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aDepartment of Mathematics, University of York
Heslington, York, YO105DD, United Kingdom

E-mail: zdzislaw.brzezniak@york.ac.uk
bDepartment of Mathematics and Computer Sciences, Lodz University

ul. Banacha 2, 91-238  Lódź, Poland
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Abstract

A stochastic Boussinesq model for the Bénard problem is considered
as a system of stochastic Navier-Stokes equations and transport equation
in Rd−1 × [0, 1], d = 2, 3. The existence of a martingale solution is
proved. The construction of the solution is based on the Faedo-Galerkin
approximation and the compactness method.
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1. Introduction
We consider the Boussinesq model for the Bénard problem with random influ-
ences in Rd−1 × [0, 1], where d = 2, 3,

∂u

∂t
+ (u · ∇)u− ν∆u− ϑed +∇p = f1(t) +G1(u, ϑ) dW1(t), t ∈ [0, T ] (1.1)

∂ϑ

∂t
+ (u · ∇)ϑ− κ∆ϑ− ud = f2(t) +G2(u, ϑ) dW2(t), (1.2)
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with the incompressibility condition

divu = 0, (1.3)

with the boundary conditions in the vertical direction

u = 0 when xd = 0 or xd = 1, (1.4)
ϑ = 0 when xd = 0 or xd = 1. (1.5)

and the periodic conditions in the horizontal directions:

p, u, ϑ,
∂u

∂xi

,
∂ϑ

∂xi

are periodic in the xi directions, 1 ≤ i ≤ d− 1. (1.6)

The last condition means that for some l > 0 (when d = 2) or l, L > 0 (when
d = 3)

ϕ|x1=0 = ϕ|x1=l, if d = 2, 3,

ϕ|x2=0 = ϕ|x2=L, if d = 3

for the corresponding functions ϕ.

The functions u = u(t, x) and p = p(t, x) are interpreted as the velocity
and pressure of the fluid. Function ϑ = ϑ(t, x) represents the temperature
of the fluid (see [11]), here f1, f2 stand for the deterministic external forces
and G1(u, ϑ) dW1(t), G2(u, ϑ) dW2(t), where W1,W2 are independent Wiener
processes, are the random forces. This model has been studied by Foiaş,
Manley and Temam [11] and Ghidaglia [12] in the deterministic case. The
stochastic case is considered by Duan and Millet [8] and Ferrario [9] in 2D
domains of the form R × [0, 1]. In [9], the semigroup approach is used. The
existence and uniqueness results and the existence of an invariant measure
are proven for the model with an additive noise. In [8], large deviations are
considered. In particular, the existence and uniqueness theorems in 2D case
with a multiplicative noise term which may depend on the gradient of (u, ϑ)
are proven. We generalize the existence result to the 3D case using a different
approach which is independent of the method developed in [8].

The above problem can be written in an abstract form as the following initial-
value problem in appropriate Hilbert space which is a Cartesian product of
spaces used for the Navier-Stokes equations and spaces used in the theory of
the transport equation, i.e.

dφ+
[
Aφ+B(φ) +Rφ

]
dt = f(t) dt+G(φ) dW (t), t ∈ [0, T ],

with the initial condition
φ(0) = φ0,
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where W (t) = (W1(t),W2(t)), f =
(
f1(t), f2(t)

)
, φ = (u, ϑ) and φ0 = (u0, ϑ0).

Here, A and R are linear operators and B is a bilinear mapping. We im-
pose rather general conditions on the noise G(φ)dW (t) = G1(u, ϑ) dW1(t) +
G2(u, ϑ) dW2(t), see Section 3 for details. These assumptions cover the follow-
ing special case

G(φ(t)) dW (t) :=
∞∑
i=1

[(
b(i)(x) · ∇

)
φ(t, x) + c(i)(x)φ(t, x)

]
dβ(i)(t),

where {β(i)}i∈N are independent standard Brownian motions, see Section 5.

We prove the existence of a martingale solution. The construction of the
solution is based on the Faedo-Galerkin approximation, i.e.

dφn(t) = −
[
PnAφn(t) +Bn

(
φn

)
+ PnR(φn(t))− Pnf(t)

]
dt

+PnG
(
φn

)
dW (t), t ∈ [0, T ],

φn(0) = Pnφ0.

The solutions φn to the Galerkin equations generate a sequence of laws {L(φn);
n ∈ N} on appropriate functional spaces. To prove that this sequence of
probability measures is weakly compact we need appropriate tightness criteria.

Our approach is closely related to the method used by Flandoli and Ga̧tarek
[10] to the stochastic Navier-Stokes equations in a bounded domain, where
also the Faedo-Galerkin approximation is used. In [10] the tightness of an
appropriate sequence of measures is proven by means of some compactness
results in fractional Sobolev spaces. In the present paper we prove the tightness
of {L(φn); n ∈ N} using a different criterion of the compactness than used in
[10].

Thus we first concentrate on another tightness criterion which we formulate in
an abstract setting. More precisely, let H and V be two real separable Hilbert
spaces such that V ↪→ H, the embedding being dense and compact. Moreover,
we assume that there exists a third real separable Hilbert space such that the
embedding U ↪→ V is dense and continuous. Using the classical Dubinsky
Theorem, [23] and some ideas of Mikulevicius and Rozovskii [17], we prove a
certain criterion for relative compactness of a set K in the intersection space

Z := C([0, T ];U ′) ∩ Lq
w(0, T ; V) ∩ Lq(0, T ; H) ∩ C([0, T ]; Hw).

To be precise we show that the following three conditions, see Lemma 2.3,

(a) supu∈K sups∈[0,T ] |u(s)|H <∞,
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(b) supu∈K
∫ T

0
‖u(s)‖q

V ds <∞,

(c) lim δ→0 supu∈K sups,t∈[0,T ]

|t−s|≤δ
|u(t)− u(s)|U ′ = 0,

are sufficient for the relative compactness of K in Z. Let us notice that as-
sumption (c) is, in fact, the assumption on the modulus of continuity.

Mikulevicius and Rozovskii [17] proved the existence of a martingale solution
of the stochastic Navier-Stokes equations in Rd, d ≥ 2. Note that in this case
the embedding H1(Rd) ↪→ L2(Rd) is not compact. In their approach the space
L2(Rd) is compactly embedded in the Fréchet space H−k0

loc (Rd) for sufficiently
large k0. Then, they proved a compactness criterion in the intersection space

C([0, T ];H−k0
loc (Rd))∩C([0, T ];L2

w(Rd)) ∩ L2
w(0, T ;H1(Rd)) ∩ L2(0, T ;L2

loc(Rd)).

(The letter w indicates the weak topology.) The main difference between our
paper and [17] is that we formulate this criterion in an abstract Hilbert spaces
setting. However, since we assume compactness of the embedding V ↪→ H, in
the proof Lemma 2.3 we can use the Dubinsky Theorem.

Using the deterministic compactness criterion formulated in Lemma 2.3 and
the Aldous condition in the form given by Métivier [15], we find a certain
tightness criterion for the laws on the space Z, see Corollary 2.6. Assump-
tions in this tightness criterion are expressed in terms of uniform estimates on
expected values of the norms in (a) and (b). The assumption corresponding to
the modulus of continuity is given by the Aldous condition, see Métivier [15]
and Section 2.

Furthermore, the construction of a martingale solution differs from the ap-
proach by Mikulevicius and Rozovskii. We apply the method used by Da
Prato and Zabczyk in [7], Section 8. This method is based on the Skorokhod
Theorem and the martingale representation Theorem. This is also the method
used in [10].

The paper is organized as follows. In Section 2 we are concerned with the
compactness result. In Section 3, we formulate the Boussinesq problem as
an abstract stochastic evolution equation in appropriate Sobolev spaces. The
main theorem concerning existence and construction of the martingale solu-
tions is in Section 4. Some auxilliary results connected with the proof are given
in Appendices A and B. In Section 5, we consider an example of the noise.

2. Compactness result
Using the classical Dubinsky Theorem, see [23], we will prove a certain com-
pactness criterion analogous to that contained in Lemma 2.7 in [17]. However,
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we put it into the abstract framework in Hilbert spaces. Using the Aldous
condition in the form given by Métivier, [15], we obtain a certain tightness
criterion.

2.1 Compactness criterion

Let (H, (·|·)) and
(
V,

((
·|·

)))
be abstract real separable Hilbert spaces such that

the embedding V ↪→ H is dense and compact. Identifying H with its dual H′,
we have the following embeddings

V ↪→ H ∼= H′ ↪→ V′.

Assume that there exists a real separable Hilbert space U such that U ↪→ V,
the embedding being dense and continuous. Thus we have

U ↪→ V ↪→ H ∼= H′ ↪→ V′ ↪→ U ′. (2.1)

Then in particular, H ↪→ U ′ is compact.

Let q ∈ (1,∞). Let us consider the following three functional spaces

C([0, T ], U ′) := the space of continuous functions u : [0, T ] → U ′ with the to-
pologyT 1 induced by the norm ‖u‖C([0,T ];U ′) := sup

t∈[0,T ]

‖u(t)‖U ′ ,

Lq
w(0, T ; V) := the space Lq(0, T ; V) with the weak topology T2,

Lq(0, T ; H) := the space Lq(0, T ; H) with the topology T3 induced
by the norm.

Let Hw denote the Hilbert space H endowed with the weak topology. Consider
the ball

B := {x ∈ H; |x|H ≤ r}.

It is well-known that the weak topology induced on B is metrizable, see [4]. Let
q denote the metric compatible with the weak topology on B. Let us consider
the following space

C([0, T ]; Bw) = the space of weakly continuous functions u : [0, T ] → H
and such that sup

t∈[0,T ]

|u(t)|H ≤ r.

(2.2)

The space C([0, T ]; Bw) is metrizable with

%(u, v) = sup
t∈[0,T ]

q(u(t), v(t)). (2.3)
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Since by the Banach-Alaoglu Theorem Bw is compact, (C([0, T ]; Bw), %) is a
complete metric space. Moreover, un → u in C([0, T ]; Bw) iff for all h ∈ H:

lim
n→∞

sup
t∈[0,T ]

∣∣(un(t)− u(t)|h)H
∣∣ = 0.

The following lemma says that any sequence (un) ⊂ C([0, T ]; B) convergent in
C([0, T ];U ′) is also convergent in the space C([0, T ]; Bw). It is closely related
to the lemma due to Strauss, see [19], that says:

L∞(0, T ; H) ∩ C([0, T ];U ′
w) ⊂ C([0, T ]; Hw), (2.4)

where C([0, T ];U ′
w) denotes the space of U ′-valued weakly continuous functions.

Lemma 2.1. Let un : [0, T ] → H, n ∈ N be functions such that

(i) supn∈N sups∈[0,T ] |un(s)|H ≤ r,

(ii) un → u in C([0, T ];U ′).

Then u, un ∈ C([0, T ]; Bw) and un → u in C([0, T ]; Bw) as n→∞.

Proof. By (2.4) we infer that un ∈ C([0, T ]; Hw). We claim that

un → u in C([0, T ]; Bw) as n→∞,

i.e. that for all h ∈ H

lim
n→∞

sup
s∈[0,T ]

∣∣(un(s)− u(s)|h)H
∣∣ = 0. (2.5)

Indeed, first let us fix h ∈ U . Then for all s ∈ [0, T ] we have∣∣(un(s)− u(s)|h)H
∣∣ = |

(
un(s)− u(s)|h

)
| ≤ |un(s)− u(s)|U ′ · ‖h‖U .

Since un → u in C([0, T ];U ′),

sup
s∈[0,T ]

∣∣(un(s)− u(s)|h)H
∣∣ ≤ sup

s∈[0,T ]

|un(s)− u(s)|U ′ · ‖h‖U → 0

as n→∞.

To show that condition (2.5) holds for all h ∈ H let us fix h ∈ H and ε > 0.
Since U is dense in H, there exists hε ∈ U such that |h− hε|H ≤ ε. Using (i),
we infer that for all s ∈ [0, T ] the following estimates hold∣∣(un(s)− u(s)|h)H

∣∣ ≤ ∣∣(un(s)− u(s)|h− hε)H
∣∣ +

∣∣(un(s)− u(s)|hε)H
∣∣

≤ |un(s)− u(s)|H|h− hε|H +
∣∣(un(s)− u(s)|hε)H

∣∣
≤ ε · ‖un − u‖L∞(0,T ;H) +

∣∣(un(s)− u(s)|hε)H
∣∣

≤ 2ε · sup
n∈N

‖un‖L∞(0,T ;H) +
∣∣(un(s)− u(s)|hε)H

∣∣
≤ 2εr + sup

s∈[0,T ]

∣∣(un(s)− u(s)|hε)H
∣∣.
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Thus

sup
s∈[0,T ]

∣∣(un(s)− u(s)|h)H
∣∣ ≤ 2εr + sup

s∈[0,T ]

∣∣(un(s)− u(s)|hε)H
∣∣.

Passing to the upper limit as n→∞, we obtain

lim sup
n→∞

sup
s∈[0,T ]

∣∣(un(s)− u(s)|h)H
∣∣ ≤ 2rε.

Since ε is arbitrary,

lim
n→∞

sup
s∈[0,T ]

∣∣(un(s)− u(s)|h)H
∣∣ = 0.

Since C([0, T ]; Bw) is a complete metric space, we infer that u ∈ C([0, T ]; Bw)
as well. The proof is thus complete.

Let us recall the classical compactness criterion due to Dubinsky, [23], Theorem
IV.4.1, see also [14].

Theorem 2.2. (Dubinsky) Let E0, E and E1 be reflexive Banach spaces such
that the embeddings E0 ↪→ E ↪→ E1 are continuous and the embedding E0 ↪→ E
is compact. Let q ∈ (1,∞) and let K be a bounded set in Lq(0, T ;E0) consisting
of functions equicontinuous in C([0, T ];E1). Then K is relatively compact in
Lq(0, T ;E) and C([0, T ];E1).

Using Theorem 2.2 and Lemma 2.1, we obtain compactness criterion analogous
to the result due to Mikulevicius and Rozovskii, see [17].

Lemma 2.3. (see Lemma 2.7 in [17]) Let q ∈ (1,∞) and let

Z := C([0, T ];U ′) ∩ Lq
w(0, T ; V) ∩ Lq(0, T ; H) ∩ C([0, T ]; Hw) (2.6)

and let T be the supremum of the corresponding topologies. Then a set K ⊂ Z
is T -relatively compact if the following three conditions hold

(a) for all u ∈ K and for all t ∈ [0, T ], u(t) ∈ H and

supu∈K sups∈[0,T ] |u(s)|H <∞,

(b) supu∈K
∫ T

0
‖u(s)‖q

V ds <∞, i.e. K is bounded in Lq(0, T ; V),

(c) lim δ→0 supu∈K sups,t∈[0,T ]

|t−s|≤δ
|u(t)− u(s)|U ′ = 0.
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Proof. Without loss of generality we can assume that K is a closed subset
of Z. Because of the assumption (a) we may consider the metric subspace
C([0, T ]; Bw) ⊂ C([0, T ]; Hw) defined by (2.2) and (2.3) with
r := supu∈K sups∈[0,T ] |u(s)|H. By assumption (b) the restriction to the set K
of the weak topology in Lq

w(0, T ; V) is metrizable. Since the restrictions to K
of the four topologies considered in Z are metrizable, compactness of a subset
of Z is equivalent to its sequential compactness.

Let (un) be a sequence in K. By the Banach-Alaoglu Theorem condition
(b) yields that K is compact in Lq

w(0, T ; V). Condition (c) implies that the
functions (un) are equicontinuous. By Theorem 2.2 assumptions (b) and (c)
imply that K is compact in C([0, T ];U ′) ∩ Lq(0, T ; H). Hence in particular,
there exists a subsequence, still denoted by (un), convergent in C([0, T ];U ′).
Therefore by Lemma 2.1 (un) is convergent in C([0, T ]; Bw). This completes
the proof of the statement.

2.2 The Aldous condition and tightness

Let (S, %) be a separable and complete metric space.

Definition 1. Let u ∈ C([0, T ],S). The modulus of continuity of u on [0, T ]
is defined by

m(u, δ) := sup
s,t∈[0,T ],|t−s|≤δ

%(u(t), u(s)), δ > 0.

Let (Ω,F ,P, ) be a probability space with filtration F := (Ft)t∈[0,T ] satisfying
the usual conditions, see [16], and let (Xn)n∈N be a sequence of continuous
F-adapted and S-valued processes.

Definition 2. We say that a sequence (Xn) of S-valued random variables
satifies condition [T̃] iff

[T̃] ∀ ε > 0 ∀ η > 0 ∃ δ > 0:

sup
n∈N

P
{
m(Xn, δ) > η

}
≤ ε. (2.7)

Remark. Let Pn denote the law of Xn on C([0, T ],S). For fixed η > 0 and
δ > 0 we denote

Cη,δ := {u ∈ C([0, T ],S) : m(u, δ) ≥ η}.

Then condition
P
{
m(Xn, δ) > η

}
≤ ε

is equivalent to the following one

Pn(Cη,δ) ≤ ε.
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Lemma 2.4. Assume that (Xn) satifies condition [T̃]. Let Pn be the law
of Xn on C([0, T ],S), n ∈ N. Then for every ε > 0 there exists a subset
Aε ⊂ C([0, T ],S) such that

sup
n∈N

Pn(Aε) ≥ 1− ε

and
lim
δ→0

sup
u∈Aε

m(u, δ) = 0. (2.8)

Proof. Let us fix ε > 0. By condition [T̃] for each k ∈ N there exists δk > 0
such that

sup
n∈N

P
{
m(Xn, δk) >

1

k

}
≤ ε

2k+1
.

Then
sup
n∈N

P
{
m(Xn, δk) ≤ 1

k

}
≥ 1− ε

2k+1

or equivalently

sup
n∈N

Pn

{
u ∈ C([0, T ],S) : m(u, δk) ≤ 1

k

}
≥ 1− ε

2k+1
.

Let Bk :=
{
u ∈ C([0, T ],S) : m(u, δk) ≤ 1

k

}
and let Aε :=

⋂∞
k=1Bk. We assert

that for each n ∈ N one has

Pn

(
Aε

)
≥ 1− ε.

Indeed, we have the following estimates

Pn

(
C([0, T ],S) \ Aε

)
≤ Pn

(
C([0, T ],S) \

∞⋂
k=1

Bk

)
= Pn

( ∞⋃
k=1

(
C([0, T ],S) \Bk

))
≤

∞∑
k=1

Pn

(
C([0, T ],S) \Bk

)
≤

∞∑
k=1

ε

2k+1
= ε.

Thus Pn(Aε) ≥ 1− ε.

To prove (2.8), let us fix ε̃ > 0. Directly from the definition of Aε, we infer
that supu∈Aε

m(u, δk) ≤ 1
k

for each k ∈ N. Choose k0 ∈ N such that 1
k0
≤ ε̃ and

let δ0 := δk0 . Then for every δ ≤ δ0 we obtain the following estimate

m(u, δ) ≤ m(u, δk0) ≤ ε̃,

which completes the proof of (2.8) and of the Lemma.
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Now, we recall the Aldous condition which is connected with condition [T̃] (see
[15] and [2]). This condition allows to investigate the modulus of continuity
for the sequence of stochastic processes by means of stopped processes.

Definition 3. A sequence (Xn)n∈N satisfies condition [A] iff

[A] ∀ ε > 0 ∀ η > 0 ∃ δ > 0 such that for every sequence (τn)n∈N of
F-stopping times with τn ≤ T one has

sup
n∈N

sup
0≤θ≤δ

P
{
%
(
Xn(τn + θ), Xn(τn)

)
≥ η

}
≤ ε.

Lemma 2.5. (See [15], Th. 3.2 p. 29) Conditions [A] and [T̃] are equivalent
.

Using the compactness criterion formulated in Lemma 2.3 we obtain the fol-
lowing corollary which we will use to prove tightness of the laws defined by
the Galerkin approximations.

Let us recall that H,V, U are separable Hilbert spaces such that

U ↪→ V ↪→ H,

where the embedding V ↪→ H is dense and compact and the embedding U ↪→ V
is dense and continuous.

Corollary 2.6. (tightness criterion) Let q ∈ (1,∞) and let (Xn)n∈N be a
sequence of continuous F-adapted U ′-valued processes such that

(a) there exists a positive constant C1 such that

sup
n∈N

E
[

sup
s∈[0,T ]

|Xn(s)|H
]
≤ C1,

(b) there exists a positive constant C2 such that

sup
n∈N

E
[∫ T

0

‖Xn(s)‖q
V ds

]
≤ C2,

(c) (Xn)n∈N satisfies the Aldous condition [A] in U ′.

Let P̃n be the law of Xn on Z. Then for every ε > 0 there exist a compact
subset Kε of Z such that

P̃n(Kε) ≥ 1− ε.
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Proof. Let ε > 0. By the Chebyshev inequality and (a) we infer that for any
r > 0

P
(

sup
s∈[0,T ]

|Xn(s)|H > r

)
≤

E
[
sups∈[0,T ] |Xn(s)|H

]
r

≤ C1

r
.

Let R1 be such that C1

R1
≤ ε

3
. Then

P
(

sup
s∈[0,T ]

|Xn(s)|H > R1

)
≤ ε

3

Let B1 :=
{
u ∈ Z : sups∈[0,T ] |u(s)|H ≤ R1

}
.

By the Chebyshev inequality and (b) we infer that for any r > 0

P
(
‖Xn‖Lq(0,T ;V) > r

)
≤

E
[
‖Xn‖q

Lq(0,T ;V)

]
rq

≤ Cq

rq
.

Let R2 be such that Cq

Rq
2
≤ ε

3
. Then

P
(
‖Xn‖Lq(0,T ;V) > R2

)
≤ ε

3
.

Let B2 :=
{
u ∈ Z : ‖u‖Lq(0,T ;V) ≤ R2

}
.

By Lemmas 2.5 and 2.4 there exists a subset A ε
3
⊂ C([0, T ], U ′) such that

P̃n

(
A ε

3

)
≥ 1− ε

3
and

lim
δ→0

sup
u∈A ε

3

sup
s,t∈[0,T ]
|t−s|≤δ

|u(t)− u(s)|U ′ = 0.

It is sufficient to define Kε as the closure of the set B1 ∩B2 ∩A ε
3

in Z. Since
by Lemma 2.3 Kε is compact in Z, the proof is thus complete.

3. Functional setting

Let D = (0, l)× (0, 1) if d = 2 or D = (0, l)× (0, L)× (0, 1) if d = 3. Consider
Hilbert spaces

V1 = {v ∈ H1(D,Rd) : divv = 0, v|xd=0 = v|xd=1 = 0,

and v is periodic in the direction x1 with period l if d = 2, 3

and in direction x2 with period L if d = 3}
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with the scalar product
((
u|v

))
=

∫
D
∇u(x) · ∇v(x) dx, u, v ∈ V1 and

V2 = {f ∈ H1(D,R) : f|xd=0 = f|xd=1 = 0, and f is periodic in the direction
x1 with period l if d = 2, 3 and in direction x2 with period L if d = 3}

with the scalar product
((
f |g

))
=

∫
D
∇f(x)·∇g(x) dx, f, g ∈ V2. The boundary

conditions are understood in the sense of traces; see [22], Section 2. Let V =
V1 × V2 be the product Hilbert space with the scalar product((

φ|ψ
))

:=

∫
D

∇φ(x) · ∇ψ(x) dx, φ, ψ ∈ V

and the norm

‖φ‖2
V :=

((
φ|φ

))
= ‖u‖2

V1
+ ‖f‖2

V2
, φ = (u, f) ∈ V.

Let H = H1 ×H2, where

H1 = {u ∈ L2(D,Rd) : divu = 0, and u is periodic in the direction x1

with period l if d = 2, 3 and in direction x2 with period L if d = 3},
H2 = {g ∈ L2(D,R) : and g is periodic in the direction x1 with period l

if d = 2, 3 and in direction x2 with period L if d = 3}.

The incompressibility condition and the periodic conditions present in the
definition of the space H1 are to be understood in the distributional sense.
It is well known that H is a Hilbert space with the scalar product

(
φ|ψ

)
=∫

D
φ(x) · ψ(x) dx and the norm |φ|2H =

(
φ|φ

)
, where φ, ψ ∈ H. Moreover, the

embedding V ↪→ H is well defined, compact and dense.

With the scalar products in V1 and V2 we can associate unbounded linear
operators Ai : Hi ⊃ D(Ai) → Hi, i = 1, 2 with domains D(A1) = V1 ∩
H2(D,Rd) and D(A2) = V2 ∩H2(D,R) by the following formulae(

A1u|v
)

=
((
u|v

))
, u, v ∈ D(A1),(

A2ϑ|θ
)

=
((
ϑ|θ

))
, ϑ, θ ∈ D(A2).

Operators A1 and A2 are selfadjoint, positive with compact inverses. Let
D(A) := D(A1)×D(A2) and

A = νA1 × κA2,

i.e. Aφ = (νA1u, κA2ϑ), φ = (u, ϑ) ∈ D(A).

Moreover, we can define the fractional power operators Aα, α ∈ R. The do-
mainsD(Aα) of these operators correspond to the Sobolev spacesH2α(D,Rd+1)
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equipped with the suitable boundary conditions. In particular, V = D(A
1
2 ).

The embedding of D(Aα) into D(Aα−ε) is compact for every α ∈ R and ε > 0,
see [21], Chapter II. We will also use the notation Vα := D(A

α
2 ).

Let us consider the following three-linear form

b1(u,w, v) =

∫
D

(
u · ∇w

)
v dx. (3.1)

Using the Hőlder inequality and the Sobolev embedding Theorem, it is easy
to prove the following inequalities

|b1(u,w, v)| ≤ |u|L4‖v‖V1
|v|L4

≤ c‖u‖V1
‖w‖V1

‖v‖V1
, u, w, v ∈ V1 (3.2)

for some constant c > 0. Thus the form b1 is continuous on V1, see [22], Section
2. Moreover, if we define a bilinear map B1 by B1(u,w) := b1(u,w, ·), then
by inequality (3.2) we infer that B1(u,w) ∈ V ′

1 for all u,w ∈ V1 and that the
following inequality holds

|B1(u,w)|V ′
1
≤ c‖u‖V1

‖w‖V1
, u, w ∈ V1. (3.3)

Moreover, the mapping B1 : V1 × V1 → V ′
1 is bilinear and continuous. Fur-

thermore, since divu = 0 for u ∈ V1,
n∑

i=1

∂

∂xi

(uiw) =

( n∑
i=1

∂ui

∂xi

)
w +

n∑
i=1

ui
∂w

∂xi

= (divu)w + u · ∇w = u · ∇w.

Hence by the integration by parts formula, see [20],

b1(u,w, v) =

∫
D

(
u · ∇w

)
v dx =

n∑
i=1

∫
D

∂

∂xi

(uiw)v dx = −
n∑

i=1

∫
D

uiw
∂v

∂xi

dx

= −
∫

D

( n∑
i=1

ui
∂v

∂xi

)
w dx = −

∫
D

(
u · ∇v

)
w dx = −b1(u, v, w).

In the integration by parts formula, the integral over the boundary∑n
i=1

∫
∂D
wvuini dσ = 0, where n stands for the unit outward normal on ∂D.

This follows from the periodicity conditions and the homogeneous condition
on D ∩ {xd = 0} and D ∩ {xd = 1}. Thus

b1(u,w, v) = −b1(u, v, w), u, w, v ∈ V1. (3.4)

In particular, see [22], Section 2,

b1(u, v, v) = 0 u, v ∈ V1. (3.5)
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Moreover, there exists a constant c > 0 such that if u,w ∈ V1 and v ∈ D(A
α
2
1 )

with α
2
> d

2
+ 1, then

|b1(u,w, v)| = |b1(u, v, w)| =

∣∣∣∣ n∑
i=1

∫
D

uiw
∂v

∂xi

dx

∣∣∣∣
≤ ‖u‖L2‖w‖L2‖∇v‖L∞ ≤ c‖u‖L2‖w‖L2‖v‖

D(A
α
2
1 )
.

Thus b1 can be extented to the three-linear form (denoted by the same letter)

b1 : H1 ×H1 ×D(A
α
2
1 ) → R

and |b1(u,w, v)| ≤ c‖u‖L2‖w‖L2‖v‖
D(A

α
2
1 )

for u,w ∈ H1 and v ∈ D(A
α
2
1 ). At

the same time operator B1 can be extended to

B1 : H1 ×H1 → D(A
−α

2
1 )

and satisfies the estimate

|B1(u,w)|
D(A

−α
2

1 )
≤ c|u|H1

|w|H1
, u, w ∈ H1. (3.6)

Next, let us consider the following three-linear form

b2(u, ϑ, θ) =

∫
Ω

(
u · ∇ϑ

)
θ dx, u ∈ V1. (3.7)

As before, by the Hőlder inequality and the Sobolev embedding Theorem we
have

|b2(u, ϑ, θ)| ≤ |u|L4‖ϑ‖V2
|θ|L4

≤ c‖u‖V1
‖ϑ‖V2

‖θ‖V2
, ϑ, θ ∈ V2 (3.8)

for some constant c > 0. Thus the form b2 is continuous on V1 × V2 × V2.
Moreover, if we define a bilinear map B2 by B2(u, ϑ) := b2(u, ϑ, ·), then by
inequality (3.8) we infer that B2(u, ϑ) ∈ V ′

2 for all u ∈ V1, ϑ ∈ V2 and that the
following estimate holds

|B2(u, ϑ)|V ′
2
≤ c‖u‖V1

‖ϑ‖V2
, u ∈ V1, ϑ ∈ V2. (3.9)

Moreover, the mapping B2 : V1 × V2 → V ′
2 is bilinear continuous and

b2(u, ϑ, θ) = −b2(u, θ, ϑ), u ∈ V1, ϑ, θ ∈ V2. (3.10)
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In particular,

b2(u, ϑ, ϑ) = 0 u ∈ V1, ϑ ∈ V2. (3.11)

Analogously, if α
2
> d

2
+ 1, operator B2 can be extended to a bounded bilinear

map

B2 : H1 ×H2 → D(A
−α

2
2 ).

In particular, the following inequality holds

|B2(u, ϑ)|
D(A

−α
2

2 )
≤ c|u|H1

|ϑ|H2
, u ∈ H1, ϑ ∈ H2 (3.12)

for some constant c > 0.

Using the above notation, the Boussinesq problem can be written in the fol-
lowing form

du+
[
νA1u+B1(u, u)− ϑed

]
dt = f1(t) dt+G1(u, ϑ) dW1(t), (3.13)

dϑ+
[
κA2ϑ+B2(u, ϑ)− ud

]
dt = f2(t) dt+G2(u, ϑ) dW2(t). (3.14)

with the initial conditions

u(0) = u0, ϑ(0) = ϑ0. (3.15)

Thus for φ := (u, ϑ), we have the following equation

dφ+
[
Aφ+B(φ) +Rφ

]
dt = f(t) dt+G(φ) dW (t), (3.16)

with the initial condition
φ(0) = φ0, (3.17)

where W (t) = (W1(t),W2(t)), f =
(
f1(t), f2(t)

)
, φ0 = (u0, ϑ0) and

Aφ = (νA1u, κA2ϑ),

B(φ) =
(
B1(u, u), B2(u, ϑ)

)
,

Rφ = (−ϑed,−ud),

G(φ) =
(
G1(φ), G2(φ)

)
.

Let us introduce also the following bilinear map

B(φ, ψ) :=
(
B1(u, v), B2(u, θ)

)
,

where φ = (u, ϑ) and ψ = (v, θ), with the notation B(φ) := B(φ, φ).
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Lemma 3.1.

(1) There exists a constant c1 > 0 such that

|B(φ, ψ)|V ′ ≤ c1‖φ‖V ‖ψ‖V , φ, ψ ∈ V. (3.18)

(2) If α
2
> d

2
+ 1, then B can be extended to the bilinear map from H ×H to

D(A−
α
2 ). Moreover, there exists a constant c2 > 0 such that

|B(φ, ψ)|
D(A−

α
2 )
≤ c2|φ|H |ψ|H , φ, ψ ∈ H. (3.19)

(3) The map B is locally Lipschitz continuous, i.e. for every r > 0 there
exists a constant Lr such that∣∣B(φ)−B(φ̃)

∣∣
V ′ ≤ Lr‖φ− φ̃‖V , φ, φ̃ ∈ V, ‖φ‖V , ‖φ̃‖V ≤ r. (3.20)

Proof. Ad. (1) Let φ = (u, ϑ) ∈ V and ψ = (v, θ) ∈ V . By inequalities (3.3)
and (3.9) we obtain the following estimates

|B(φ, ψ)|2V ′ =
∣∣(B1(u, v), B2(u, θ)

)∣∣2
V ′ =

∣∣B1(u, v)
∣∣2
V ′
1

+
∣∣B2(u, θ)

∣∣2
V ′
2

≤ c2‖u‖2
V1
‖v‖2

V1
+ c2‖u‖2

V1
‖θ‖2

V2
= c2‖u‖2

V1

(
‖v‖2

V1
+ ‖θ‖2

V2

)
≤ c1‖φ‖2

V ‖ψ‖
2
V

for some constant c1 > 0. This completes the proof of inequality (3.18).

Ad. (2) Let φ = (u, ϑ) ∈ H and ψ = (v, θ) ∈ H. Then by inequalities (3.6)
and (3.12) we have the following estimates

|B(φ, ψ)|2
D(A−

α
2 )

= |B1(u, v)|2
D(A

−α
2

1 )
+ |B2(u, θ)|2

D(A
−α

2
2 )

≤ c2|u|2H1
|v|2H1

+ c2|u|2H1
|θ|2H2

≤ c2|φ|2H |ψ|
2
H

for some constant c2 > 0. The proof of inequality (3.19) is thus complete.

Ad. (3) Let us fix r > 0 and let φ = (u, ϑ), φ̃ = (ũ, ϑ̃) ∈ V be such that
‖φ‖V , ‖φ̃‖V ≤ r. We have∣∣B(φ)−B(φ̃)

∣∣2
V ′ =

∣∣(B1(u, u), B2(u, ϑ)
)
−

(
B1(ũ, ũ), B2(ũ, ϑ̃)

)∣∣2
V ′

=
∣∣B1(u, u)−B1(ũ, ũ)

∣∣2
V ′
1

+
∣∣B2(u, ϑ)−B2(ũ, ϑ̃)

∣∣2
V ′
2
.
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We will estimate each term of the right-hand side of the above equality. By
inequality (3.3) we have the following estimates∣∣B1(u, u)−B1(ũ, ũ)

∣∣
V ′
1
≤

∣∣B1(u, u− ũ)
∣∣
V ′
1

+
∣∣B1(u− ũ, ũ)

∣∣
V ′
1

≤ c‖u‖V1
‖u− ũ‖V1

+ c‖u− ũ‖V1
‖ũ‖V1

≤ 2rc · ‖u− ũ‖V1
≤ 2rc · ‖φ− φ̃‖V .

By inequality (3.9) we obtain the following estimates∣∣B2(u, ϑ)−B2(ũ, ϑ̃)
∣∣
V ′
2
≤

∣∣B2(u, ϑ− ϑ̃)
∣∣
V ′
2

+
∣∣B2(u− ũ, ϑ̃)

∣∣
V ′
2

≤ c‖u‖V1
‖ϑ− ϑ̃‖V2

+ c‖u− ũ‖V1
‖ϑ̃‖V2

≤ 2rc · ‖φ− φ̃‖V .

Hence ∣∣B(φ)−B(φ̃)
∣∣2
V ′ ≤ 8r2c2‖φ− φ̃‖2

V .

Thus the Lipschitz condition holds with Lr = 2
√

2rc. The proof of Lemma is
thus complete.

Lemma 3.2. Operator R has the following properties:

(1) For every φ ∈ H, Rφ ∈ V ′ and there exists a constant c > 0 such that

|Rφ|V ′ ≤ c|φ|H . (3.21)

(2) For every φ ∈ V : 〈
Rφ|φ

〉
≥ −|φ|2H . (3.22)

Proof. To prove the first part of the statement let φ = (u, ϑ) ∈ H and ψ =
(v, θ) ∈ V . Since

|Rφ|2 = |(−ϑed,−ud)|2 = ϑ2 + u2
d ≤ |φ|2,

we have the following estimates∣∣∫
D

(Rφ) · ψ dx
∣∣ ≤ ∫

D

|Rφ| |ψ| dx ≤
∫

D

|φ| |ψ| dx

≤
(∫

D

|φ|2 dx
) 1

2
(∫

D

|ψ|2 dx
) 1

2

= |φ|H |ψ|H ≤ c|φ|H |‖ψ‖V

for some constant c > 0. Thus Rφ ∈ V ′ and inequality (3.21) holds.
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Let us move to the second part of the statement. Let φ = (u, ϑ) ∈ V . Since

(Rφ) · φ = (−ϑed,−ud) · (u, ϑ) = −2udϑ

and 2udϑ ≤ |φ|2, thus

〈
Rφ|φ

〉
=

∫
D

(Rφ) · φ dx ≥ −
∫

D

|φ|2 dx = −|φ|2H .

This completes the proof of inequality (3.22) and the proof of Lemma.

Assumptions. We assume that

(A.1) W (t) is a cylindrical Wiener process in a separable Hilbert space Y
defined on the stochastic basis

(
Ω,F , {Ft}t≥0,P

)
,

(A.2) φ0 ∈ H, f ∈ L2(0, T ;V ′),

(A.3) The mapping G : V → LHS(Y,H) is Lipschitz continuous and

2
〈
Aφ|φ

〉
− ‖G(φ)‖2

LHS(Y,H) ≥ η‖φ‖2
V − λ0|φ|2H − ρ, φ ∈ V (G)

for some constants λ0, ρ and η ∈ (4
3
, 2].

Moreover, G extends to a Lipschitz continuous mapping G : H →
LHS(Y, V−γ) for some γ ≥ 1 and

‖G(φ)‖2
LHS(Y,V−γ) ≤ C(1 + |φ|2H), φ ∈ H. (G∗)

for some C > 0.

Remark. The assumption that G : V → LHS(Y,H) is Lipschitz continuous
we use only in the construction of solutions of the Galerkin equations. Since
in the finite dimensional space every continuous map can be approximated by
a sequence of Lipschitz continuous maps, it is sufficient to assume that G is
continuous.

Furthermore, the Lipschitz continuity of the mapping G : H → LHS(Y, V−γ)
can be replaced by the following one

for every ψ ∈ V the map H 3 u→
〈
G(u)|ψ

〉
∈ Y is continuous

with a slight modification of the proof of Lemma 4.6.
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Definition 4. We say that there exists a martingale solution of the problem
(3.16)-(3.17) iff there exist

• a stochastic basis
(
Ω̂, F̂ , {F̂t}t≥0, P̂

)
,

• a cylindrical Wiener process Ŵ on the space Y ,

• and a progressively measurable process φ : [0, T ]× Ω̂ → H with P̂ - a.e.
paths

φ(·, ω) ∈ C
(
[0, T ], Hw

)
∩ L2(0, T ;V )

such that for all t ∈ [0, T ] and all ψ ∈ D(A):(
φ(t)|ψ

)
+

∫ t

0

〈
φ(s)|Aψ

〉
ds+

∫ t

0

〈
B(φ(s))|ψ

〉
ds+

∫ t

0

〈
Rφ(s)|ψ

〉
ds

=
(
φ0|ψ

)
+

∫ t

0

〈
f(s)|ψ

〉
ds+

〈∫ t

0

G(φ(s)) dŴ (s)
∣∣ψ〉 (3.23)

the identity holds P̂ - a.s.

Here C([0, T ];Hw) denotes the space of H - valued weakly continuous functions
on [0, T ].

4 Existence of solutions
Theorem 4.1. There exists a martingale solution of the problem (3.16)-(3.17)
provided assumptions (A.1)-(A.3), are satisfied.

4.1 Faedo-Galerkin approximation

Let {ψn}n∈N be the orthonormal basis in H composed of eigenvectors of A.
Then {ψn}n∈N form also an orthogonal system in V . Let Hn :=span{ψ1, ..., ψn}
with the norm inherited from H and Vn := span{ψ1, ..., ψn} with the norm
inherited from V . Let us fix α ≥ max{γ, d + 2} and let Pn be the linear
operator from V−α to Vα defined by

Pnv
∗ :=

n∑
i=1

〈
v∗|ψi

〉
ψi, v∗ ∈ V−α.

Then the restriction of Pn to H is the (·|·) orthogonal projection onto Hn and
the restriction Pn|V : V → Vn is the

((
·|·

))
orthogonal projection. These restric-

tions will be also denoted by Pn. Moreover, in the subspace span{ψ1, ..., ψn}
all norms are equivalent. Consider the following mapping

Bn(φ) := PnB(χn(φ), φ), φ ∈ Hn,
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where χn : span{ψ1, ..., ψn} → span{ψ1, ..., ψn} is defined by
χn(φ) = θn(|φ|V−α)φ with θn : R → [0, 1] is of class C∞ such that

θn(r) =

{
1 if r ≤ n

0 if r ≥ n+ 1.

Since Hn ⊂ H, Bn is well defined. Let us notice that

Bn(φ) =

{
PnB(φ) if |φ|V−α ≤ n

0 if |φ|V−α ≥ n+ 1.

Moreover, by Lemma 3.1 Bn : Hn → Hn is globally Lipschitz continuous.

Consider next the classical Faedo-Galerkin approximation in the space PnH =
Hn 

dφn(t) = −
[
PnAφn(t) +Bn

(
φn

)
+ PnR(φn(t))− Pnf(t)

]
dt

+PnG
(
φn

)
dW (t), t ∈ [0, T ],

φn(0) = Pnφ0.

(4.1)

Lemma 4.2. For each n ∈ N, there exists a solution of the Galerkin equation
(4.1). Moreover, φn ∈ C([0, T ];Hn), P-a.s. and E[

∫ T

0
|φn(s)|qH ds] < ∞ for

any q ∈ [2,∞).

The proof is standard and thus omitted.

Using the Itô formula and the Burkholder-Davis-Gundy inequality, see [7]
Lemma 7.2 or [18], we will prove the following lemma about a priori estimates
for the solutions φn of (4.1). Let us assume{

p ∈
[
2, 2 + η

2−η

)
if η ∈ (0, 2)

p ∈ [2,∞) if η = 2.
(4.2)

Let us notice that in (A.3) we assume that η ∈ (4
3
, 2]. However, the following

lemma holds for η ∈ (0, 2]. The restriction η > 4
3

is related to the nonlinear
term B and it is crucial in the forthcomming passing to the limit as n → ∞
considered in the next section.

Lemma 4.3. The processes (φn)n∈N satisfy the following estimates.
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(i) For every p satisfying (4.2) there exist positive constants C1(p) andC2(p)
such that

sup
n∈N

E
(

sup
0≤s≤T

|φn(s)|pH
)
≤ C1(p). (4.3)

and

sup
n∈N

E
[∫ T

0

|φn(s)|p−2
H ‖φn(s)‖2

V ds
]
≤ C2(p). (4.4)

(ii) In particular, with C2 := C2(2)

sup
n∈N

E
[∫ T

0

‖φn(s)‖2
V ds

]
≤ C2. (4.5)

Proof. See Appendix A.

4.2 Tightness

Let H := H and V := V and let U := D(A
α
2 ) with α ≥ max{γ, d + 2}.

For each n ∈ N, the solution φn of the Galerkin equation defines a measure
L(φn) on (Z, T ), where Z is the space defined by (2.6) with q = 2. Using
the tigthness criterion contained in Corollary 2.6 we will prove that the set
of measures

{
L(φn), n ∈ N

}
is tight. The main difficulty lies in checking the

Aldous condition which corresponds to the modulus of continuity. To this end
we need suitable estimates.

The idea of our approach is similar to that used by Flandoli and Ga̧tarek
[10], where the tightness is proven by means of some compactness results in
fractional Sobolev spaces. In this way, instead of the estimates on the modulus
of continuity there are estimates in suitable fractional Sobolev spaces. Because
the tightness criterion we used is different from the one than used in [10], we
are forced to find different a’priori estimates on the sequence of approximating
solutions.

Lemma 4.4. The set of measures
{
L(φn), n ∈ N

}
is relatively weakly compact

on (Z, T ).

Proof. We use Corollary 2.6 with H := H and V := V . By estimates (4.3) and
(4.5) conditions (a), (b) are satisfied. Thus it is sufficient to prove that the
sequence (φn)n∈N satisfies the Aldous condition [A] in U ′ = D(A−

α
2 ) = V−α.
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Let (τn)n∈N be a sequence of stopping times such that 0 ≤ τn ≤ T . Let us
write (4.1) in the following form

φn(t) = Pnφ0 −
∫ t

0

Aφn(s) ds−
∫ t

0

PnB
(
φn(s), φn(s)

)
ds−

∫ t

0

PnRφn(s) ds

+

∫ t

0

Pnf(s) ds+

∫ t

0

PnG(φn(s)) dW (s)

=: J1
n + J2

n(t) + J3
n(t) + J4

n(t) + J5
n(t) + J6

n(t), t ∈ [0, T ]. (4.6)

Let θ > 0. First, we make some estimates for each term of the above equality.

Ad. J2
n. Since A : V → V ′ and |A(φ)|V ′ ≤ ‖φ‖V and V ′ ↪→ U ′, then by the

Hőlder inequality and (4.5) we have the following estimates

E
[∣∣J2

n(τn + θ)− J2
n(τn)

∣∣
U ′

]
= E

[∣∣∣∣∫ τn+θ

τn

Aφn(s) ds

∣∣∣∣
U ′

]
≤ c E

[∣∣∣∣∫ τn+θ

τn

Aφn(s) ds

∣∣∣∣
V ′

]
≤ c E

[∫ τn+θ

τn

∣∣Aφn(s)
∣∣
V ′ ds

]
≤ c E

[∫ τn+θ

τn

‖φn(s)‖V ds

]
≤ c E

[
θ

∫ T

0

‖φn(s)‖2
V ds

]
≤ cC2 · θ =: c2 · θ. (4.7)

Ad. J3
n. Similarly, since B : H ×H → U ′ is bilinear and continuous, then by

(4.3) we have the following estimates

E
[∣∣J3

n(τn + θ)− J3
n(τn)

∣∣
U ′

]
= E

[∣∣∣∣∫ τn+θ

τn

Bn

(
φn(s)

)
ds

∣∣∣∣
U ′

]
≤ E

[∫ τn+θ

τn

∣∣B(
φn(s)

)∣∣
U ′ ds

]
≤ E

[∫ τn+θ

τn

‖B‖ ·
∣∣φn(s)

∣∣2
H
ds

]
≤ ‖B‖ · E

[
sup

s∈[0,T ]

∣∣φn(s)
∣∣2
H

]
· θ ≤ ‖B‖C1(2) · θ =: c3 · θ, (4.8)

where ‖B‖ stands for the norm of B : H ×H → U ′.

Ad. J4
n. By Lemma 3.2 and (4.3) we have the following estimates

E
[∣∣J4

n(τn + θ)− J4
n(τn)

∣∣
U ′

]
= E

[∣∣∣∣∫ τn+θ

τn

PnRφn(s) ds

∣∣∣∣
U ′

]
≤ c E

[∫ τn+θ

τn

∣∣Rφn(s)
∣∣
V ′ ds

]
≤ c E

[∫ τn+θ

τn

∣∣φn(s)
∣∣
H
ds

]
≤ θ

1
2 E

[(∫ τn+θ

τn

∣∣φn(s)
∣∣2
H
ds

) 1
2
]
≤ θE

[
sup

s∈[0,T ]

∣∣φn(s)
∣∣2
H

]
≤ C1(2)θ =: c4 · θ. (4.9)
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Ad. J5
n. Since f ∈ L2(0, T ;V ′),

E
[∣∣J5

n(τn + θ)− J5
n(τn)

∣∣
U ′

]
= E

[∣∣∣∣∫ τn+θ

τn

Pnf(s) ds

∣∣∣∣
U ′

]
≤ cE

[∣∣∣∣∫ τn+θ

τn

Pnf(s) ds

∣∣∣∣
V ′

]
≤ c E

[∫ τn+θ

τn

∣∣f(s)
∣∣
V ′ ds

]
≤ c · θ · E

[∫ T

0

∣∣f(s)
∣∣2
V ′ ds

]
= c · θ · ‖f‖2

L2(0,T ;V ′) =: c5 · θ.

(4.10)

Ad. J6
n. Since U ′ = D(A−

α
2 ) = V−α and α > γ, then V−γ ↪→ U ′. By the

continuity of the embedding LHS(Y, V−γ) ↪→ L(Y, V−γ), (G∗) and (4.3) we
have the following estimates

E
[∣∣J6

n(τn + θ)− J6
n(τn)

∣∣2
U ′

]
= E

[∣∣∣∣∫ τn+θ

0

PnG(φn(s)) dW (s)−
∫ τn

0

PnG(φn(s)) dW (s)

∣∣∣∣2
U ′

]
= E

[∣∣∣∣∫ τn+θ

τn

PnG(φn(s)) dW (s)

∣∣∣∣2
U ′

]
≤ c E

[∣∣∣∣∫ τn+θ

τn

PnG(φn(s)) dW (s)

∣∣∣∣2
V−γ

]
≤ c E

[∫ τn+θ

τn

‖G(φn(s))‖2
LHS(Y,V−γ) ds

]
≤ const · E

[∫ τn+θ

τn

(1 + |φn(s)|2H) ds

]
≤ const · θ · E

[
sup

s∈[0,T ]

∣∣φn(s)
∣∣2
H

]
≤ const · C1(2) · θ =: c6 · θ. (4.11)

Let us fix η > 0 and ε > 0. By the Chebyshev inequality and estimates
(4.7)-(4.10) we obtain

P
({∣∣J i

n(τn + θ)− J i
n(τn)

∣∣
U ′ ≥ η

})
≤ 1

η
E

[∣∣J i
n(τn + θ)− J i

n(τn)
∣∣
U ′

]
≤ ci · θ

η
, n ∈ N,

where i = 1, 2, 3, 4, 5. Let δi := η
ci
· ε. Then

sup
n∈N

sup
1≤θ≤δi

P
{∣∣J i

n(τn + θ)− J i
n(τn)

∣∣
U ′ ≥ η

}
≤ ε, i = 1, 2, 3, 4, 5.
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For the noise term, by (4.11) we have

P
({∣∣J6

n(τn + θ)− J6
n(τn)

∣∣
U ′ ≥ η

})
≤ 1

η2 E
[∣∣J6

n(τn + θ)− J6
n(τn)

∣∣2
U ′

]
≤ c6 · θ

η2
, n ∈ N.

Let δ6 := η2

c6
· ε. Then

sup
n∈N

sup
1≤θ≤δ6

P
{∣∣J6

n(τn + θ)− J6
n(τn)

∣∣
U ′ ≥ η

}
≤ ε.

Since condition [A] holds for each term J i
n, i = 1, 2, 3, 4, 5, 6, we infer that it

holds also for (φn). This completes the proof of lemma.

4.3 Proof of Theorem 4.1

We will construct a martingale solution using the method used by Da Prato
and Zabczyk in [7], Section 8.

By Lemma 4.4 the set of measures
{
L(φn), n ∈ N

}
is relatively weakly compact

on (Z, T ). Thus we can find a subsequence, still denoted by (φn) such that

L(φn) converges weakly on Z as n→∞.

Thus
L(φn) converges weakly on C([0, T ];U ′) ∩ L2(0, T ;H).

as n→∞.

By the Skorokhod Theorem, see [7], there exist

• a stochastic basis
(
Ω̃, F̃ , {F̃t}t∈[0,T ], P̃

)
and, on this basis,

• C([0, T ];U ′) ∩ L2(0, T ;H) - valued random variables φ̃, φ̃n, n ≥ 1

such that

φ̃n has the same law as φn on C([0, T ];U ′) ∩ L2(0, T ;H),

and φ̃n → φ̃ in C([0, T ];U ′) ∩ L2(0, T ;H), P̃ - a.s.

Since, by Lemma 4.2, φn ∈ C([0, T ];PnH), φ̃n and φn have the same laws, and
C([0, T ];PnH) is a Borel subset of C([0, T ];U ′) ∩ L2(0, T ;H), then we have

L(φ̃n)
(
C([0, T ];PnH)

)
= 1, n ≥ 1.
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Since φ̃n and φn have the same laws, and C([0, T ];PnH) is a Borel subset
of C([0, T ];U ′) ∩ L2(0, T ;H), thus by (4.3) and (4.5) we have the following
estimates

E
(

sup
0≤s≤T

∣∣φ̃n(s)
∣∣p
H

)
≤ C1(p) (4.12)

E
[∫ T

0

∥∥φ̃n(s)
∥∥2

V
ds

]
≤ C2. (4.13)

for all n ∈ N and all p satisfying condition (4.2).

For each n ≥ 1, let us consider a process M̃n with trajectories in C([0, T ];H)
defined by

M̃n(t) =φ̃n(t) − Pnφ̃(0) +

∫ t

0

Aφ̃n(s) ds+

∫ t

0

Bn

(
φ̃n(s)

)
ds

+

∫ t

0

PnR
(
φ̃n(s)

)
ds−

∫ t

0

Pnf(s) ds, t ∈ [0, T ].

M̃n is a square integrable martingale with respect to the filtration F̃n = (F̃n,t),
where F̃n,t = σ{φ̃n(s), s ≤ t}, with the quadratic variation

〈〈
M̃n

〉〉
t

=

∫ t

0

PnG(φ̃n(s))
(
G(φ̃n(s))

)∗
Pn ds. (4.14)

Indeed, since φ̃n and φn have the same laws, for all s ≤ t ∈ [0, T ] all functions
h bounded continuous on L2(0, s;H) ∩ C([0, s];U ′) and all ψ, ζ ∈ D(A

α
2 ), we

have

E
[〈
M̃n(t)− M̃n(s)|ψ

〉
h
(
φ̃n|[0,s]

)]
= 0 (4.15)

and

E
[(〈

M̃n(t)|ψ
〉〈
M̃n(t)|ζ

〉
−

〈
M̃n(s)|ψ

〉〈
M̃n(s)|ζ

〉
−

∫ t

s

〈
G(φ̃n(σ))

∗
Pnψ

∣∣G(φ̃n(σ))
∗
Pnζ

〉
dσ

)
·h

(
φ̃n|[0,s]

)]
= 0.

(4.16)

We will pass to the limit in (4.15) and (4.16) as n → ∞. All terms in (4.15)
and (4.16) are uniformly integrable in ω, and converge P̃ - a.s. The main diffi-
culties in (4.16) occur in terms containing the nonlinearity B and in the term
corresponding to the quadratic variation of the martingale M̃n. We consider
these problems in the following two lemmas. In Lemma 4.5 the assumption
that η ∈ (4

3
, 2] will be of crucial importance.
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Lemma 4.5. If η ∈ (4
3
, 2] then for any ψ, ζ ∈ D(A

α
2 ):

lim
n→∞

E
[∫ t

s

〈
Bn(φ̃n(σ))|ψ

〉
dσ ·

∫ t

s

〈
Bn(φ̃n(σ))|ζ

〉
dσ · h

(
φ̃n|[0,s]

)]
= E

[∫ t

s

〈
B(φ̃(σ))|ψ

〉
dσ ·

∫ t

s

〈
B(φ̃(σ))|ζ

〉
dσ · h

(
φ̃|[0,s]

)]
.

Proof. Let us denote

gn(ω) :=

∫ t

s

〈
Bn(φ̃n(σ, ω))|ψ

〉
dσ ·

∫ t

s

〈
Bn(φ̃n(σ, ω))|ζ

〉
dσ · h

(
φ̃n|[0,s](ω)

)
g(ω) :=

∫ t

s

〈
B(φ̃(σ, ω))|ψ

〉
dσ ·

∫ t

s

〈
B(φ̃(σ, ω))|ζ

〉
dσ · h

(
φ̃|[0,s](ω)

)
, ω ∈ Ω̃.

We will prove that the functions {gn}n∈N are uniformly integrable and
limn→∞ gn(ω) = g(ω) for P̃-almost all ω ∈ Ω̃.

Uniform integrability. It is sufficient to show that

sup
n≥1

E
[
|gn|r

]
<∞ (4.17)

for some r > 1. In fact, we will prove that the above condition holds with
every
r ∈

(
1, 1

2
+ η

4(2−η)

)
if 4

3
< η < 2 (notice that because of the assumption on η

this interval is nonempty), and with arbitrary r > 1 if η = 2.

By Lemma 3.1,(2) we have the following inequality∫ t

s

|
〈
Bn(φ̃n(σ, ω))|ψ

〉
| dσ ≤ c2

∫ t

s

|φ̃n(σ, ω)|2H dσ · ‖ψ‖Vα
, n ≥ 1.

Thus

|gn(ω)|r ≤ ‖h‖r
L∞c

2
2‖ψ‖Vα

‖ζ‖Vα

(∫ t

s

|φ̃n(σ, ω)|2H dσ
)2r

≤ C

∫ t

s

|φ̃n(σ, ω)|4r
H dσ ≤ C sup

σ∈[0,T ]

|φ̃n(σ, ω)|4r
H , n ≥ 1,

where C stands for some constant. Since 4r satisfies condition (4.2), then by
(4.12)

sup
n≥1

E
[
|gn|r

]
≤ C E

[
sup

σ∈[0,T ]

|φ̃n(σ, ω)|4r
H

]
≤ CC1(4r),
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which completes the proof of (4.17).

Pointwise convergence in ω. Let us fix ω ∈ Ω̃ such that φ̃n(·, ω) →
φ̃(·, ω) in L2(0, T,H) ∩ C([0, T ];U ′). By the continuity of h it follows that
limn→∞ h

(
φ̃n|[0,s](ω)

)
= h

(
φ̃|[0,s](ω)

)
. Since φ̃n(·, ω) → φ̃(·, ω) in C([0, T ];U ′),

the sequence (φ̃n(·, ω))n∈N is bounded in C([0, T ];U ′). Suppose that∣∣φ̃n(·, ω)
∣∣
C([0,T ];U ′)

≤ N, n ≥ 1

for some N > 0. Then χn(φ̃n(·, ω)) = φ̃n(·, ω) for n > N and

Bn(φ̃n(·, ω)) = PnB
(
χn(φ̃n(·, ω)), φ̃n(·, ω)

)
= PnB

(
φ̃n(·, ω)

)
, n > N.

On the other hand, since φ̃n(·, ω) → φ̃(·, ω) in L2(0, T,H), then by Lemma 7.1
in Appendix B we infer that limn→∞ gn(ω) = g(ω). The proof of Lemma is
thus complete.

Lemma 4.6. (Convergence in quadratic variation). For any ψ, ζ ∈
D(A

α
2 ):

lim
n→∞

E
[(∫ t

s

〈
G(φ̃n(σ))

∗
Pnψ

∣∣G(φ̃n(σ))
∗
Pnζ

〉
dσ

)
·h

(
φ̃n|[0,s]

)]
= E

[(∫ t

s

〈
G(φ̃(σ))

∗
ψ

∣∣G(φ̃(σ))
∗
ζ

〉
dσ

)
·h

(
φ̃|[0,s]

)]
.

Proof. Let us put

fn(ω) :=

(∫ t

s

〈
G(φ̃n(σ, ω))

∗
Pnψ

∣∣G(φ̃n(σ, ω))
∗
Pnζ

〉
dσ

)
·h

(
φ̃n|[0,s]

)
, ω ∈ Ω̃.

(4.18)
We will prove that these functions are uniformly integrable and convergent
P̃-a.s.

Uniform integrability. It is sufficient to prove that

sup
n≥1

E
[
|fn|r

]
<∞

for some r > 1. We will prove that the above condition holds with every
r ∈

(
1, 1 + η

2(2−η)

)
if 0 < η < 2 and with arbitrary r > 1 if η = 2.

Since LHS(Y, V ′) ↪→ L(Y, V ′), then by (G∗) we have∣∣G(φ̃n(σ, ω))
∗
Pnζ

∣∣
Y
≤ ‖G(φ̃n(σ, ω))‖L(Y,V ′) · ‖Pnζ‖V

≤
√
C

(
|φ̃n(σ, ω)|2H + 1

)
‖ζ‖V .
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Hence we have the following estimates

|fn|r =

∣∣∣∣(∫ t

s

〈
G(φ̃n(σ, ω))

∗
Pnψ

∣∣G(φ̃n(σ, ω))
∗
Pnζ

〉
dσ

)
·h

(
φ̃n|[0,s]

)∣∣∣∣r
≤ ‖h‖r

L∞

(∫ t

s

∣∣G(φ̃n(σ, ω))
∗
Pnψ

∣∣
Y
·
∣∣G(φ̃n(σ, ω))

∗
Pnζ

∣∣
Y
dσ

)r

≤ Cr‖h‖r
L∞ · ‖ψ‖

r
V · ‖ζ‖

r
V ·

(∫ t

s

(
|φ̃n(σ, ω)|2H + 1

)
dσ

)r

.

Using the Hőlder inequality, we obtain the following estimates(∫ t

s

(
|φ̃n(σ, ω)|2H + 1

)
dσ

)r

≤ (t− s)r−1 ·
∫ t

s

(
|φ̃n(σ, ω)|2H + 1

)r
dσ

≤ C · sup
σ∈[0,T ]

(
|φ̃n(σ, ω)|2r

H + 1
)

for some C > 0. Thus

|fn|rH ≤ C̃ · sup
σ∈[0,T ]

(
|φ̃n(σ, ω)|2r

H + 1
)

for some C̃. Hence by (4.12)

E
[
|fn|rH

]
≤ C̃ · E

[
sup

σ∈[0,T ]

|φ̃n(σ, ω)|2r
H + 1

]
≤ C̃

(
C1(2r) + 1

)
<∞, n ∈ N,

which completes the proof of (4.18).

Pointwise convergence in ω. Let us fix ω such that φ̃n(·, ω) → φ̃(·, ω)
in L2(0, T,H) ∩ C([0, T ];U ′). Then, in particular, the sequence (φ̃n(·, ω)) is
bounded in L2(0, T ;H). By the continuity of h, it follows that
limn→∞ h

(
φ̃n|[0,s](ω)

)
= h

(
φ̃|[0,s](ω)

)
. We will prove that

lim
n→∞

∫ t

s

〈
G(φ̃n(σ, ω))

∗
Pnψ

∣∣G(φ̃n(σ, ω))
∗
Pnζ

〉
dσ

=

∫ t

s

〈
G(φ̃(σ, ω))

∗
ψ

∣∣G(φ̃(σ, ω))
∗
ζ

〉
dσ.

Let us remark that it is sufficient to prove that

G(φ̃n(·, ω))
∗
Pnψ → G(φ̃(·, ω))

∗
ψ in L2(s, t;Y ).

202



We have the following inequalities∫ t

s

∣∣G(φ̃n(σ, ω))
∗
Pnψ −G(φ̃(σ, ω))

∗
ψ

∣∣2
Y
dσ

≤
∫ t

s

(∣∣G(φ̃n(σ, ω))
∗
(Pnψ − ψ)

∣∣
Y

+
∣∣G(φ̃n(σ, ω))

∗
ψ −G(φ̃(σ, ω))

∗
ψ

∣∣
Y

)2

dσ

≤ 2
∣∣Pnψ − ψ

∣∣2
Vγ
·
∫ t

s

∣∣G(φ̃n(σ, ω))
∗∣∣2
L(V−γ ,Y )

dσ

+ 2

∫ t

s

∣∣G(φ̃n(σ, ω))
∗
ψ −G(φ̃(σ, ω))

∗
ψ

∣∣2
Y
dσ =: 2{I1(n) + I2(n)}.

Let us consider the term I1(n) on the right hand side of the above inequality.
Since

Pnψ → ψ for ψ ∈ Vγ,

then by (G∗) the continuity of the embedding LHS(Y, V−γ) ↪→ L(Y, V−γ) and
the boundedness of the sequence (φ̃n(·, ω)) in L2(0, T ;H), we have the following
estimates∫ t

s

∣∣G(φ̃n(σ, ω))
∗∣∣2
L(V−γ ,Y )

dσ ≤ C

∫ T

0

(
|φ̃n(σ, ω)|2H + 1

)
dσ ≤ C̃, n ∈ N,

for some constant C̃ > 0. Thus

lim
n→∞

I1(n) = lim
n→∞

∫ t

s

∣∣G(φ̃n(σ, ω))
∗∣∣2
L(V−γ ,Y )

·
∣∣Pnψ − ψ

∣∣2
Vγ
dσ = 0.

Let us move to the term I2(n). By the second part of assumption (A.3), G
extends to a Lipschitz continuous mapping G : H → LHS(Y, V−γ). Thus

‖G(φ̃n(σ, ω))∗ψ−G(φ̃(σ, ω))
∗
ψ‖Y

≤
∣∣G(φ̃n(σ, ω)) −G(φ̃(σ, ω))

∣∣
L(Y,V−γ)

· ‖ψ‖Vγ

≤
∣∣G(φ̃n(σ, ω)) −G(φ̃(σ, ω))

∣∣
LHS(Y,V−γ)

· ‖ψ‖Vγ

≤ LG

∣∣φ̃n(σ, ω) − φ̃(σ, ω)
∣∣
H
· ‖ψ‖Vγ

,

where LG stand for the Lipschitz constant. Hence∫ t

s

∥∥G(φ̃n(σ, ω))
∗
ψ−G(φ̃(σ, ω))

∗
ψ

∥∥2

Y
dσ

≤ L2
G

∫ t

s

∣∣φ̃n(σ, ω) − φ̃(σ, ω)
∣∣2
H
dσ · ‖ψ‖2

Vγ

≤ L2
G · ‖φ̃n(·, ω) − φ̃(·, ω)‖2

L2(0,T ;H) · ‖ψ‖
2
Vγ
.
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Since φ̃n(·, ω) → φ̃(·, ω) in L2(0, T ;H) as n→∞, we infer that

lim
n→∞

I2(n) = lim
n→∞

∫ t

s

∥∥G(φ̃n(σ, ω))
∗
ψ −G(φ̃(σ, ω))

∗
ψ

∥∥2

Y
dσ = 0.

This completes the proof of lemma.

Continuation of the proof of Theorem 4.1. By lemmas 4.5 and 4.6
we infer that for all s ≤ t ∈ [0, T ] all functions h bounded continuous on
L2(0, s;H) ∩ C([0, s];U ′) and all ψ, ζ ∈ D(A

α
2 ) the following equalities hold

E
[〈
M̃(t)− M̃(s)|ψ

〉
h
(
φ̃|[0,s]

)]
= 0 (4.19)

and

E
[(〈

M̃(t)|ψ
〉〈
M̃(t)|ζ

〉
−

〈
M̃(s)|ψ

〉〈
M̃(s)|ζ

〉
−

∫ t

s

〈
G(φ̃(σ))

∗
ψ

∣∣G(φ̃(σ))
∗
ζ

〉
dσ

)
·h

(
φ̃|[0,s]

)]
= 0,

(4.20)

where M̃ is a D(A−
α
2 )-valued process defined by

M̃(t) =φ̃(t) − φ̃(0) +

∫ t

0

Aφ̃(s) ds+

∫ t

0

B
(
φ̃(s)

)
ds

+

∫ t

0

R
(
φ̃(s)

)
ds−

∫ t

0

f(s) ds, t ∈ [0, T ].

(4.21)

By (4.19) and (4.20) with ψ, ζ ∈ D(A
α
2 ), we see that

The process A−
α
2 M̃(t), t ∈ [0, T ] is a continuous square integrable H-valued

martingale with respect to the filtration F̃=
(
F̃t

)
, where Ft =σ{φ̃(s), s ≤ t}

with quadratic variation

〈〈
A−

α
2 M̃

〉〉
t

=

∫ t

0

A−
α
2G(φ̃(s))G(φ̃(s))

∗
A−

α
2 ds, t ∈ [0, T ]. (4.22)

In particular, the continuity of the process A−
α
2 M̃(t), t ∈ [0, T ] follows from

the facts that φ̃ ∈ C([0, T ];D(A−
α
2 )) and that the nonlinear term B(φ̃) ∈

L1
(
0, T ;D(A−

α
2 )

)
. Thus the integral in (4.22) as a function of t is continuous.

By the representation theorem for martingales, see [7], there exist
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• a stochastic basis
( ˜̃Ω, ˜̃F , { ˜̃F t}t≥0,

˜̃P
)
,

• a cylindrical Wiener process ˜̃W (t) defined on this basis

• and a progressively measurable proces ˜̃φ(t) such that

A−
α
2

˜̃φ(t) − A−
α
2

˜̃φ(0) + A−
α
2

∫ t

0

A ˜̃φ(s) ds+ A−
α
2

∫ t

0

B
( ˜̃φ(s)

)
ds

+ A−
α
2

∫ t

0

R
( ˜̃φ(s)

)
ds− A−

α
2

∫ t

0

f(s) ds =

∫ t

0

A−
α
2G

( ˜̃φ(s)
)
d ˜̃W (s).

However, ∫ t

0

A−
α
2G

( ˜̃φ(s)
)
d ˜̃W (s) = A−

α
2

∫ t

0

G
( ˜̃φ(s)

)
d ˜̃W (s).

Thus A−
α
2

˜̃φ(t), t ∈ [0, T ] is continuous as a D(Aβ)-valued process with β := α
2
.

Hence( ˜̃φ(t)|ψ
)
−

( ˜̃φ(0)|ψ
)

+

∫ t

0

〈
A ˜̃φ(s)|ψ

〉
ds+

∫ t

0

〈
B

( ˜̃φ(s)
)
|ψ

〉
ds

+

∫ t

0

〈
R

( ˜̃φ(s)
)
|ψ

〉
ds =

∫ t

0

〈
f(s)|ψ

〉
ds+

〈∫ t

0

G
( ˜̃φ(s)

)
d ˜̃W (s)

∣∣ψ〉
,

∀ t ∈ [0, T ] ∀ψ ∈ D(Aβ).

In conclusion, the conditions from Definition 4 hold with
(
Ω̂, F̂ , {F̂t}t≥0, P̂

)
=( ˜̃Ω, ˜̃F , { ˜̃F t}t≥0,

˜̃P
)
, Ŵ = ˜̃W and φ = ˜̃φ. This completes the proof of Theorem

4.1.

5 Example
Let

G(φ, ξ)(t, x) :=
∞∑
i=1

[(
b(i)(x) · ∇

)
φ(t, x) + c(i)(x)φ(t, x)

]dβ(i)(t)

dt
, (5.1)

where

β(i), i ∈ N - independent standard Brownian motions,

b(i) : D → Rd - of class C∞, i ∈ N
c(i) : D → R - of class C∞, i ∈ N
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are given. Assume that

C1 :=
∞∑
i=1

(
‖b(i)‖2

L∞ + ‖divb(i)‖2
L∞ + ‖c(i)‖2

L∞

)
<∞ (5.2)

and
d∑

j,k=1

(
2δjk −

∞∑
i=1

b
(i)
j (x)b

(i)
k (x)

)
ζjζk ≥ a|ζ|2, ζ ∈ Rd (5.3)

for some a ∈ (4
3
, 2]. Assumption (5.3) is equivalent to the following one

∞∑
i=1

d∑
j,k=1

b
(i)
j (x)b

(i)
k (x)

)
ζjζk ≤ 2

d∑
j,k=1

δjkζjζk − a|ζ|2 = (2− a)|ζ|2. (5.4)

Let Y := l2(N) and put

G(φ)h =
∞∑
i=1

[(
b(i) · ∇

)
φ+ c(i)φ

]
hi, φ ∈ V, h = (hi) ∈ l2(N).

We will show that G fulfils assumption (A.3). Since the mapping G is linear,
it is Lipschitz continuous provided that it is bounded. We will show that

2
〈
Aφ|φ

〉
− ‖G(φ)‖2

LHS(Y,H) ≥ η‖φ‖2
V − λ0|φ|2H , φ ∈ V (G̃)

for some constants λ0 and η ∈ (4
3
, 2].

Moreover, G extends to a linear mapping G : H → LHS(Y, V−γ) for some γ ≥ 1
and

‖G(φ)‖2
LHS(Y,V−γ) ≤ C|φ|2H , φ ∈ H. (G̃∗)

for some C > 0.

Proof of (G̃). Let us consider a standard orthonormal basis h(i) = (h
(i)
j ),

i ∈ N in l2(N). Let φ ∈ V . Then, for each i ∈ N, we have

∣∣G(φ)h(i)
∣∣2
H

=

( d∑
j=1

b
(i)
j

∂φ

∂xj

+ c(i)φ
∣∣ d∑
k=1

b
(i)
k

∂φ

∂xk

+ c(i)φ

)
H

=

( d∑
j=1

b
(i)
j

∂φ

∂xj

∣∣ d∑
k=1

b
(i)
k

∂φ

∂xk

)
H

+ 2

( d∑
j=1

b
(i)
j

∂φ

∂xj

∣∣c(i)φ)
H

+
∣∣c(i)φ∣∣2

H
.
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Thus

‖G(φ)‖2
LHS(Y,H) =

∞∑
i=1

∣∣G(φ)h(i)
∣∣2
H

=
∞∑
i=1

( d∑
j=1

b
(i)
j

∂φ

∂xj

∣∣ d∑
k=1

b
(i)
k

∂φ

∂xk

)
H

+ 2
∞∑
i=1

( d∑
j=1

b
(i)
j

∂φ

∂xj

∣∣c(i)φ)
H

+
∞∑
i=1

∣∣c(i)φ∣∣2
H
. (5.5)

Let us estimate each term on the right-hand side. By (5.4)

∞∑
i=1

( d∑
j=1

b
(i)
j

∂φ

∂xj

∣∣ d∑
k=1

b
(i)
k

∂φ

∂xk

)
H

=

∫
D

∞∑
i=1

d∑
j,k=1

b
(i)
j (x)b

(i)
k (x)

∂φ

∂xj

∂φ

∂xk

dx

≤ (2− a)|∇φ|2H , φ ∈ V.

For each i ∈ N we have( d∑
j=1

b
(i)
j

∂φ

∂xj

∣∣c(i)φ)
H

≤ ‖b(i)‖L∞‖c
(i)‖L∞‖φ‖V |φ|H

≤ 1

2

(
‖b(i)‖2

L∞ + ‖c(i)‖2

L∞

)
‖φ‖V |φ|H , φ ∈ V.

Thus for any ε > 0

2
∞∑
i=1

( d∑
j=1

b
(i)
j

∂φ

∂xj

∣∣c(i)φ)
H

≤
∞∑
i=1

(
‖b(i)‖2

L∞ + ‖c(i)‖2

L∞

)
‖φ‖V |φ|H

= C1‖φ‖V · |φ|H ≤ ε‖φ‖2
V +

C2
1

4ε
|φ|2H , φ ∈ V,

C1 is defined by (5.2). The third term in (5.5) we estimate as follows
∞∑
i=1

∣∣c(i)φ∣∣2
H
≤

∞∑
i=1

‖c(i)‖2

L∞|φ|
2
H = C1|φ|2H , φ ∈ V.

Hence

‖G(φ)‖2
LHS(Y,H) ≤ (2 + ε− a)‖φ‖2

V +

(
C2

1

4ε
+ C1

)
|φ|2H , φ ∈ V

and

2
〈
Aφ|φ

〉
− ‖G(φ)‖2

LHS(Y,H) ≥ 2‖φ‖2
V − (2 + ε− a)‖φ‖2

V −
(
C2

1

4ε
+ C1

)
|φ|2H

= (a− ε)‖φ‖2
V −

(
C2

1

4ε
+ C1

)
|φ|2H , φ ∈ V.
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It is sufficient to take ε > 0 such that a− ε ∈ (4
3
, 2]. (Let us notice that such

an ε exists.) Thus condition (G̃) holds with η := a− ε and λ0 :=
C2

1

4ε
+C1.

Proof of (G̃∗). Let b = (b1, ..., bd) : D → Rd. Then
d∑

j=1

∂

∂xj

(bjφ) =
d∑

j=1

(
∂bj
∂xj

φ+ bj
∂φ

∂xi

)
= (divb)φ+

d∑
j=1

bj
∂φ

∂xj

.

Thus for every ψ ∈ V∫
D

( d∑
j=1

bj
∂φ

∂xj

)
ψ dx =

d∑
j=1

∫
D

∂

∂xj

(bjφ)ψ dx−
∫

D

(divb)φψ dx

= −
d∑

j=1

∫
D

(bjφ)
∂ψ

∂xj

dx−
∫

D

(divb)φψ dx.

Hence using the Hőlder inequality, we obtain the following estimates

∣∣∫
D

( d∑
j=1

bj
∂φ

∂xj

)
ψ dx

∣∣ ≤ ∣∣∣∣∫
D

d∑
j=1

bjφ
∂ψ

∂xj

dx

∣∣∣∣ +

∣∣∣∣∫
D

(divb)φψ dx
∣∣∣∣

≤ ‖b‖L∞ |φ|H‖ψ‖V + ‖divb‖L∞|φ|H‖ψ‖V .

Thus

‖(b · ∇)φ‖V ′ ≤
(
‖b‖L∞ + ‖divb‖L∞

)
· |φ|H .

Moreover,
‖c(i)φ‖V ′ ≤ const‖c(i)‖L∞|φ|H .

Then G(φ)h(i) =
(
b(i) · ∇

)
φ+ c(i)φ and

|G(φ)h(i)|2V ′ = |
(
b(i) · ∇

)
φ+ c(i)φ|2V ′ ≤ 2

(
|
(
b(i) · ∇

)
φ|2V ′ + |c(i)φ|2V ′

)
.

Hence

‖G(φ)h‖2
LHS(Y,V ′) =

∞∑
i=1

|G(φ)h(i)|2V ′ ≤ 2
∞∑
i=1

(
|
(
b(i) · ∇

)
φ|2V ′ + |c(i)φ|2V ′

)
≤ 2

∞∑
i=1

(
2‖b(i)‖2

L∞ + 2‖divb(i)‖2
L∞ + ‖c(i)‖2

L∞

)
|φ|2H .

Hence, G(φ) ∈ LHS(Y, V ′) and

‖G(φ)‖LHS(Y,V ′) ≤ C · |φ|H ,

where C = 2C1. In conclusion, condition (G̃∗) holds with γ = 1.
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6 Appendix A

Let us recall the first part of assumption (A.3).

The mapping G : V → LHS(Y,H) is Lipschitz continuous and

2
〈
Aφ|φ

〉
− ‖G(φ)‖2

LHS(Y,H) ≥ η‖φ‖2
V − λ0|φ|2H − ρ, φ ∈ V (G)

for some constants λ0, ρ and η ∈ (0, 2].

Since
〈
Aφ|φ

〉
− η‖φ‖2

V = (2 − η)‖φ‖2
V , inequality (G) can be written in the

following form

‖G(φ)‖2
LHS(Y,H) ≤ 2

〈
Aφ|φ

〉
− η‖φ‖2

V + λ0|φ|2H + ρ, φ ∈ V (G’)

The following proof of Lemma 4.3 is standard, see [10]. However, we provide
all details to indicate the importance of the assumption (4.2) on p.

Proof of estimates (4.3), (4.4) and (4.5) under the assumption (G).

Let p satisfy condition (4.2), i.e.{
p ∈

[
2, 2 + η

2−η

)
if η ∈ (0, 2)

p ∈ [2,∞) if η = 2.

We apply the Itô Lemma to the function F (x) = |x|pH =: |x|p, x ∈ H. Since

∂F

∂x
= p · |x|p−2 · x,

∥∥∥∥∂2F

∂x2

∥∥∥∥ ≤ p(p− 1) · |x|p−2, x ∈ H,

we infer that

d
[
|φn(t)|p

]
=

[
p |φn(t)|p−2〈φn(t)| − Aφn(t)−Bn

(
φn(t)

)
−R(φn(t)) + Pnf(t)

〉
+

1

2
tr

[
PnG(φn(t))

∂2F

∂x2

(
PnG(φn(t))

)∗]]
dt

+ p |φn(t)|p−2〈φn(t)|G(φn(t)) dW (t)
〉

=

[
−p |φn(t)|p−2‖φn(t)‖2 − p |φn(t)|p−2〈φn(t)|R(φn(t))

〉
+ p |φn(t)|p−2〈φn(t)|Pnf(t)

〉
+

1

2
tr

[
PnG(φn(t))

∂2F

∂x2

(
PnG(φn(t))

)∗]]
dt

+ p |φn(t)|p−2〈φn(t)|G(φn(t)) dW (t)
〉
, t ≥ 0.
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Thus

d
[
|φn(t)|p

]
+ p |φn(t)|p−2‖φn(t)‖2 ≤ −p |φn(t)|p−2〈φn(t)|R(φn(t))

〉
dt

+ p |φn(t)|p−2〈φn(t)|f(t)
〉
dt

+
1

2
p(p− 1) |φn(t)|p−2 · ‖PnG(φn(t))‖2

LHS(Y,H) dt

+ p |φn(t)|p−2〈φn(t)|G(φn(t)) dW (t)
〉
, t ≥ 0.

By (G’) we have

‖PnG(φn(t))‖2
LHS(Y,H) ≤ (2− η) ‖φn(t)‖2 + λ0|φn(t)|2 + ρ, t ≥ 0.

By Lemma 3.2 (2)

−
〈
φn(t)|R(φn(t))

〉
≤ |φn(t)|2, t ≥ 0.

Moreover, by the Schwarz inequality for any ε > 0 we get〈
f(t)|φn(t)

〉
≤ |f(t)|V ′ · ‖φn(t)‖ =

1

(2ε)
1
2

|f(t)|V ′ · (2ε)
1
2‖φn(t)‖

≤ 1

2

(
1

2ε
|f(t)|2V ′ + 2ε ‖φn(t)‖2

)
=

1

4ε
|f(t)|2V ′ + ε ‖φn(t)‖2, t ≥ 0.

Hence for t ≥ 0

d
[
|φn(t)|p

]
+ p |φn(t)|p−2‖φn(t)‖2 dt ≤ p|φn(t)|p dt

+ p|φn(t)|p−2 1

4ε
|f(t)|2V ′ + p|φn(t)|p−2ε ‖φn(t)‖2 dt

+
1

2
p(p− 1) |φn(t)|p−2 ·

[
(2− η) ‖φn(t)‖2 + λ0|φn(t)|2 + ρ

]
dt

+ p |φn(t)|p−2〈φn(t)|G(φn(t)) dW (t)
〉

and therefore

d
[
|φn(t)|p

]
+

[
p− pε− 1

2
p(p− 1)(2− η)

]
|φn(t)|p−2‖φn(t)‖2

≤ p|φn(t)|p dt+ p |φn(t)|p−2 · 1

4ε
|f(t)|2V ′ dt

+
1

2
p(p− 1) |φn(t)|p−2 ·

[
λ0|φn(t)|2 + ρ

]
dt

+ p |φn(t)|p−2〈φn(t)|G(φn(t)) dW (t)
〉
.
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Moreover,

p |φn(t)|p−2 · 1

4ε
|f(t)|2V ′ +

1

2
p(p− 1) |φn(t)|p−2 ·

[
λ0|φn(t)|2 + ρ

]
= |φn(t)|p−2 ·

[
1

2
p(p− 1)λ0 |φn(t)|2 +

p

4ε
|f(t)|2V ′ +

1

2
p(p− 1)ρ

]
≤

[(
1

2
p(p− 1)λ0 + ε|f(t)|2V ′

)
|φn(t)|p + C(ε, p, ρ)

(
|f(t)|2V ′ + 1

)]
, t ≥ 0.

Thus we obtain

|φn(t)|p+
[
p− pε− 1

2
p(p− 1)(2− η)

] ∫ t

0

|φn(s)|p−2‖φn(s)‖2 ds

≤ |φn(0)|p +

∫ t

0

(
p+

1

2
p(p− 1)λ0 + ε|f(s)|2V ′

)
|φn(s)|p ds

+ C(ε, p, ρ)

∫ t

0

(
|f(s)|2V ′ + 1

)
ds

+ p

∫ t

0

|φn(s)|p−2〈φn(s)|G(φn(s)) dW (s)
〉
, t ∈ [0, T ].

(6.1)

Let us choose ε > 0 such that p− pε− 1
2
p(p− 1)(2− η) > 0, or equivalently,

ε < 1− 1

2
(p− 1)(2− η).

Observe that under condition (4.2) such an ε exists.

By Lemma 4.2, E[
∫ T

0
|φn(s)|qH ds] < ∞ for any q ∈ [1,∞). Hence by (G) and

the equivalence of all norms in the finite dimensional space, we infer that the
process

µn(t) :=

∫ t

0

|φn(s)|p−2〈φn(s)|G(φn(s)) dW (s)
〉
, t ∈ [0, T ]

is a martingale and that E[µn(t)] = 0. Thus we have

E
[
|φn(t)|p

]
≤ E

[
|φn(0)|p

]
+

∫ t

0

(
p+

1

2
p(p− 1)λ0 + ε|f(s)|2V ′

)
E

[
|φn(s)|p

]
ds

+ C(ε, p, ρ)

∫ t

0

(
|f(s)|2V ′ + 1

)
ds ∀ t ∈ [0, T ]. (6.2)

Hence by the Gronwall Lemma there exists a constant C > 0 such that

E
[
|φn(t)|p

]
≤ C ∀ t ∈ [0, T ] ∀n ≥ 1. (6.3)

211



Using this estimate in inequality (6.1), we also obtain

E
[∫ T

0

|φn(s)|p−2‖φn(s)‖2 ds

]
≤ C2(p), n ≥ 1 (6.4)

for some constant C2(p) > 0. This completes the proof of inequalities (4.4)
and (4.5).

By the Burkholder-Davis-Gundy inequality, see [18], and estimates (6.3)and
(6.4) we obtain the following estimates

E
[

sup
0≤s≤t

∣∣∣∣∫ s

0

p |φn(σ)|p−2〈φn(σ)|PnG(φn(σ)) dW (σ)
〉∣∣∣∣]

≤ C p · E
[(∫ t

0

‖|φn(σ)|p−2(φn(σ)|·
)
PnG(φn(σ))‖2

LHS(Y,H)
dσ

) 1
2
]

= C p · E
[(∫ t

0

|φn(σ)|2p−4‖
〈
φn(σ)|·

〉
PnG(φn(σ))‖2

LHS(Y,H)
dσ

) 1
2
]

≤ C p · E
[(∫ t

0

|φn(σ)|2p−4 · |φn(σ)|2 · ‖G(φn(σ))‖2
LHS(Y,H) dσ

) 1
2
]

= C p · E
[(∫ t

0

|φn(σ)|2p−2 · ‖G(φn(σ))‖2
LHS(Y,H) dσ

) 1
2
]

≤ C p · E
[

sup
0≤σ≤t

|φn(σ)|
p
2

(∫ t

0

|φn(σ)|p−2 · ‖G(φn(σ))‖2
LHS(Y,H) dσ

) 1
2
]

≤ C p · E
[

sup
0≤σ≤t

|φn(σ)|
p
2

(∫ t

0

|φn(σ)|p−2 ·
[
λ0 |φn(σ)|2 + ρ

+ (2− η)‖φn(σ)‖2] dσ) 1
2
]

≤ 1

2
E

[
sup

0≤σ≤t
|φn(σ)|p

]
+

1

2
C2p2 E

[∫ t

0

|φn(σ)|p−2 ·
[
λ0 |φn(σ)|2 + ρ

+ (2− η)‖φn(σ)‖2] dσ]
=

1

2
E

[
sup

0≤s≤t
|φn(s)|p

]
+

1

2
C2p2 · E

[∫ t

0

λ0 |φn(s)|p ds
]

+
1

2
C2p2ρ · E

[∫ t

0

|φn(s)|p−2 ds

]
+

1

2
C2p2(2− η) · E

[∫ t

0

|φn(s)|p−2‖φn(s)‖2 ds

]
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≤ 1

2
E

[
sup

0≤s≤t
|φn(s)|p

]
+

1

2
C2p2λ0 · E

[∫ t

0

sup
0≤s≤σ

|φn(s)|p dσ
]

+
1

2
C2p2ρ · E

[∫ t

0

|φn(s)|p−2 ds

]
+

1

2
C2p2(2− η) · E

[∫ t

0

|φn(s)|p−2‖φn(s)‖2 dσ

]
≤ 1

2
E

[
sup

0≤s≤t
|φn(s)|p

]
+

1

2
C2p2λ0 · E

[∫ t

0

sup
0≤s≤σ

|φn(s)|p dσ
]

+ const.

Thus by (6.2) we have

E
[

sup
0≤s≤t

|φn(s)|p
]
≤ E

[
|φn(0)|p

]
+

∫ t

0

(
p+

1

2
p(p− 1)λ0 + ε|f |2V ′

)
E

[
sup

0≤r≤s
|φn(r)|p

]
ds

+ C(ε, p, ρ)

∫ t

0

(
|f(s)|2V ′ + 1

)
ds+

1

2
E

[
sup

0≤s≤t
|φn(s)|p

]
+

1

2
C2p2λ0 ·

∫ t

0
E

[
sup

0≤s≤σ
|φn(s)|p

]
dσ + const.

Hence by the Gronwall Lemma, we get (4.3), i.e.

E
[

sup
0≤s≤t

|φn(s)|p
]
≤ C1(p)

for some constant C1(p) > 0. This completes the proof of estimates (4.3), (4.4)
and (4.5) in Lemma 4.3.

7 Appendix B
Lemma 7.1. Let β > d + 2 and let φn → φ in L2(0, T ;H). Then for all
t ∈ [0, T ] and all ψ ∈ D(A

β
2 ) we have

lim
n→∞

〈∫ t

0

PnB
(
φn(s)

)
ds

∣∣ψ〉
=

〈∫ t

0

B
(
φ(s)

)
ds

∣∣ψ〉
. (7.1)

Proof. We have〈∫ t

0

PnB
(
φn(s)

)
ds

∣∣ψ〉
=

〈∫ t

0

B
(
φn(s)

)
ds

∣∣Pnψ

〉
=

〈∫ t

0

B
(
φn(s)

)
ds

∣∣Pnψ − ψ

〉
+

〈∫ t

0

B
(
φn(s)

)
ds

∣∣ψ〉
=: I1(n) + I2(n).
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For the first term on the right hand side, we have the following estimate

|I1(n)| =

∣∣∣∣〈∫ t

0

B
(
φn(s)

)
ds

∣∣Pnψ − ψ

〉∣∣∣∣
≤

∫ t

0

∣∣B(
φn(s)

)∣∣
D(A−

β
2 )
ds · ‖Pnψ − ψ‖

D(A
β
2 )

≤
∫ T

0

|φn(s)|2H ds · ‖Pnψ − ψ‖
D(A

β
2 )
.

Since Pn → I strongly in D(A
β
2 ) as n → ∞ and (φn)n≥1 is bounded in

L2(0, T ;H), we infer that limn→∞ I1(n) = 0.

Let us move to the second term. Let us denote φn = (un, ϑn), φ = (u, ϑ).
Then

B(φn)−B(φ) =
(
B1(un, un), B2(un, ϑn)

)
−

(
B1(u, u), B2(u, ϑ)

)
=

(
B1(un − u, un) +B1(u, un − u), B2(un − u, ϑn) +B2(u, ϑn − ϑ)

)
.

Thus using the estimates (3.6) and (3.12), we obtain∣∣∣∣〈∫ t

0

B
(
φn(s)

)
ds

∣∣ψ〉
−

〈∫ t

0

B
(
φ(s)

)
ds

∣∣ψ〉∣∣∣∣
≤ C · ‖φn − φ‖L2(0,T ;H)

(
‖φn‖L2(0,T ;H) + ‖φ‖L2(0,T ;H)

)
‖ψ‖

D(A
β
2 )
→ 0

as n→∞ (C stands for some positive constant). Thus

lim
n→∞

I2(n) =

〈∫ t

0

B
(
φ(s)

)
ds

∣∣ψ〉
,

which completes the proof of Lemma.
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[5] Z. Brzeźniak, M. Capiński, F. Flandoli, “Stochastic partial differential
equations and turbulence”, Mathematical Models and Methods in Applied
Sciences, Vol.1, No. 1, pp. 41-59, 1991.
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