi(t)) = D_{S}\xi(t)$ is called the current velocity of the process $\xi(t)$; $u^{\xi}(t) = u^{\xi}(t,\xi(t)) = D_{A}\xi(t)$ is called the osmotic velocity of the process $\xi(t)$.

The physical meaning of current velocity is a direct analog of the ordinary velocity of a deterministic process. The osmotic velocity measures how fast the randomness increases. This interpretation becomes clear from the following features of v^{ξ} and u^{ξ} (see [11]).

Consider an autonomous smooth field of non-degenerate linear operators $A(x) : \mathbb{R}^n \to \mathbb{R}^n, x \in \mathcal{T}^n$. Suppose that $\xi(t)$ is a diffusion type process whose diffusion integrand is $A(\xi(t))$. Then its diffusion coefficient $A(x)A^*(x)$ is a smooth field of symmetric positive definite (2,0)-tensors with matrices $\alpha(x) = (\alpha^{ij}(x))$. Since all those matrices are non-degenerate, the field of inverse matrices (α_{ij}) exists and is smooth and at any x the matrix $(\alpha_{ij})(x)$ is symmetric and positive definite. Thus it defines a new Riemannian metric (symmetric positive

definite (0, 2)-tensor field) $\alpha(\cdot, \cdot) = \alpha_{ij} dx^i dx^j$ on \mathbb{R}^n . Consider the Riemannian volume form of this Riemannian metric $\Lambda_{\alpha} = \sqrt{\det(\alpha_{ij})} dx^1 \wedge dx^2 \wedge \cdots \wedge dx^n$.

Denote by $\rho^{\xi}(t, x)$ the probability density of $\xi(t)$ with respect to the volume form $dt \wedge \Lambda_{\alpha} = \sqrt{\det(\alpha_{ij})} dt \wedge dx^{1} \wedge dx^{2} \wedge \cdots \wedge dx^{n}$ on $[0, T] \times \mathcal{T}^{n}$, i.e., for any continuous bounded function $f: [0, T] \times \mathcal{T}^{n} \to \mathbb{R}$ the relation

$$\int_{0}^{T} E(f(t,\xi(t)))dt = \int_{0}^{T} (\int_{\Omega} f(t,\xi(t))d\mathsf{P})dt = \int_{[0,T]\times\mathbb{R}^{n}} f(t,x)\rho^{\xi}(t,x)dt \wedge \Lambda_{\alpha}$$
(1.3)

holds. Then

$$u^{\xi}(t,x) = \frac{1}{2}Grad\log\rho^{\xi}(t,x) = Grad\log\sqrt{\rho^{\xi}(t,x)},$$
(1.4)

where *Grad* denotes the gradient with respect to the Riemannian metric $\alpha(\cdot, \cdot)$. For $v^{\xi}(t, x)$ and $\rho^{\xi}(t, x)$ the so called equation of continuity

$$\frac{\partial \rho^{\xi}(t,x)}{\partial t} = -Div(v^{\xi}(t,x)\rho^{\xi}(t,x))$$
(1.5)

holds, where Div denotes divergence with respect to the Riemannian metric $\alpha(\cdot, \cdot)$.

Following [2] we introduce the differential operator D_2 that differentiates an L_1 random process $\xi(t), t \in [0, T]$ according to the rule

$$D_{2}\xi(t) = \lim_{\Delta t \to +0} E_{t}^{\xi} \left(\frac{(\xi(t + \Delta t) - \xi(t))(\xi(t + \Delta t) - \xi(t))^{*}}{\Delta t} \right), \quad (1.6)$$

where $(\xi(t + \Delta t) - \xi(t))$ is considered as a column vector (vector in \mathbb{R}^n), $(\xi(t + \Delta t) - \xi(t))^*$ is a row vector (transposed, or conjugate vector) and the limit is supposed to exists in $L_1(\Omega, \mathcal{F}, \mathsf{P})$. We emphasize that the matrix product of a column on the left and a row on the right is a matrix with rank 1 but after passing to limit and taking conditional expectation $D_2\xi(t)$ becomes a symmetric semi-positive definite matrix function on $[0, T] \times \mathbb{R}^n$ (in many cases positive definite). We call D_2 the quadratic mean derivative. It takes values in the set (2, 0)-tensors having symmetric positive semi-definite matrices.

As mentioned above, the notion of current velocity is analogous to ordinary velocity for a non-random process. Thus, from the physical point of view, it is an important problem to study equations and inclusions with current velocities.

Let v(t,m) be a vector field and $\alpha(t,m)$ be a symmetric positive semidefinite (2,0)-tensor field on \mathcal{T}^n . The system

$$\begin{cases}
D_S \xi(t) = v(t, \xi(t)) \\
D_2 \xi(t) = \alpha(t, \xi(t))
\end{cases}$$
(1.7)

is called the first order differential equation with current velocities.

Note that equation (1.7) on the flat torus \mathcal{T}^n can be considered as an equation on \mathbb{R}^n periodic in space variables.

Definition 1.4. We say that (1.7) on \mathcal{T}^n has a solution on [0, T] with initial condition $\xi(0) = \xi_0$ if there exists a probability space $(\Omega, \mathcal{F}, \mathsf{P})$ and a process $\xi(t)$ given on $(\Omega, \mathcal{F}, \mathsf{P})$ and taking values in \mathcal{T}^n such that $\xi(0) = \xi_0$ and for almost all $t \in [0, T]$ equation (1.7) is satisfied P -a.s. by $\xi(t)$.

Theorem 1.1. Let $v : [0,T] \times T^n \to \mathbb{R}^n$ be smooth and $\alpha : T^n \to S_+(n)$ be smooth and autonomous (so it determines the Riemannian metric $\alpha(\cdot, \cdot)$ on T^n , introduced above). Let ξ_0 be a random element with values in T^n whose probability density ρ_0 with respect to the volume form Λ_α of $\alpha(\cdot, \cdot)$ on T^n (see above) is smooth and nowhere equal to zero. Then for the initial condition $\xi(0) = \xi_0$ equation (1.7) has a solution that is well-defined on the entire interval $t \in [0, T]$.

Theorem 1.1 is a simple corollary to [2, Theorem 4.1] (see also [7, Theorem 8.50]). Here we use the fact that on the compact manifold \mathcal{T}^n the right-hand sides of (1.7) are uniformly bounded and so the hypothesis of [2, Theorem 4.1] is fulfilled.

Introduce $p_0 = \log \rho_0$ and consider $p(t,m) = \log \rho^{\xi}(t,m)$ where $\rho^{\xi}(t,m)$ is the density (1.3) corresponding to the solution $\xi(t)$ of (1.7). It is shown in the proof of [2, Theorem 4.1] (see also [7, Theorem 8.50]) that p(t,m) is well-posed and takes the form

$$p(t,m) = p_0(g_{-t}(m)) - \int_0^t (\text{Div } v)(s, g_s(g_{-t}(m))) \, ds \tag{1.8}$$

where Div is the divergence with respect to $\alpha(\cdot, \cdot)$ and g_t is the flow of smooth vector field v(t, m).

2 Some technical constructions

Everywhere below we denote by $S_+(n)$ the set of symmetric positive definite $n \times n$ matrices.

In [2], on the basis of Hauss decomposition (see [14]), every matrix $\alpha \in S_+(n)$ is represented in the form $\alpha = \zeta \delta \zeta^*$ where ζ is a lower-triangle matrix with units on the diagonal, ζ^* is its transposed matrix, i.e., an upper-triangle matrix with units on the diagonal, and δ is a diagonal matrix whose angular minors (note that they all a positive) coincide with those of α . Denote the diagonal elements of δ by $\delta_1, \ldots, \delta_n$. Then the matrix $A = \zeta \sqrt{\delta}$ where $\sqrt{\delta}$ is the diagonal matrix with $\sqrt{\delta_1}, \ldots, \sqrt{\delta_n}$ on the diagonal, is such that $\alpha = AA^*$. If we deal with a continuous (smooth, measurable) field $\alpha(t,m), t \in \mathbb{R}$ and $m \in \mathcal{T}^n$, of the above matrices, the corresponding matrices A(t,m) are also continuous (smooth, measurable, respectively).

Denote by $T_{-}(n)$ the set of lower-triangle $n \times n$ matrices with zeros on the diagonal that is obviously a linear subspace in \mathbb{R}^{n^2} , the linear space of all

 $n \times n$ matrices. It is evident that the matrix ζ introduced above, belongs to the linear submanifold $\mathsf{T}_{-}(n) + I$ in \mathbb{R}^{n^2} where I is the unit $n \times n$ matrix. Denote by $\mathsf{T}: S_{+}(n) \to \mathsf{T}_{-}(n)$ the smooth mapping that sends $\alpha \in S_{+}(n)$ to

$$\mathsf{T}\alpha = \zeta - I \in \mathsf{T}_{-}(n). \tag{2.1}$$

Now specify some C > 0 and denote by S_{LC} the set of matrices from $S_+(n)$ having determinants equal to C. In particular, this means that $\delta_1 \cdot \ldots \cdot \delta_n = C$ and $\sqrt{\delta_1} \cdot \ldots \cdot \sqrt{\delta_n} = \sqrt{C}$ where the dot denotes multiplication.

Denote by $L_0(n)$ the linear subspace in \mathbb{R}^n consisting of vectors $X = (X^1, \ldots, X^n)$ such that $X^1 + \ldots + X^n = 0$.

Introduce the smooth mapping $L_{C} : S_{LC} \to L_{0}$, that sends a symmetric matrix $\alpha \in S_{LC}$ to

$$\mathsf{L}_{\mathsf{C}}(\alpha) = \left(\log\frac{\sqrt{\delta_1}}{\sqrt{C}}, ..., \log\frac{\sqrt{\delta_1}}{\sqrt{C}}\right) \in \mathsf{L}_0(n).$$
(2.2)

Note that $T_{-}(n)$ and $L_{0}(n)$ are linear spaces and so the notion of convex set is well-posed in them.

Lemma 2.1. For every smooth autonomous (2,0)-tensor field $\alpha(m)$ on flat torus \mathcal{T}^n with values in S_{LC} :

(i) The volume form Λ_{α} of the corresponding Riemannian metric $\alpha(\cdot, \cdot)$ (see above) equals $\sqrt{C}\Lambda_E$ where Λ_E is the volume form of the Euclidean metric on \mathcal{T}^n inherited from \mathbb{R}^n after factorization with respect to the integral lattice.

(ii) For every smooth vector field v(t,m) on \mathcal{T}^n its divergence Div v with respect to Λ_{α} coincides with ordinary divergence div v (i.e., with respect to Λ_E).

(iii) For every random element having values in \mathcal{T}^n , its distribution with respect to Λ_{α} equals the distribution with respect to Λ_E divided by \sqrt{C} .

Proof. Indeed, $\Lambda_{\alpha} = \sqrt{det(\alpha_{ij})} dq^1 \wedge \cdots \wedge dq^n$ and since $det(\alpha_{ij}) = C$, we obtain that it equals $\sqrt{C}\Lambda_E = Cdq^1 \wedge \cdots \wedge dq^n$.

Recall that the divergence Div v is found from the equality

$$\mathcal{L}_v \Lambda_\alpha = (\mathrm{Div}v) \Lambda_\alpha$$

where \mathcal{L}_v is the Lie derivative by v (see details, e.g., in [7]). Recall also that $\mathcal{L}_v \Lambda_\alpha = d(v \rfloor \Lambda_\alpha)$ where \rfloor denotes the internal multiplication of vectors and differential forms. Since C is constant, $d(v \rfloor \Lambda_\alpha) = \frac{\partial v^i}{\partial q^i} \sqrt{C} \Lambda_E = \frac{\partial v^i}{\partial q^i} \Lambda_\alpha$. Hence $\text{Div}v = \frac{\partial v^i}{\partial q^i} = \text{div}v$.

Assertion (iii) follows from (i).

3 The main result

Let $\mathbf{v}(t,m)$ be a set-valued vector field and $\boldsymbol{\alpha}(t,m)$ a set-valued symmetric positive semi-definite (2,0)-tensor field on \mathcal{T}^n . The system of the form

$$\begin{cases}
D_S \xi(t) \in \mathbf{v}(t, \xi(t)), \\
D_2 \xi(t) \in \boldsymbol{\alpha}(t, \xi(t)).
\end{cases}$$
(3.1)

is called a first order differential inclusion with current velocities. The notion of solution of (3.1) is quite analogous to that from Definition 1.4.

Below we suppose that the set-valued field α satisfies the following condition:

Condition 3.1. (i) The set-valued (2,0)-tensor field α on \mathcal{T}^n takes values in S_{LC} ; it is autonomous and upper semicontinuous.

(ii) The values of α are closed and uniformly bounded.

(iii) For every $m \in \mathcal{T}^n$ the set $\mathsf{T}(\boldsymbol{\alpha}(m))$ (see (2.1)) is convex in $\mathsf{T}_{-}(n)$ and the set $\mathsf{L}_C(\boldsymbol{\alpha}(m))$ (see (2.2)) is convex in $\mathsf{L}_0(n)$.

For $\mathbf{v}(t,m)$ we suppose that it has a smooth single-valued selector denoted by v(t,m). Recall that some conditions, under which a set-valued mapping has a smooth selector, are obtained in [1, 4].

Theorem 3.1. Let $\mathbf{v}(t,m)$ be a set-valued vector field on \mathcal{T}^n having smooth single-valued selector v(t,m) for $t \in [0,T]$. Let also $\boldsymbol{\alpha}(m)$ be a set-valued (2,0)-tensor field that satisfies Condition 3.1. Consider a random ξ_0 element with values in \mathcal{T}^n whose probability density with respect to the volume form Λ_E equals $\sqrt{C\rho_0}$ where ρ_0 is smooth and nowhere equal to zero. Then for the initial condition $\xi(0) = \xi_0$ inclusion (3.1) has a solution that is well-defined on the entire interval $t \in [0,T]$.

Proof. Specify a sequence of positive numbers $\varepsilon_k \to 0$. Since the mappings T and L_{C} are smooth, the set-valued mappings $\mathsf{T}\boldsymbol{\alpha}$ with values in $\mathsf{T}_{-}(n)$ and $\mathsf{L}_{C}\boldsymbol{\alpha}$ with values in $\mathsf{L}_{0}(n)$ are upper semicontinuous since such is $\boldsymbol{\alpha}$. By Condition 3.1 their values are convex, closed and uniformly bounded. Then by [3, Theorem 2] (see also [7, Theorem 4.11]) there exist the sequences of single-valued continuous ε_k -approximations that point-wise converge to Borel measurable selectors of $\mathsf{T}\boldsymbol{\alpha}$ and $\mathsf{L}_{C}\boldsymbol{\alpha}$, respectively. Without loss of generality those approximations can be supposed as smooth. Thus there exists a sequence α_k of single-valued smooth uniformly bounded (2, 0)-tensor fields with values in S_{LC} that point-wise converges to a Borel measurable selector $\alpha(m)$ of $\boldsymbol{\alpha}(m)$. The components of $\alpha_k(m)$ will be denoted as α_k^{ij} . Construct the Riemannian metrics $\alpha_k(\cdot, \cdot)$ from tensor fields $\alpha_k(m)$. Consider the sequence of equations

$$\begin{cases}
D_S \xi(t) = v(t, \xi(t)) \\
D_2 \xi(t) = \alpha_k(t, \xi(t))
\end{cases}$$
(3.2)

Note that by Lemma 2.1 for those equations we can consider the same initial value ξ_0 since its densities with respect to all $\alpha_k(\cdot, \cdot)$ coincide with ρ_0 . All equations (3.2) satisfy the conditions of Theorem 1.1, so there exist solutions $\xi_k(t)$ of those equations.

From Lemma 2.1 it follows that the functions p(t, m) defined by (1.8) for all $\xi_k(t)$ coincide (in particular this means that the densities $\rho(t, m)$ coincide as well).

For a solution $\xi_k(t)$ the osmotic velocity takes the form

$$u_k(t,m) = \frac{1}{2}Grad_k p(t,m)$$

where $Grad_k$ is the gradient calculated with respect to $\alpha_k(\cdot, \cdot)$. One can easily show by the definition of gradient that the coordinate presentation of $Grad_k p(t,m)$ has the form $(Grad_k p(t,m))^i = \alpha_k^{ij} \frac{\partial p}{\partial q^j}$. Thus, from the hypothesis and from Condition 3.1 it follows that all $u_k(t,m)$ are smooth and uniformly bounded. Since the components α_k^{ij} point-wise converge to the components α_k^{ij} of $\alpha(m)$, the vectors $u_k(t,m)$ point-wise converge to u(t,m) with components $u^i = \frac{1}{2} \alpha^{ij} \frac{\partial p}{\partial q^j}$.

Introduce the vector fields $a_k(t,m) = v(t,m) + u_k(t,m)$, denote its pointwise limit by a(t,m). As it is mentioned in Section , every $\alpha_k(m)$ can be represented as $\alpha_k(m) = A_k(m)A_k^*(m)$. By construction the sequence $A_k(m)$ point-wise converge to the Borel-measurable field A(m) such that $\alpha(m) = A(m)A^*(m)$.

Consider the sequence of Itô type stochastic differential equations

$$\xi_k(t) = \xi_0 + \int_0^t a_k(s,\xi(s))ds + \int_0^t A_k(s,\xi(s)dw(s))$$
(3.3)

on \mathcal{T}^n . Since the coefficients of (3.3) for all k are smooth and bounded, all the equations have unique strong solutions well-defined on the entire interval [0, T]. On the Banach manifold $C^0([0, T], \mathcal{T}^n)$ of continuous curves in \mathcal{T}^n introduce the σ -algebra \mathcal{C} generated by cylinder sets and denote by μ_k the measure on $(C^0([0, T], \mathcal{T}^n), \mathcal{C})$ generated by the solution $\xi_k(t)$ of (3.3). Introduce also the family of complete sub- σ -algebras \mathcal{P}_t generated by cylinder sets with bases in $[0, t], t \in [0, T]$. Since equations (3.3) can be considered as the ones in \mathbb{R}^n with spaceperiodic coefficients, one can apply [6, Corollary III.2] and show that the set $\{\mu_k\}$ of measures on $(C^0([0,T], \mathcal{T}^n), \mathcal{C})$ is weakly compact. Hence we can select a sub-sequence that weakly converges to a certain measure μ . Without loss or generality we can suppose that the sequence μ_k weakly converges to μ . Consider the coordinate process $\xi(t)$ on the probability space $(C^0([0,T],\mathcal{T}^n),\mathcal{C},\mu)$, i.e., for every elementary event $x(\cdot) \in C^0([0,T],\mathcal{T}^n)$, by definition $\xi(t,x(\cdot)) =$ x(t). Note that \mathcal{P}_t is the "past" for $\xi(t)$. As usual, \mathcal{N}_t^{ξ} is a sub- σ -algebra of \mathcal{P}_t .

By construction, $D_S \xi_k(t) = v(t, \xi_k(t))$ for all k. This means that for every bounded continuous real-valued function f on $C^0([0, T], \mathcal{T}^n)$ measurable with respect to \mathcal{N}_t^{ξ} , the equality

$$\lim_{\Delta t \to 0} \int_{C^0([0,T],\mathcal{T}^n)} [x(t+\Delta t) - x(t-\Delta t) - v(t,x(t))] f(x(\cdot)) d\mu_k = 0$$

holds for all k.

Specify an arbitrary $\varepsilon > 0$. Since μ_k weakly converges to μ , there exists $K(\varepsilon)$ such that for all $k > K(\varepsilon)$

$$\|\int_{C^{0}([0,T],\mathcal{T}^{n})} [x(t+\Delta t) - x(t-\Delta t) - v(t,x(t))]f(x(\cdot))d\mu_{k} - \int_{C^{0}([0,T],\mathcal{T}^{n})} [x(t+\Delta t) - x(t-\Delta t) - v(t,x(t))]f(x(\cdot))d\mu\| < \varepsilon.$$

Hence,

$$\|\lim_{\Delta t\to 0} \int_{C^0([0,T],\mathcal{T}^n)} [x(t+\Delta t) - x(t-\Delta t) - v(t,x(t))]f(x(\cdot))d\mu\| < \varepsilon.$$

Since ε is an arbitrary positive number and f is an arbitrary function, measurable with respect to \mathcal{N}_t^{ξ} , this means that

$$D_S\xi(t) = v(t,\xi(t)).$$
 (3.4)

By construction, for every $\xi_k(t)$ its quadratic derivative equals $\alpha_k(\xi_k(t))$. This means that for each $f(x(\cdot))$ as above we obtain the equality

$$\lim_{\Delta t \to 0} \int_{C^0([0,T],\mathcal{T}^n)} [(x(t+\Delta t) - x(t))(x(t+\Delta t) - x(t))^* - \alpha_k(x(t))]f(x(\cdot))d\mu_k = 0.$$

Since $\alpha_k(t,m)$ tends to $\alpha(t,m)$ as $k \to \infty$ point-wise, it tends a.s. with respect to all μ_k and with respect to μ . Specify $\delta > 0$. By Egorov's theorem (see, e.g., [13]) for any *i* there exists a subset $\tilde{K}^i_{\delta} \subset C^0([0,T],\mathcal{T}^n)$ such that $(\mu_i)(\tilde{K}^i_{\delta}) > 1 - \delta$, and the sequence $\alpha_k(x(t))$ converges to $\alpha(x(t))$ uniformly on \tilde{K}^{i}_{δ} . Introduce $\tilde{K}_{\delta} = \bigcup_{i=0}^{\infty} \tilde{K}^{i}_{\delta}$. The sequence $\alpha_{k}(x(t))$ converges to $\alpha(x(t))$ uniformly on \tilde{K}_{δ} and $\mu_{i}(\tilde{K}_{\delta}) > 1 - \delta$ for all i and $\mu(\tilde{K}_{\delta}) > 1 - \delta$.

Note that $\alpha(x(t))$ is continuous on a set of full measure μ on $C^0([0, T], \mathcal{T}^n)$. Indeed, consider a sequence $\delta_i \to 0$ and the corresponding sequence \tilde{K}_{δ_i} . By the above construction $\alpha(x(t))$ is a uniform limit of continuous functions on each \tilde{K}_{δ_i} . Thus it is continuous on each \tilde{K}_{δ_i} and so, on every finite union $\bigcup_{i=1}^n \tilde{K}_{\delta_i}$. Evidently $\lim_{n\to\infty} \mu(\bigcup_{i=1}^n \tilde{K}_{\delta_i}) = 1$.

Because of the above uniform convergence on K_{δ} for all k and boundedness of $f(x(\cdot))$ we get that for k large enough

$$\left\|\int_{\tilde{K}_{\delta}} [\alpha_k(x(t)) - \alpha(x(t))]f(x(\cdot))d\mu_k\right\| < \delta.$$

Since $f(x(\cdot))$ is bounded, there is some $\Xi > 0$ such that $|f(x(\cdot))| < \Xi$ for all $x(\cdot)$. Recall that all $\alpha_k(m)$ and $\alpha(m)$ are uniformly bounded, i.e., their norms are not greater than a certain Q > 0. Then, since $\mu_k(C^0([0,T],\mathcal{T}^n)\setminus \tilde{K}_{\delta}) < \delta$ for all k large enough, we obtain that

$$\left\|\int_{C^{0}([0,T],\mathcal{T}^{n})\setminus\tilde{K}_{\delta}}\left[\alpha_{k}(x(t))-\alpha(x(t))\right]f(x(\cdot))d\mu_{k}\right\|<2\delta Q\Xi$$

for all k large enough. Since δ is an arbitrary positive number, we obtain that

$$\lim_{k \to \infty} \int_{C^0([0,T],\mathcal{T}^n)} [\alpha_k(x(t)) - \alpha(x(t))] f(x(\cdot)) d\mu_k = 0.$$

The function $\alpha(x(t))$ is μ -a.s. continuous and bounded on $C^0([0,T], \mathcal{T}^n)$ (see above). Since in addition the measures μ_k weakly converge to μ , by Lemma from [5, Section VI.1] we obtain that

$$\lim_{k \to \infty} \int_{C^0([0,T],\mathcal{T}^n)} \alpha(x(t)) f(x(\cdot)) d\mu_k = \int_{C^0([0,T],\mathcal{T}^n)} \alpha(x(t)) f(x(\cdot)) d\mu.$$

Obviously

$$\lim_{k \to \infty} \int_{C^0([0,T],\mathcal{T}^n)} [(x(t+\Delta t) - x(t))(x(t+\Delta t) - x(t))^*] f(x(\cdot)) d\mu_k$$
$$= \int_{C^0([0,T],\mathcal{T}^n)} [(x(t+\Delta t) - x(t))(x(t+\Delta t) - x(t))^*] f(x(\cdot)) d\mu.$$

Thus

$$\lim_{\Delta t \to 0} \int_{C^0([0,T],\mathcal{T}^n)} [(x(t+\Delta t) - x(t))(x(t+\Delta t) - x(t))^* - \alpha(x(t))]f(x(\cdot))d\mu = 0.$$

Since $f(x(\cdot))$ is an arbitrary bounded continuous function, measurable with respect to \mathcal{N}_t^{ξ} , this means that $D_2\xi(t) = \alpha(\xi(t))$. But by construction $\alpha(\xi(t)) \in \alpha(\xi(t)) \mu$ -a.s.

Together with (3.4) this means that $\xi(t)$ is a solution of inclusion (3.1) we are looking for.

Acknowledgement The research is supported in part by RFBR Grant 12-01-00183

References

- S.M. Aseev, "Existence of a differentiable single-valued branch of the set-valued mapping", Nekotorye voprosy prikladnoy matematiki i programmnogo obespecheniya EVM, Moscow, pp. 36 – 39, 1982 (in Russian)
- [2] S.V. Azarina and Yu.E. Gliklikh, "Differential inclusions with mean derivatives", Dynamic Sysytems and Applications, Vol. 16, No. 1, pp. 49–72, 2007.
- [3] S.V. Azarina, Yu.E. Gliklikh and A.V. Obukhovskii, "Solvability of Langevin differential inclusions with set-valued diffusion terms on Riemannian manifolds", Applicable Analysis, Vol. 86, No. 9, pp. 1105–1116, 2007
- M.Sh. Farber, "On smooth selectors of the intersection of set-valued mappings", Izvestiya Akademii Nauk Azerbaijanskoy SSR, No. 6, pp. 23 – 28, 1979 (in Russian)
- [5] I.I. Gihman and A.V. Skorohod, "Theory of Stochastic Processes, Vol. 1", Springer-Verlag New York, 1974.
- [6] I.I. Gihman and A.V. Skorohod, "Theory of Stochastic Processes, Vol. 3", Springer-Verlag New York, 1979
- [7] Yu.E. Gliklikh, "Global and Stochastic Analysis with Applications to Mathematical Physics", Springer-Verlag London, 2011.
- [8] Yu.E. Gliklikh and A.V. Makarova, "On solvability of stochastic differential inclusions with current velocities", Applicable Analysis, DOI: 10.1080/00036811.2011.579565, pp. 1 – 9, 2011.
- [9] E. Nelson, "Derivation of the Schrödinger equation from Newtonian mechanics", Phys. Reviews, Vol. 150, No. 4, pp. 1079-1085, 1966.

- [10] E. Nelson, "Dynamical theory of Brownian motion", Princeton University Press, 1967
- [11] E. Nelson, "Quantum fluctuations", Princeton University Press, 1985
- [12] K.R. Parthasarathy, "Introduction to Probability and Measure", Springer-Verlag New York, 1978.
- [13] Y. Yosida, "Functional Analysis", Springer-Verlag, Berlin et. al., 1965
- [14] D.P. Zhelobenko, "Compact Lie groups and their representations", Amer. Math. Soc., Providence, RI, 1973