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Abstract

The paper is devoted to investigation of solvability of operator equa-
tions containing condensing perturbations of linear surjective operators.
Some solvability theorems for such equations are proved. Those the-
orems are applied to investigation of some classes of neutral type differ-
ential equations.
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1 Introduction

The theory of condensing mappings (k-set contractions), both single-valued
and set-valued, that finds applications in various problems of contemporary
mathematics, is well-known at the moment. In [3, 4, 5, 6] the perturbations of
continuous mappings condensing with respect to a certain principal part, were
investigated. In these works the homotopy classification of such perturbations
was considered and the topological degree for new classes of vector fields was
constructed. Note paper [3] (and some other papers by this author) where
the perturbations were investigated, for which the principal part was a linear
Fredholm operator.
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On the other hand, in [7, 8, 9] the solvability of equations of the type
A(x) − f(x) = 0, where A was a linear surjective operator and f was a com-
pletely continuous operator, was considered. Naturally the idea of studying the
equations of the same type with f condensing with respect to A, arises. Note
also that in this case the homotopy classification, constructed in [3, 4, 5, 6], is
not applicable.

The present paper is devoted to the above-mentioned problem. We investi-
gate the equations with condensing perturbations of closed linear surjective
operators and prove existence of solution theorems. Then the obtained results
are applied to studying solvability for some classes of neutral type equations.

2 (A,ψ)-condensing mappings

Let E1 an E2 be Banach spaces, A : D(A) ⊂ E1 → E2 be a closed linear
surjective operator and Γ(A) ⊂ E1 × E2 be the graph of A. Let also t :
Γ(A) → E1 be a projection mapping onto the domain of A, i.e. t(x, y) = x.

Consider some properties of the set-valued mapping A−1 : E2 → Cv(E1),
where A−1(y) = {x ∈ E1 | A(x) = y}.
Definition 2.1 The number

||A−1|| = sup
y∈E2

(
inf{||x|| | x ∈ E1, A(x) = y}

||y|| ) < ∞

is called the norm of set-valued mapping A−1.

If the sub-space Ker(A) is not complementable in the space E1, a linear
continuous right-inverse operator to A does not exist but the following prop-
osition takes place.

Lemma 2.1 For every number l, ||A−1|| < l and every point x0 ∈ D(A) there
exists a continuous mapping q : E2 → E1 such that the following properties
hold:
1) A(q(y)) = y for every y ∈ E2;
2) ||x0 − q(y)|| ≤ l||A(x0)− y|| for every y ∈ E2.

The proof of Lemma 2.1 can be found, e.g., in [9].
Let in E2 a monotone non-singular algebraic semi-additive real correct mea-

sure of non-compactness ψ be given (see, e.g., [1]).

Definition 2.2 We say that a single-valued mapping f : D(f) ⊂ E1 → E3 is
(A, ψ)-condensing, if:
1) for every set Ω ⊂ (D(A) ∩D(f)), from the inequality ψ(A(Ω)) ≤ ψ(f(Ω))
it follows that ψ(A(Ω)) = 0;
2) if X = t−1(D(f)), the composition f ◦ t : X → E3 is a continuous mapping.
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Let E1, E2 and E3 be Banach spaces, A : D(A) ⊂ E1 → E2 be closed
surjective linear operator and B : D(B) ⊂ E1 → E3 be a linear operator.

Definition 2.3 We say that the operator B is subordinated to the operator A,
if:
(1) D(A) ⊂ D(B);
(2) for every x ∈ D(A) the inequality ||A(x)|| ≥ ||B(x)||holds.

Consider a mapping g : X ⊂ D(A) → E2.

Definition 2.4 We say that the mapping g is completely continuous modulo
the mapping A (or A-completely continuous) if it is continuous and for every
bounded set Q ⊂ E2 and every bounded set M ⊂ X the set g(M ∩ A−1(Q)) is
compact in E3. The empty set is considered as compact by definition.

It is known that the set D(A) can be turned into Banach space by intro-
ducing the graph norm ||x||D(A) = ||x||E1 + ||A(x)||E2 into it. Let the Banach
space E be the above-mentioned set D(A) equipped with the graph norm. Ev-
idently the embedding map j : E → E1 is continuous. Introduce the notation
X̃ = j−1(X) and consider the mapping g̃ : X̃ → E3, g̃(x) = g(j(x)). The
following condition for A-complete continuity of a mapping g takes place.

Proposition 2.1 A continuous mapping g is A-completely continuous if and
only if the mapping g̃ is completely continuous.

Proof. Necessity. Let N ⊂ X̃ be a bounded set in E. Then the set M = j(N)
is bounded in E1 and the set Q = A(j(N)) = A(M) is bounded in E2. Hence
the set g̃(N) = g(j(N)) = g(M∩A−1(Q)) is relatively compact. The Necessity
follows.

Sufficiency. Let the mapping g̃ be completely continuous. Consider the
bounded sets Q ⊂ E2 and M ⊂ X. Let N = j−1(M ∩ A−1(Q)) ⊂ E. It is
evident that N ⊂ X̃ and it is bounded. Then g(M ∩ A−1(Q)) = g̃(N) and it
is relatively compact. This proves the Sufficiency. 2

One can easily prove the following statements.

Corollary 2.1 Let E1, E2 and E3 be Banach spaces. If a mapping g : X ⊂
E1 → E2 is A-completely continuous and f : E2 → E3 is continuous, the
mapping f ◦ g : X ⊂ E1 → E3 is A-completely continuous.

Corollary 2.2 If a mapping g is A-completely continuous, then for every
bounded set Y ⊂ X such that the set A(Y ) is bounded in E2, the set g(Y )
is relatively compact.
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Consider some examples of (A,ψ)-condensing mappings.
Example 1. Assume that the operator B is subordinated to A and a

bounded set X in D(A) is such that the set A(X) is bounded in E2. Let
ϕ : X ×E3 → E2 be a continuous mapping satisfying the following conditions:
1) there exists a number k ∈ (0, 1) such that for every point x ∈ X and every
y1, y2 ∈ E3 the inequality ||ϕ(x, y1)− ϕ(x, y2)|| ≤ k||y1 − y2|| holds;
2) for every y ∈ E3 the mapping ϕ(·, y) : X → E2 is A-completely continuous.

Consider the mapping f : X → E3, f(x) = ϕ(x,B(x)). Let in the space
E2 the Hausdorff measure of non-compactness χ be given.

Proposition 2.2 Under the above hypotheses the mapping f is (A,χ)-con-
densing.

Proof. Let us prove first that for every set Q ⊂ X the inequality

χ(f(Q)) ≤ k χ(A(Q))

takes place, from which and from Definition 2.2 condition (1) follows.
Let S = {s1, ..., sn} be a finite (χ(A(Q))+ε)-net of A(Q). Since S ⊂ A(Q),

there exist points {x1, ..., xn} ⊂ Q such that si = A(xi), i = 1, 2, ..., n.
Introduce the notation B(xi) = zi, i = 1, 2, ..., n. Then the points {zi} also

form a (χ(A(Q)) + ε)-net in B(x). Indeed, if z ∈ B(Q), there exists a point
x ∈ Q such that B(x) = z. Then for some i0 we obtain

||z − zi0|| = ||B(x)−B(xi0)|| ≤ ||A(x)− A(xi0)|| ≤ χ(A(Q)) + ε.

Let S1 = {z1, z2, ..., zn}. Consider the set ϕ(Q, zi), where i = 1, ..., n. It is
relatively compact since the mapping ϕ is A-completely continuous in the first
argument.

Introduce the notation L = ϕ(Q × S1) =
n⋃

i=1

ϕ(Q, zi) and show that this

set is a completely continuous k(χ(A(Q)) + ε)-net in f(Q).
Let z be an arbitrary point in f(Q). Then there exists a point x ∈ Q such

that z = ϕ(x,B(x)). Let the point zi ∈ S1 be such that zi = B(xi) and

||A(x)− A(xi)|| ≤ χ(A(Q)) + ε.

Then ϕ(x, zi) ∈ ϕ(Q, zi) ⊂ L. We have

||z − ϕ(x, zi)|| = ||ϕ(x,B(x))− ϕ(x,B(xi))|| ≤
≤ k||B(x)−B(xi)|| ≤ k||A(x)− A(xi)|| < k(χ(A(Q)) + ε).

Hence, χ(f(Q)) ≤ k(χ(A(x)) + ε) for every ε > 0. Then χ(f(Q)) ≤
k(χ(A(x))) and Condition (1) from Definition 2.2 is proved.
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Now let us prove that the composition f ◦ t : t−1(X) → E3 is continuous.
For this it is enough to prove that the composition B ◦ t : Γ(A) → E3 is
continuous. Let (x0, A(x0)) be an arbitrary point in Γ(A), and let the sequence
{(xn, A(xn))} tend to (x0, A(x0)), i.e.

||x0 − xn||+ ||A(x0)− A(xn)|| → 0.

From the last property it follows that x0 ∈ D(A) ⊂ D(B) and ||B(x0) −
B(xn)|| → 0 since ||B(x0) − B(xn)|| ≤ ||A(x0) − A(xn)||. The continuity is
proved. 2

Example 2. Let (as above) A : D(A) ⊂ E1 → E2 be a closed surjective
linear operator and let B : D(B) ⊂ E1 → E3 be subordinated to A. Suppose
that the Kuratowski measure of non-compactness α is given in E2. Let a
set X be a bounded sub-set in D(A) such that A(X) is bounded in E2 as
well. Suppose that a continuous mapping f1 : X → E1, satisfies the following
condition:

there exists a number k ∈ (0, 1) such that for every points x1, x2 ∈ X the
inequality

||f1(x1)− f1(x2)|| ≤ k||B(x1)−B(x2)||
holds, i.e., f1 is a B-contracting mapping.

As an example of such mapping on may consider the mapping f1 = q ◦ B,
where q : E3 → E1 is a contracting mapping.

Let f2 : X → E2 be A-completely continuous mapping. Consider the map-
ping f(x) = f1(x) + f2(x).

Proposition 2.3 Under the above conditions the mapping f is (A,α)-con-
densing.

Proof. Let Q ⊂ X and
α(f(Q)) ≥ α(A(Q)). (2.1)

Let ε be an arbitrary number greater than α(A(Q)). Then there exists a

finite number of sets {Ni}n
i=1, Ni ⊂ A(Q) such that

n⋃
i=1

Ni = A(Q) diam(Ni) <

ε for every i = 1, 2, ..., n. Let Qi = A−1(Ni)
⋂

Q. Introduce the notation
Mi = f1(Qi). Calculate the diameter of Mi.:

diam(Mi) = sup
u,v∈Mi

||u− v|| = sup
x,y∈Qi

||f1(x)− f1(y)|| ≤

≤ sup
x,y∈Qi

k ||B(x)−B(y)|| ≤ sup
x,y∈Qi

k ||A(x)− A(y)|| ≤

≤ k sup
a,b∈Ni

||a− b|| = k diam(Ni) < kε.
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Thus, for every ε > αA(Q) there exists a finite number of sets Mi, i =

1, 2, ..., n, such that
n⋃

i=1

Mi = f1(Q) diam(Mi) < kε. Hence,

k αA(Q) ≥ α(f1(Q)). (2.2)

Since the sets X and A(X) are bounded and the mapping f2 is A-completely
continuous, α(f2(Ω)) = 0 for every Ω ⊂ X.

By the algebraic semi-additivity of α we have:

α(f1(Q)) = α(f1(Q)) + α(f2(Q)) ≥ α(f(Q)) ≥ α(A(Q)). (2.3)

Comparing inequalities (2.2) and (2.3), we obtain that α(A(Q)) = 0 and so
Condition (1) from Definition 2.2 is proved.

The fact that the composition f ◦ t : Γ(A) → E3 is continuous, is proved
by the same way as in Example 1. 2

3 Equations with (A,ψ)-condensing mappings

Let E1, E2 be Banach spaces, A : D(A) ⊂ E1 → E2 be a closed linear surjective
operator. Let in E2 a monotone, non-singular, algebraically semi-additive,
real, correct measure of non-compactness ψ be given. Let q : E2 → E1 be a
continuous mapping that is right-inverse to A (see Lemma 2.1). Consider the
set X ⊂ E1 and (A,ψ)-condensing mapping f : X → E2.

Lemma 3.1 Let a set V ⊂ E2 be such that q(V ) ⊂ X. Then the mapping
g = f ◦ q : V → E2 is ψ-condensing.

Proof. Suppose that for a certain set Q ⊂ V the inequality ψ(g(Q)) ≥ ψ(Q)
holds. Then

ψ(g(Q)) = ψ(f(q(Q))) ≥ ψ(Q) = ψ(A(q(Q))).

Introduce the notation q(Q) = Ω. Then ψ(f(Ω)) ≥ ψ(A(Ω)), hence

ψ(A(Ω)) = ψ(A(q(Q))) = ψ(Q) = 0.

Now check that the mapping g is continuous. For this purpose consider the
mapping q̂ : E2 → Γ(A) given by the condition q̂(y) = (q(y), y). It is evident
that this mapping is continuous and that q = t ◦ q̂. Then the mapping g =
f ◦ q = f ◦ t ◦ q̂ is continuous. Thus g = f ◦ q is ψ-condensing. 2

Let x0 ∈ D(A) be a certain point, BR[x0] ⊂ E1 be a closed ball of radius
R centered at x0. Introduce the set

P = {x ∈ D(A)
⋂

BR[x0] | ||A(x)− A(x0)|| ≤ m},
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where m is a certain positive number. Let the mapping f : P → E2 be
(A, ψ)-condensing. Consider the equation

A(x) = f(x). (3.1)

Theorem 3.1 If there exists a number l > max{ ||A−1||, R
m
} such that

||A(x0)− f(x)|| ≤ R

l
,

equation (3.1) has a solution.

Proof. Specify a point y0 = A(x0). Consider the ball BR
l
[y0] ⊂ E2. Let

q : E2 → E1 be a continuous mapping that satisfies the conditions of Lemma
2.1. Check that q(BR

l
[y0]) ⊂ P .

Indeed, for every y ∈ BR
l
[y0] we have

||x0 − q(y)|| ≤ l||A(x0)− y|| = l||y0 − y|| ≤ R.

On the other hand,

||A(x0)− A(q(y))|| = ||A(x0)− y|| ≤ R

l
< m.

Then on the ball BR
l
[y0] the mapping g = f ◦ q : BR

l
[y0] → E2. is well-defined.

Check that for every y ∈ BR
l
[y0] the inclusion g(y) ∈ BR

l
[y0] holds. Indeed,

||y0 − g(y)|| = ||y0 − f(q(y))|| ≤ R

l
,

since q(y) ∈ BR[x0].
Then the ψ-condensing mapping g sends the ball BR

l
[y0] into itself, hence

it has a fixed point. Suppose that y∗ = g(y∗), i.e., y∗ = f(q(y∗)). If x∗ = q(y∗),

A(x∗) = A(q(y∗)) = y∗ = f(q(y∗)) = f(x∗).

The point x∗ is a solution of equation (3.1). 2

Consider some consequences of Theorem 3.1. Let E1, E2 and E3 be Banach
spaces, A : D(A) ⊂ E1 → E2 be a closed surjective linear operator and
B : D(B) ⊂ E1 → E3 be a linear operator subordinated to A. Let in addition
x0 ∈ D(A), BR[x0] ⊂ E1 be a closed ball with radius R > 0. Consider the set

P = {x ∈ D(A)
⋂

BR[x0] | ||A(x)− A(x0)|| ≤ m},
where m is a certain positive number.

Let ϕ : P × E3 → E2 be a continuous mapping that satisfies the following
conditions:
1) there exists a number k ∈ (0, 1) such that for every point x ∈ P and every
y1, y2 ∈ E3 the inequality ||ϕ(x, y1)− ϕ(x, y2)|| ≤ k||y1 − y2|| holds;
2) for every y ∈ E3 the mapping ϕ(·, y) : P → E2 is A-completely continuous.
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Corollary 3.1 If for every point x ∈ P there exists a number l greater than
max{ ||A−1||, R

m
} and such that ||A(x0) − ϕ(x,B(x))|| ≤ R

l
, equation A(x) =

ϕ(x,B(x)) has a solution in the set P .

Proof. Let in the space E2 the Hausdorff measure of non-compactness χ be
given. Consider the mapping f(x) = ϕ(x,B(x)). By Proposition 2.2 the
mapping f is (A,χ)-condensing on the set P . Hence, by Theorem 3.1 equation
A(x) = ϕ(x,B(x)) has a solution. 2

Another corollary to Theorem 3.1 is as follows. Let E1, E2 and E3 be
Banach spaces, A : D(A) ⊂ E1 → E2 be a closed surjective linear operator
and B : D(B) ⊂ E1 → E3 be a linear operator subordinated to A. Let
ϕ : E1×E3 → E2 be a continuous mapping, satisfying the following conditions:
1) there exists a number k ∈ (0, 1) such that for every point x ∈ E1 and every
y1, y2 ∈ E3 the inequality ||ϕ(x, y1)− ϕ(x, y2)|| ≤ k||y1 − y2|| holds;
2) for every y ∈ E3 the mapping ϕ(·, y) : E1 → E2 is A-completely continuous.

Consider the mapping f : D(A) → E2, f(x) = ϕ(x,B(x)). Let in the space
E2 the Hausdorff measure of non-compactness χ be given. We investigate the
solvability of the following equation:

A(x) = ϕ(x,B(x)). (3.2)

Theorem 3.2 If there exist constants γ ≥ 0 and β ≥ 0 such that γ(||A−1||+
1) < 1 and for every point x ∈ E the inequality ||ϕ(x, y)|| ≤ γ(||x||+ ||y||) + β
holds, equation (3.2) has a solution.

Proof. From the hypothesis of Theorem it follows that

||A−1|| < 1− γ

γ
.

Specify a number l such that ||A−1|| < l < 1−γ
γ

. Let q : E2 → E1 be

a continuous mapping, the right-inverse to A and such that q(0) = 0 and
||q(y)|| ≤ l ||y||. Such a mapping does exist by Lemma 2.1. Consider the com-
position f ◦ q : E2 → E2. Let R be an arbitrary positive number. Consider
the ball BR[0] ⊂ E2. Introduce the set

P = {y ∈ D(A)
⋂

BR[0] | ||A(y)− A(y0)|| ≤ m},

where m is a certain positive number. Then for every y ∈ P the inequality

||f(q(y))|| = ||ϕ(q(y), B(q(y)))|| ≤ γ(||q(y)||+ ||B(q(y))||) + β ≤

≤ γ(l||y||+ ||A(q(y))||) + β ≤ γ(l||y||+ ||y||) + β ≤ γ(l + 1)R + β
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holds. If R satisfies the inequality

R ≥ β

1− γ(l + 1)
,

||f(q(y))|| ≤ R. By the above assumptions the mapping f is (A,χ)-condensing
on P (see Proposition 2.2). Hence, the set P is invariant with respect to χ-
condensing mapping f ◦ q. By Sadovskii’s theorem (see [1]) this mapping has
a fixed point that determines a solution of equation (3.2). 2

4 On neutral type differential equations

4.1 On a certain neutral type differential equation

Consider an interval [0, τ ] of real line.

Definition 4.1 A function α̃ : [0, τ ] → [0, τ ] is called admissible if:
1) α̃ is continuous;
2) for every t ∈ [0, τ ] we have α̃(t) ≤ t.

Let g : [a, b] × Rn × Rn → Rn be a mapping that satisfies the following
conditions:
(g1) g is continuous jointly in all variables;
(g2) there exists a number k ∈ (0, 1) such that for every t ∈ [a, b] and x, y1, y2 ∈
Rn the inequality

||g(t, x, y1)− g(t, x, y2)|| ≤ k||y1 − y2||
holds.

Let α̃ and β̃ be admissible functions. Consider the following differential
equation:

x′(t) = g(t, x(α̃(t)), x′(β̃(t))). (4.1)

Let h ∈ (0, τ ]. We define a solution of equation (4.1) on the interval (0, h] as
a continuously differentiable function x∗, given on that interval, such that for
every t ∈ [0, h] it satisfies equation (4.1).

Consider the following problem:

x′(t) = g(t, x(α̃(t)), x′(β̃(t))), (4.2)

x(0) = 0. (4.3)

Problem (4.2), (4.3) has the following operator interpretation. Suppose
that 0 < h ≤ τ and denote by D(A) the set of continuously differentiable
functions x : [0, h] → Rn such that x(0) = 0. Let A : D(A) ⊂ C[0,h] → C[0,h]

be a differentiation operator.
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Evidently A is continuously convertible and A−1(y)(t) =
t∫

0

y(s) ds. It is

also easy to see that ||A−1|| = h.
Let φ : C[0,h] ×C[0,h] → C[0,h] be a superposition operator generated by the

mapping g, i.e., φ(x, y)(t) = g(t, x(t), y(t)).

Lemma 4.1 Under the above assumptions ψ is a continuous mapping and
satisfies the following conditions:
(1) for every point x ∈ C[0,h] and every y1, y2 ∈ C[0,h] the inequality ||φ(x, y1)−
φ(x, y2)|| ≤ k||y1 − y2|| holds;
(2) for every y ∈ C[0,h] the mapping φ(·, y) : C[0,h] → C[0,h] is A-completely
continuous.

The proof of Lemma 4.1 is obvious.
Consider the operator K : C[0,h] → C[0,h] determined by the condition

K(x)(t) = x(α̃(t)). Evidently it is a linear continuous operator and ||K|| ≤ 1.
Consider also the operator B : D(A) → C[0,h] determined by the condition

B(x)(t) = x′(β̃(t)).

Lemma 4.2 Operator B is subordinated to A.

Proof. It is sufficient to prove that
(1) D(A) ⊂ D(B);
(2) for every x ∈ D(A) the inequality ||A(x)|| ≥ ||B(x)|| holds.

Property (1) is evident since the domains of D(A) and of D(B) coincide.
Property (2) is a consequence of the following arguments:

||B(x)|| = max
0≤t≤h

||x′(β̃(t))|| ≤ max
0≤s≤h

||x′(s)|| = ||A(x)||.

2

Consider the mapping ϕ(x, y) : C[0,h] × C[0,h] → C[0,h], determined by the
condition : ϕ(x, y) = φ(K(x), y).

Lemma 4.3 Under the above assumptions the mapping ϕy = ϕ(·, y) : C[0,h] →
C[0,h] is A-completely continuous for a specified y.

Proof. Let in the set D(A) the graph norm ||x||D(A) = ||x||C + ||x′||C be given.
Denote by C1

[0,h] the space (D(A), ||·||D(A)). Consider a bounded set N ⊂ C1
[0,h].

For x ∈ N we have x(α̃(·)) ∈ K(N). It is evident that K(N) is bounded in
C[0,h].

Introduce the notation M = φy(K(N)) and prove that M is relatively
compact. For this we use the Arzelá-Ascoli theorem.

First of all M is uniformly bounded. Indeed, let x ∈ N , then there exists
R > 0 such that ||x||C ≤ R ||x′||C ≤ R. Since y(t) is a specified function on
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the interval [0, τ ], there exists a number P > 0 such that ||y(t)|| ≤ P for every
t ∈ [0, τ ]. Then x(α̃(t)) ∈ BR[0], y(t) ∈ BP [0]. Since g : [0, τ ]×BR[0]×BP [0] →
Rn is jointly continuous in all variables and the set [0, τ ] × BR[0] × BP [0] is
compact, the set g([0, τ ]×BR[0]×BP [0]) is compact in Rn. Hence it is closed
and bounded. Thus φy(x)(t) ⊂ g([0, τ ] × BR[0] × BP [0]) for every function
x ∈ N and every t ∈ [0, h]. Hence, the set M is uniformly bounded.

The fact that M is equicontinuous is proved by the following arguments.
Since g : [0, τ ]× BR[0]× BP [0] → Rn is jointly continuous in all variables,

and the set [0, τ ] × BR[0] × BP [0] is compact, the mapping g is uniformly
continuous on this set. Hence, for every ε > 0, every x1, x2 ∈ BR[0], every
y1, y2 ∈ BP [0] and every t1, t2 ∈ [0, τ ] there exists δ1 > 0 depending on ε, such
that if |t1 − t2| < δ1, ||x1 − x2|| < δ1, ||y1 − y2|| < δ1 then

||g(t1, x1, y1)− g(t2, x2, y2)|| < ε.

Since the function y(t) is uniformly continuous on [0, τ ], there exists δ2 > 0
depending on δ1, such that for every t1, t2 ∈ [0, τ ] from the fact that |t1−t2| < δ2

it follows that ||y(t1)− y(t2)|| < δ1.
By the mean value theorem ||x(t1)−x(t2)|| = ||x′(c)|| · |t1− t2| ≤ R|t1− t2|.

Then ||x(α̃(t1))− x(α̃(t2))|| = ||x′(c)|| · |α̃(t1)− α̃(t2)| where c ∈ [α̃(t1), α̃(t2)].
Since α is continuous on [0, τ ], it is uniformly continuous on this interval.

Hence there exists δ3 > 0 depending on δ1, such that for every t1, t2 ∈ [0, τ ]
from the fact that |t1 − t2| < δ3 it follows that ||α̃(t1)− α̃(t2)|| < δ1

R
.

Introduce δ = min{δ1, δ2, δ3}. Then from the fact that |t1 − t2| < δ it
follows that ||α̃(t1)− α̃(t2)|| < δ1, ||y(t1)− y(t2)|| < δ1 |t1 − t2| < δ1. Then

||ϕy(x)(t1)− ϕy(x)(t2)|| = ||φ(K(x), y)(t1)− φ(K(x), y)(t2)|| =

= ||g(t1, x(α̃(t1)), y(t1))− g(t2, x(α̃(t2)), y(t2))|| < ε.

Thus, by the the Arzelá-Ascoli theorem the set M is relatively compact.
Hence the mapping ϕy is A-completely continuous. 2

It is evident that problem (4.2), (4.3) is equivalent to the following operator
equation:

A(x) = ϕ(x,B(x)). (4.4)

Theorem 4.1 Let a mapping g satisfy conditions (g1) and (g2). Then there
exists a number h0 ∈ (0, τ ], such that problem (4.2), (4.3) has a solution on
the interval [0, h0].

Proof. Consider the mapping g(0,0) : Rn → Rn, g(0,0)(y) = g(0, 0, y). By
condition (g2) this mapping is a contraction. Hence it has a unique fixed point
y0, i.e., y0 = g(0, 0, y0). Consider the function ŷ0(t) = ty0 ∈ D(A), where
t ∈ [0, h].
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Introduce the notation

T = {x ∈ D(A) ⊂ C[0,h] | ||x− ŷ0|| ≤ r, ||x′ − y0‖| ≤ m},
where r and m are some positive numbers.

Let x be an arbitrary function from T . Estimate ||A(ŷ0) − ϕ(x,B(x))||.
We have

||A(ŷ0)− ϕ(x,B(x))|| = max
t∈[0,h]

||y0 − g(t, x(α̃(t)), x′(β̃(t)))|| =

= max
t∈[0,h]

||g(0, 0, y0)− g(t, x(α̃(t)), x′(β̃(t)))||.

If t ∈ [0, h],

||g(0, 0, y0)− g(t, x(α̃(t)), x′(β̃(t)))|| ≤ ||g(0, 0, y0)− g(0, 0, x′(β̃(t)))||+
+||g(0, 0, x′(β̃(t)))− g(t, x(α̃(t)), x′(β̃(t)))|| ≤ k ||y0 − x′(β̃(t))||+

+||g(0, 0, x′(β̃(t)))− g(t, x(α̃(t)), x′(β̃(t)))||.
Since x ∈ T , ||y0 − x′(β̃(t))|| ≤ m.

Now estimate ||g(0, 0, x′(β̃(t))) − g(t, x(α̃(t)), x′(β̃(t)))||. It is evident that
there exists a bounded closed set G ∈ [0, h] × Rn × Rn such that from x ∈ T
it follows that (t, x(α̃(t)), x′(β̃(t))) ∈ G. Since g is continuous, it is uniformly
continuous on G, i.e., for every δ > 0 there exists η = η(δ) > 0 such that from
|t1 − t2| < η and ||x1 − x2|| < η ||y1 − y2|| < η uit follows that

||g(t1, x1, y1)− g(t2, x2, y2)|| < δ.

Note that there exists a number S > 0 such that ||x′(t)|| ≤ S for every t ∈
[0, h] and every x ∈ T . Then ||0−x(α̃(t))|| = ||x(0)−x(α̃(t))|| ≤ S α̃(t) ≤ S t.
Consider δ = m. Then there exists h1 > 0 such that h1 < η Sh1 < η. Hence

||g(0, 0, x′(β̃(t)))− g(t, x(α̃(t)), x′(β̃(t)))|| < m

for every t ∈ [0, h1].
Thus, we obtain that if t ∈ [0, h1], then

||g(0, 0, y0)− g(t, x(α̃(t)), x′(β̃(t))|| ≤ k m + m = m(1 + k).

Specify a number l so that l m(1 + k) < r. Take a positive number h0 <
min{h1, l, τ}. Consider equation (4.4) in the space C[0,h0]. Let x be an arbitrary
function from T . We have

||A(ŷ0)− f(x)|| ≤ m(1 + k) <
r

l
,

where l > h0 = ||A−1||. Thus the hypothesis of Theorem 3.1 is fulfilled and so
a solution of problem (4.2), (4.3) does exists. 2
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4.2 On global solutions of neutral type equations

Let (as well as above) [0, τ ] be an interval of the real line.
Consider continuous functions λ : [0, τ ] → [0, τ ] and µ : [0, τ ] → [0, τ ].
Let the mapping g : [0, τ ]×Rn ×Rn → Rn be the same as in the previous

subsection. Consider the following differential equation:

x′(t) = g(t, x(λ(t)), x′(µ(t))), (4.5)

x(0) = 0. (4.6)

A continuously differentiable function x∗ given on [0, τ ] and satisfying equa-
tion (4.5) and condition (4.6), is called a solution of problem (4.5), (4.6) on
[0, τ ].

This problem has the following operator interpretation. Denote by D(A)
the st of continuously differentiable functions x : [0, τ ] → Rn such that x(0) =
0. Let A : D(A) ⊂ C[0,τ ] → C[0,τ ] be an operator of differentiation. It is evident

that A is continuously invertible and A−1(y)(t) =
t∫

0

y(s) ds. It is easy to see

that ||A−1|| = τ .
Let φ : C[0,τ ] × C[0,τ ] → C[0,τ ] be the superposition operator generated by

the mapping g, i.e., φ(x, y)(t) = g(t, x(t), y(t)).

Lemma 4.4 Under the above assumption φ is continuous and satisfies the
following conditions:
(1) for every point x ∈ C[0,τ ] and every y1, y2 ∈ C[0,τ ] the inequlity ||φ(x, y1)−
φ(x, y2)|| ≤ k||y1 − y2|| holds;
(2) for every y ∈ C[0,τ ] the mapping φ(·, y) : C[0,τ ] → C[0,τ ] is A-completely
continuous.

The proof of Lemma 4.4 is obvious.
Consider the operator K : C[0,τ ] → C[0,τ ] determined by the following con-

dition: K(x)(t) = x(λ(t)). Evidently it is a continuous linear operator and
||K|| ≤ 1. Consider also the operator B : D(A) → C[0,τ ] determined by the
condition B(x)(t) = x′(µ(t)).

Lemma 4.5 B is subordinated to A.

The proof of Lemma 4.5 is quite analogous to that of Lemma 4.2.
Consider the mapping ϕ(x, y) : C[0,τ ] × C[0,τ ] → C[0,τ ], determined by the

condition : ϕ(x, y) = φ(K(x), y).

Lemma 4.6 Under the above conditions the mapping ϕy = ϕ(·, y) : C[0,τ ] →
C[0,τ ] is A-completely continuous for a specified y.
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The proof of Lemma 4.6 is quite analogous to that of Lemma 4.3.
Problem (4.5) is evidently equivalent to the following operator equation

A(x) = ϕ(x,B(x)). (4.7)

Theorem 4.2 If there exist constants p ≥ 0 and s ≥ 0 such that for every
point x ∈ C[0,τ ] the inequality ||g(t, x(t), y(t))|| ≤ p(||x(t)||+ ||y(t)||) + s holds
and p(τ + 1) < 1, then equation (4.6) has a solution.

Proof. The mapping ϕ(x,B(x)) satisfies the hypothesis of Theorem 3.2.
Let us estimate ||ϕ(x, y)||. We have:

||ϕ(x, y)|| = max
0≤t≤τ

||ϕ(x, y)(t)|| ≤ max
0≤t≤τ

||g(t, x(λ(t)), y(t))|| ≤

≤ max
0≤t≤τ

(p(||x(λ(t))||+ ||y(t)||) + s) ≤ p(||x||+ ||y||) + s

By Theorem 3.2 equation (4.6) has a solution if p(||A−1|| + 1) < 1. Since
||A−1|| = τ , this takes place if p(τ + 1) < 1. 2

4.3 An abstract scheme of neutral type equations

Let E1, E2, E
′
2 and E3 be Banach spaces, A : D(A) ⊂ E1 → E2 be a closed

surjective linear operator and J : E2 → E
′
2 be a continuous surjective linear

operator that satisfies the following condition:
(J1) there exists a continuous linear operator Q : E

′
2 → E2 such that for every

z ∈ E2 the equality J(Q(z)) = z holds.
Let B : D(B) ⊂ E1 → E3 be a closed linear operator subordinated to A.
Let ϕ : E1×E3 → E

′
2 be a continuous mapping. We assume that ϕ satisfies

the following conditions:
(ϕ1) for every z ∈ E3 the mapping ϕ(·, z) : E1 → E2 is A-completely continu-
ous;
(ϕ2) there exists a number k ∈ (0, 1

||Q||) such that for every x ∈ E1 and every
z1, z2 ∈ E3 the inequality

||ϕ(x, z1)− ϕ(x, z2)|| ≤ k ||z1 − z2||
holds.

We investigate the solvability of the following operator equation:

J(A(x)) = ϕ(x, B(x)). (4.8)

It is easy to see that every solution of equation

A(x) = Q(ϕ(x,B(x)) (4.9)

is a solution of equation (4.8). Let in E2 a measure of non-compactness χ be
given. We apply the results of previous subsection to studying equation (4.9).
The following theorem takes place.

14



Theorem 4.3 Let all above-mentioned assumptions be satisfied and let there
exist constants γ ≥ 0 and β ≥ 0 such that for every x ∈ E1 and z ∈ E3 the
inequality ||ϕ(x, z)|| ≤ γ(||x|| + ||z||) + β holds. If ||Q|| γ (||A−1|| + 1) < 1,
equation (4.8) has a solution.

Proof. Consider the mapping ϕ̂ : E1 × E3 → E2 determined as follows:
ϕ̂(x, z) = Q(ϕ(x, z)). By the above-mentioned assumptions this mapping sat-
isfies the hypothesis of Theorem 3.2. Let us estimate ||ϕ̂(x, z)||. We have:

||ϕ̂(x, z)|| = ||Q(ϕ(x, z))|| ≤ ||Q|| (γ (||x||+ ||z||) + β) =

= ||Q|| γ (||x||+ ||z||) + ||Q||β.

By Theorem 3.2 equation (4.9) has a solution if ||Q|| γ (||A−1||+ 1) < 1. This
proves the theorem. 2

Acknowledgement. B.D. Gel’man gratefully acknowledges the support
of RFBR Grant 11-01-00382-a.

References

[1] R.R. Ahmerov, M.I. Kamenskii, A.S. Potapov, A.E. Rodkina, B.N.
Sadovskii, “Measures of Noncompactness and Condensing Operators”,
Operator Theory: Advance and Appl. V.55, Birkhauser, 1992.

[2] M. Kamenskii, V. Obukhovskii, P. Zecca, “Condensing multivalued
maps and semilinear differential inclusions in Banach spaces”, Walter de
Gruyter, Berlin–New York, 2001.

[3] G. Hetzer, “Some remarks on operators and the coincidence degree for
Fredholm equation with noncompact nonlinear perturbation”, Ann. Soc.
Sci. Bruxelles, Ser.1, Vol. 89, No. 1, pp. 497-508, 1975

[4] Yu.G. Borisovich, “Modern approach to the theory of topological char-
acteristics of nonlinear operators. I.”, Lecture Notes in Mathematics, Vol
1334, pp. 199-220, 1988

[5] Yu.G. Borisovich, “Modern approach to the theory of topological charac-
teristics of nonlinear operators. II”, Lecture Notes in Mathematics, Vol
1453, pp. 21-49, 1990.

[6] V.T. Dmitrienko, V.G. Zvyagin, “Homotopy classification of a class of
continuous mappings”, Mathematical Notes, Vol. 31, No. 5, pp 801-812,
1982.

15



[7] B. Ricceri, “On the topological dimension of the solution set of a class of
nonlinear equations”, C. R. Acad. Sci. Paris Sér. I Math., Vol. 325, No.
1, pp. 65–70, 1997

[8] B.D. Gel’man, “On a Class of Operator Equations”, Mathematical Notes,
Vol. 70, No 3-4, pp. 494-501, 2001.

[9] B.D. Gel’man, “Operator equations and Cauchy problems for degenerated
differential equations”, Proceedings of Voronezh State University, Series
Physics Mathematics, No. 2., pp. 86-91, 2007.

[10] B.D. Gel’man, “Set-valued contraction mappings and their applications”,
Proceedings of Voronezh State University, Series Physics Mathematics,
No. 1, pp. 74–86, 2009

16


