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1. Introduction.
We consider an evolution equation

∂u

∂t
= Au, (1)
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where A is a linear operator. Given an operator A let etA, t ≥ 0 denote the
operator exponent that is a family of linear operators such that for every t > 0
the operator etA maps the real or complex-valued function ϕ(x), x ∈ R into
a solution u(t, x) of the Cauchy problem of the equation (1) with an initial
condition u(0, x) = ϕ(x).

It is well known (see [15]), that the exponents of some pseudo-differential
operators and the exponent of the operator d2

dx2 have probabilistic representa-
tions. Namely, for the operator d2

dx2 we have

et 1
2

d2

dx2 ϕ(x) = Eϕ(x + w(t)),

where w(t) is a standard Wiener process, w(0) = 0, and for the operator A,
that acts as

Aϕ(x) =

∫
R
(ϕ(x + y)− ϕ(x))Λ(dy),

if the measure Λ satisfies the condition
∫

R min(|x|, 1)Λ(dx) < ∞, and as

Aϕ(x) =

∫
R
(ϕ(x + y)− ϕ(x)− yϕ′(x)1[−1,1](y))Λ(dy), (2)

if the measure Λ satisfies the condition
∫

R min(|x|2, 1)Λ(dx) < ∞, we have

etAϕ(x) = Eϕ(x + ξ(t)) (3)

where ξ(t) is a jump Lévy process with the Lévy measure Λ, ξ(0) = 0.
Note that if the operator exponent can be represented in the form (3) the

fundamental solution q(t, x, y) of the equation (1) for every t > 0 coincides
with one-dimensional distribution of the process x + ξ(t).

It is important to note that the representation (3) can be directly general-
ized neither for higher order differential operators nor for operators that look
like (2) but include higher order derivatives of ϕ. The simplest explanation
of this fact is based on the maximum principle. Namely it follows from (3)
that the operator A satisfies the following property: if the function ϕ has a
maximum at point x, then Aϕ(x) ≤ 0. It is clear that higher order differential
operators do not satisfy this property.

An analog of the representation (3) was considered in a number of papers
(see [9, 6, 14, 3]). In this representation instead of usual probability processes
so-called pseudo-processes were used.

A concept of a pseudo-process appeared for the first time in a paper of
Yu. Daletski (see. [5]). Note that a pseudo-process is not really a stochastic
process. Actually it is defined by a fundamental solution of an equation

∂u

∂t
= kn

∂nu

∂xn
.
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It is easy to prove that pseudo-processes exist only in a sense of finite-dimen-
sional distributions and do not generate any measure in the space of trajecto-
ries.

Nevertheless there are a lot of papers (see [14, 3]) concerning the properties
of pseudo-processes. It was proved that a lot of functionals of the trajectories of
the pseudo-processes are well-defined in the sense that they generate a signed
measure on R. Mention here that an analog of the arc-sine law [9, 11], of the
central limit theorem [10] and of the Ito formula and the Ito stochastic calculus
[9] has been proved for the pseudo-processes. We also mention that an analog
of the Feynman-Kac formula has been proved in [13, 11].

For the exponent of the fourth order differential operator (case n = 4) an
analog of the representation (3) were proposed in [6, 4, 7].

Further, in [16] stable measures with the index of stability greater than 2
were studied. Such measures are signed ones and hence they are not probability
measures. Nevertheless for this class of measures an analogue of the Lévy-
Khinchin representation was constructed. It was shown that in some sense
these signed measures are limit measures for sums of independent random
variables. It was also shown that these limit measures give us information
about large deviations of sums of independent random variables.

The present paper provides a further development of this approach.
Namely, instead of one-dimensional distributions we consider corresponding
processes with independent increments.

We construct, in particular, a probabilistic representation of the operator
exponent etA, where A belongs to a class of pseudo-differential operators.

First we describe this class of operators.
Let g be a generalized function on R (see [8]), such that for every ε > 0

the restriction of g on Rε = R \ (−ε, ε) is a finite signed measure that is

|g|(Rε) < ∞,

and at the point 0 the generalized function g can have a singularity of a finite
order. Namely, we suppose that for every a > 0 and some r ∈ N the generalized
function g is continuous with respect to the norm ‖ · ‖a,r, that is

|(g, ϕ)| ≤ Ca,r‖ϕ‖a,r, (4)

where
‖ϕ‖a,r = sup

|x|>a

|ϕ(x)|+ max
0≤j≤r

sup
|x|≤a

|ϕ(j)(x)|.

We also suppose that
(g, ϕ) = 0 (5)

if ϕ ≡ C = const.
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As examples of such generalized functions g one can consider derivatives
of the Dirac δ−function and generalized functions that have the form of a
regularization of a Borel function g, that satisfies the condition∫

R
min(|x|r, 1)|g(x)|dx < ∞

for some r ∈ N.
Note that if supp g = {0} then for r > 0 and a constant Cr > 0

|(g, ϕ)| ≤ Cr max
0≤j≤r

|ϕ(j)(0)|.

For a space of test functions we choose the space of all bounded infinitely
differentiable functions with bounded derivatives of an arbitrary order.

For every generalized function g we construct an operator Ag, by

Agf(x) = (gy, f(x + y)), (6)

where we denote the action of g on f with respect to the variable y by gy.
We also consider operators Ac

g defined by

Ac
gf(x) = (gy, f(x + cy)), (7)

where c is a constant (real or complex). Note, that we always suppose that f is
defined on R and in (7) for complex c we understand f(x+cy) as a substitution
of x + cy into an analytic continuation of f (assumed to exist).

To construct a probabilistic representation of the operator exponent of Ag

we consider two objects defined by the generalized function g. The first object
is a probability space (Ω,F , Pg). Next we consider a subset Ω0 of Ω (in all
interesting cases Pg(Ω

0) = 0) and on Ω0 instead of a probability measure we
define a generalized function Lg So our second object will be a triple (Ω0,G, Lg),
where G is a set of test functions of Lg.

All random processes we define on the space Ω0, and in the classical repre-
sentation (3) instead of the mathematical expectation we use the generalized
function Lg (for the same functional). Then we study the connection between
the probability measure Pg and the generalized function Lg.

2. The space (Ω0,G, Lg).

Let Ω0 denote the space of all discrete signed measures on [0, T ] with a finite
spectrum (finite number of atoms). Each element ν of this space can be repre-
sented in the form ν =

∑n
k=1 xkδtk , where δtk denotes a unit mass (δ−measure)

at a point tk. We suppose that in this representation |xk| > 0 for all k and all
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the points tk ∈ [0, T ] are different. On Ω0 we consider a topology generated
by a total variation norm.

Let f : Ω0 → C be a Borel function, for every k ∈ N0, N0 = {0, 1, 2 . . . };
we use a notation fk for a symmetric function of k two-dimensional variables
defined by

fk((t1, x1), (t2, x2), . . . , (tk, xk)) = f(
k∑

j=1

xjδtj), tj ∈ [0, T ], xj ∈ R. (8).

Using (8) we get the following relations

fk+1((t1, x1), . . . , (tk, xk), (tk+1, 0)) = fk((t1, x1), . . . , (tk, xk)) (9)

and

fk+1((t1, x1), . . . , (tk, xk), (tk, yk)) = fk((t1, x1), . . . , (tk, xk + yk)), yk ∈ R.

In the next step, given a generalized function g on R, we define a generalized
function Lg on Ω0.

First we define a space of test functions. To this end for every k ∈ N =
{1, 2, 3 . . . }, r ≥ 1, a > 0 we define a norm ‖ · ‖k,r,a, by

‖h‖k,r,a =
∑

I⊂{1,...,k}

sup
t1,...,tk

max
p,pi≤r

sup
|xi|≤a,

i∈I

sup
|xi|>a,

i/∈I

|DI,ph|, (10)

on the set of functions h :
(
[0, T ]×R

)k → R. Here DI,p denotes the differential
operator

DI,p =
∏
i∈I

∂pi

∂xpi

i

, (11)

for I ⊂ {1, . . . , r}, p = (p1, . . . , pk) and we suppose that the operator DI,p acts
only with respect to the variables xi, i ∈ I

Note that in the case supp g = {0} we use a simpler norm

‖h‖k,r = sup
t1,...,tk

max
p,pi≤r

|D{1,...,k},ph((t1, 0), . . . , (tk, 0))| (12)

instead of (10).
As a space of test functions we use the set G of Borel functions on Ω0, such

that for every k ∈ N the function fk = fk((t1, x1), . . . , (tk, xk)) is infinitely
differentiable with respect to xi, and for every r > 0, a > 0, M > 0 the
following series

∞∑
k=0

Mk‖fk‖k,r,a

k!
, (13)
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converges or if supp g = {0} the series

∞∑
k=0

Mk‖fk‖k,r

k!
(14)

converges . In the latter case we denote the corresponding class by G0.
We say that the sequence of test functions f (n) converges to a test function

f if f
(n)
k ((t1, x1), . . . , (tk, xk)) −→

n→∞
fk((t1, x1), . . . , (tk, xk)) for every k uniformly

with respect to ti ∈ [0, T ] and xi ∈ R with all its derivatives (w.r.t. xi) and
for every r > 0, a > 0, M > 0 the following sums are bounded

∞∑
k=0

Mk‖f (n)
k ‖k,r,a

k!

with respect to n.
Now under the class of test functions G (or G0, if supp g = {0}) we define

a generalized function Lg. For every f ∈ G we put

(Lg, f) =
∞∑

k=0

1

k!

∫
[0,T ]k

(g⊗k, fk)dmk. (15)

In (15) we suppose that the generalized function g⊗k acts with respect to
x1, . . . , xk, so that

(g⊗k, fk)(t1, . . . , tk) = (gx1 × · · · × gxk
, fk((t1, x1), . . . , (tk, xk))),

mk denotes the Lebesgue measure on [0, T ]k and we integrate with respect to
(t1, . . . , tk).

It follows from (4) that for some constant C = C(a, r) and for every k ∈ N
we have

sup
(t1,...,tk)

|(g⊗k, fk)(t1, . . . , tk)| ≤ Ck‖fk‖k,r,a. (16)

The convergence of the series (15) follows from (14) and (16).
For (Lg, f) we use a notation Lgf.
Below we consider not only the interval [0, T ], but also its subintervals.

Now we introduce corresponding definitions.
Let [t, s) ⊂ [0, T ]. By Ω0

t,s we denote the set of all discrete signed measures
with finite spectrum on the interval [t, s). For every u ∈ (t, s) the set Ωt,s

0 is
isomorphic to the Cartesian product Ω0

t,u × Ω0
u,s.

For t < s let Lt,s
g denote a restriction of the generalized function Lg on Ω0

t,s.
The generalized function Lt,s

g is defined on the set of test functions Gt,s ⊂ G.
By definition the function f belongs to Gt,s if f ∈ G and for every ν ∈ Ω0
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f(ν) = f(ν|[t,s)) It follows from (5) that on a test function f ∈ Gt,s a generalized
function Lt,s

g acts as

(Lt,s
g , f) =

∞∑
k=0

1

k!

∫
[t,s]k

(g⊗k, fk)dmk. (17)

It is clear that for every u ∈ (t, s) we have

Lt,s
g = Lt,u

g ⊗ Lu,s
g , (18)

where by Lt,u
g ⊗Lu,s

g we denote the direct product of the generalized functions
Lt,u

g and Lu,s
g (see [8]).

3. Generalized random processes on Ω0, and cor-
responding operator semigroups.
In this section we introduce a concept of a generalized random process (below
we usually omit the word generalized). To define this random process instead
of a probability space we use another object, namely the space (Ω0,G, Lg).

Let D0[0, T ] denote the space of right-continuous step functions on [0, T ],
with a finite number of jumps. This space is isomorphic to the Cartesian
product R × Ω0. Namely, every x ∈ R and ν ∈ Ω0 are mapped into the
function f ∈ D0[0, T ], where f(t) = x + ν[0, t], t ∈ [0, T ]. On D0[0, T ] we
consider the topology that is the image of topology on R×Ω0 under the action
of this isomorphism.

We define a generalized process (or simply process) as a measurable (with
respect to the Borel σ−algebra) mapping from Ω0 to D0[0, T ]. Of course, a
generalized process is not a random process in usual sense because Ω0 is not a
probability space and instead of a probability measure on Ω0 we have only a
generalized function Lg. For this reason we cannot speak about a probability
distribution for a functional of a process. Instead of this we can speak about
a generalized distribution that is an image of a generalized function Lg under
the action of a functional.

For every x ∈ R we define a (generalized) process ξx(t) = ξx(t, ν), t ∈
[0, T ], x ∈ R, by

ξx(t) = x + ν([0, t]). (19)

First we study the one-dimensional distribution of the process ξx(t). By
definition the one dimensional distribution is an image ξx(t)Lg of the general-
ized function Lg under the action of the mapping ν 7→ ξx(t, ν). This image is
a generalized function on R that acts on a test function ϕ as

(ξx(t)Lg, ϕ) = Lgϕ(ξx(t)).
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Formally the domain (the set of the test functions) of ξx(t)Lg is the set of func-
tions ϕ, such that the function ν 7→ ϕ(ξx(t, ν)) belongs to G. Let us construct
the smaller class of test functions.

For a domain of the generalized function ξx(t)Lg we take the set Hfin

of functions ϕ, that are inverse Fourier transforms of signed measures with
compact supports and with finite total variations. Namely, each function
ϕ ∈ Hfin is of the form

ϕ(x) =
1

2π

∫ A

−A

e−ipxµ(dp),

where µ is a signed measure on [−A, A], such that |µ|([−A, A]) < ∞.
It follows from this definition that for every ϕ ∈ Hfin there exists M > 0

such that
sup
x∈R

|ϕ(k)(x)| ≤ Mk. (20)

for every k ∈ N,
Now it follows from (16) and (20) that there exists M0 > 0 such that for

every k ∈ N the following inequality is true

sup
x∈R

|(g⊗k, ϕ(x + x1 + · · ·+ xk))| ≤ Mk
0 .

Finally, from the latter inequality it follows that for every function ϕ ∈
Hfin the function ϕ(ξx(t)) belongs to G.

On the domain Hfin for t ∈ [0, T ] we define a linear operator P t by

P tϕ(x) = Lgϕ(ξx(t)) = L0,t
g ϕ(ξx(t)) =

∞∑
k=0

tk

k!

(
g⊗k, ϕ(x + x1 + · · ·+ xk)

)
=

∞∑
k=0

tk

k!

(
gx1 × · · · × gxk

, ϕ(x + x1 + · · ·+ xk)
)
. (21)

It follows from (18) that P t is a semigroup of operators, so that P t+s =
P tP s.

Theorem 1. The Fourier transform P̂ t of the operator P t is a multiplication
operator by a function

ĥt(p) = exp(t(gy, e
−ipy)), p ∈ R. (22)

Proof. For p ∈ R, ϕ(x) = e−ipx we have

P tϕ(x) = Lge
−ipξx(t) =

∞∑
k=0

tk

k!

(
g⊗k, e−ip(x+x1+x2+···+xk)

)
=

e−ipx exp(t(gy, e
−ipy)).
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It follows from (22) that (in the distribution sense) the operator P t is a
convolution operator with the function ht, where ht is the inverse Fourier
transform of ĥt.

Further, define a function u = u(t, x), t ≥ 0, x ∈ R, by

u(t, x) = P tϕ(x) = Lgϕ(ξx(t)). (23)

Theorem 2. The function u(t, x) is a solution of the Cauchy problem

∂u

∂t
= Agu, u(0, x) = ϕ(x). (24)

Proof. Using (15),(17) we have

∂u

∂t
=

∞∑
k=1

tk−1

(k − 1)!

(
gx1 × gx2 × · · · × gxk

, ϕ(x + x1 + x2 + · · ·+ xk)
)

=

(
gx1 ,

∞∑
k=1

tk−1

(k − 1)!

(
gx2 × gx3 × · · · × gxk

, ϕ(x + x1 + x2 + · · ·+ xk)
))

.

Rename the variable x1 by y, the variables x2, . . . , xk by x1, . . . , xk−1 and
k − 1 by k. We get

∂u

∂t
=

(
gy,

∞∑
k=0

tk

k!

(
gx1 × gx2 × · · · × gxk

, ϕ(x + y + x1 + · · ·+ xk)
))

=

(
gy, u(t, x + y)

)
= Agu.

It follows from theorem 2 that the generalized function Pt,x = ξx(t)Lg (that
is the one-dimensional distribution of the process ξx(t)) is the fundamental
solution of the equation (24). It is easy to compute the Fourier transform P̂t,x

of this one-dimensional distribution. We have

P̂t,x(p) = Lge
ipξx(t) =

∞∑
k=0

tk

k!

(
g⊗k, eip(x+x1+x2+···+xk)

)
=

eipx exp(t(gy, e
ipy)). (25)

It is important to note that originally the one-dimensional distribution of
the process ξx(t) is defined only as a generalized function with domain Hfin.
But if the Fourier transform (25) is a rapidly decreasing function we can extend
Pt,x to a larger class of functions.

Now we consider some examples.
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Example 1. Consider the case g = −δ(1). Then for ϕ ∈ Hfin we have

L−δ(1)ϕ(ξx(t)) =
∞∑

k=0

tk

k!
((−δ(1))⊗k, ϕ(x + x1 + · · ·+ xk)) =

∞∑
k=0

tk

k!
ϕ(k)(x) = ϕ(x + t).

The latter formula means that P t is a shift operator that corresponds to a
well-known fact that the fundamental solution Pt,x of the equation ∂u

∂t
= ∂u

∂x
is

the unit mass at the point x + t.

Example 2. Consider the case g = δ(2)

2
. Then by (22) the operator P̂ t is a

multiplication operator by the function

ĥt(p) = exp(t(
δ
(2)
y

2
, e−ipy)) = exp(−tp2

2
),

and then by (25) the Fourier transform P̂t,x of the one-dimensional distribution
Pt,x (which is the fundamental solution of the equation ∂u

∂t
= 1

2
∂2u
∂x2 ) is

P̂t,x(p) = eipx− tp2

2 .

Example 3. Consider a generalized function g such that for ϕ ∈ Hfin

(g, ϕ) = v.p.

∫
R
(ϕ(x)− ϕ(0))

dx

x2
.

In this case by (22) we get that the operator P̂ t is a multiplication operator
by the function

ĥt(p) = exp

(
t(v.p.

∫
R
(e−ipy − 1)

dy

y2
)

)
= exp(−πt|p|),

and the fundamental solution Pt,x of the equation

∂u

∂t
(t, x) = v.p.

∫
R
(u(t, x + y)− u(t, x))

dy

y2

is the function
Pt,x(y) =

t

π2t2 + (y − x)2

which is the density of the one-dimensional distribution of the Cauchy process.
The following examples are different from examples 1-3 because the cor-

responding one-dimensional distributions of processes under consideration are
not probability distributions.
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Example 4. For α ∈ (4m, 4m+2) where m ∈ N0, we consider the generalized
function g(x) = |x|−α−1. In this case (see[8])for every ϕ ∈ Hfin we have

(g, ϕ) =

∫
R

(
ϕ(x)− ϕ(0)− ϕ(2)(0)

2!
x2 − · · · − ϕ(4m)(0)

(4m)!
x4m

)
dx

|x|1+α
. (26)

For α = 4m + 1 the integral (26) is considered in the principal value sense
and the case α = 1 was considered in the example 3. In this case the operator
P̂ t is the multiplication operator by the function

ĥt(p) = exp

(
t

∫
R

(
e−ipy − 1− (−ip)2

2!
y2 − · · · − (−ip)4m

(4m)!
y4m

) dy

|y|1+α

)
=

exp(−ct|p|α),

where
c =

π

sin πα
2

· 1

Γ(1 + α)
> 0.

So the fundamental solution Pt,x (the one-dimensional distribution of our
process) of the equation

∂u

∂t
(t, x) =∫

R

(
u(t, x + y)− u(t, x)− 1

2!

∂2u

∂x2
(t, x)y2 − · · · − 1

(4m)!

∂4mu

∂x4m
(t, x)y4m

)
dy

|y|1+α

is the function
Pt,x(y) = ht(y − x),

where ht is the inverse Fourier transform of the function ĥt. This solution is a
probability distribution only if m = 0, α ∈ (0, 2).

Example 5. Now we consider the same generalized function g(x) = |x|−α−1,
as in the previous example but for α ∈ (4m− 2, 4m) and m ∈ N. In this case

(g, ϕ) =

∫
R

(
ϕ(x)− ϕ(0)− ϕ(2)(0)

2!
x2 − · · · − ϕ(4m−2)(0)

(4m− 2)!
x4m−2

)
dx

|x|1+α
, (27)

the P̂ t is a multiplication operator by the function exp(ct|p|α), but in this case
c > 0, that means that the fundamental solution of the corresponding equation
is only a generalized function with a domain Hfin and it cannot be extend to
a larger class of test function.

Note that if instead of (27) we consider another generalized function (here
A is an arbitrary positive number)

(g, ϕ) =

∫
R

(
ϕ(x)− ϕ(0)− ϕ(2)(0)

2!
x2 − . . .

133



−ϕ(4m−2)(0)

(4m− 2)!
x4m−2 − ϕ(4m)(0)

(4m)!
x4m1[−A,A](x)

)
dx

|x|1+α
, (28)

then this problem disappears. Namely, the fundamental solution Pt,x of the
equation

∂u

∂t
(t, x) =

∫
R

(
u(t, x + y)− u(t, x)− 1

2!

∂2u

∂x2
(t, x)y2 − · · ·−

1

(4m− 2)!

∂4m−2u

∂x4m−2
(t, x)y4m

)
dy

|y|1+α
− ε

∂4mu

∂x4m
(t, x)

(here ε > 0 is a constant which depends on A) is the function

Pt,x(y) = ht(y − x),

where ht is the inverse Fourier transform of the function

ĥt(y) = exp(t(c|p|α − ε1p
4m)).

Example 6. Consider the generalized function

g = (−1)m+1 δ(2m)

(2m)!
.

This generalized function corresponds to the pseudo-process of even order
discussed in [6]. In this case P̂ t is the multiplication operator by the function

ĥt(p) = exp(t((−1)m+1 δ(2m)

(2m)!
, e−ipy)) = exp(− tp2m

(2m)!
),

so that the fundamental solution Pt,x of the equation

∂u

∂t
=

(−1)m+1

(2m)!

∂2mu

∂x2m

is the function
Pt,x(y) = ht(y − x),

where ht is the inverse Fourier transform of the function ĥt(p).
Similarly, to the case of the pseudo-process of odd order in our construction

corresponds g = ± δ(2m+1)

(2m+1)!
and

ĥt(p) = exp(t(± δ(2m+1)

(2m + 1)!
, e−ipy)) = exp(±(−1)m itp2m+1

(2m + 1)!
).

Example 7. For every x ∈ R we define on Ω0 another process ξc
x(t) =

ξc
x(t, ν), by

ξc
x(t) = x + cν([0, t]), (29)
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where c ∈ C is a complex constant. Now we consider the one-dimensional
distribution of the process ξc

x(t). We recall that by definition one-dimensional
distribution is a generalized function ξc

x(t)Lg that acts on a test function ϕ ∈
Hfin as

(ξc
x(t)Lg, ϕ) = Lgϕ(ξc

x(t)).

As above, for ϕ ∈ Hfin we define a function u = u(t, x), t ≥ 0, x ∈ R, by

u(t, x) = Lgϕ(ξc
x(t)). (30)

It is important to note that in (30) we actually substitute ξc
x(t) in the

analytic continuation of ϕ.
In the same way we can prove that the function u is a solution of the

Cauchy problem
∂u

∂t
= Ac

gu, u(0, x) = ϕ(x),

where the linear operator Ac
g is defined by

Ac
gf(x) =

(
gy, f(x + cy)

)
. (31)

In the special case g = δ(2)

2
, we have Ac

gf(x) = c2

2
f (2)(x). So, if we put

c = e
−iπ
4 in (29) we get that one-dimensional distribution of the process

ξx(t) = x + e
−iπ
4 ν[0, t] (32)

give us the fundamental solution of the Schrödinger equation

i
∂u

∂t
=

1

2

∂2u

∂x2
.

Further, in the case g = δ(4m)

(4m)!
( note, that in the example 6 we consider

another case with g = − δ(4m)

(4m)!
) we getAc

gf(x) = c4m

(4m)!
f (4m)(x). If we put c = e

iπ
4m

in (29) we get that the one-dimensional distribution of the process

ξx(t) = x + e
iπ
4m ν[0, t] (33)

gives us the fundamental solution of the equation

∂u

∂t
=

−1

(4m)!

∂4mu

∂x4m
. (34)
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4. The distributions of functionals. The stochas-
tic integrals.
As we have shown one-dimensional distributions of generalized processes with
independent increments are the fundamental solutions of the corresponding
evolution equations. But it is possible to consider some other functionals of
the trajectories of the (generalized) processes.

First we consider the variations of trajectories. Let g = δ(2)

2
, as we have

seen this case corresponds to the Wiener process. Consider the quadratic
variation v2 of a process ξ0. We suppose here that the process starts at point
0 as the quadratic variation does not depend on a shift. It is clear that for
ν =

∑n
k=1 xkδtk and ξ0(t) = ν([0, t]) we have

v2(ξ0) =
n∑

k=1

x2
k.

Now we consider the distribution Pv2(ξ0) = v2(ξ0)L δ(2)

2

. By definition v2(ξ0)L δ(2)

2

is a generalized function that acts on a test function ϕ ∈ Hfin as

(Pv2(ξ0), ϕ) = L δ(2)

2

ϕ(v2(ξ0)) =

∞∑
k=0

T k

k!2k

(
(δ(2))⊗k, ϕ(x2

1 + · · ·+ x2
k)

)
=

∞∑
k=0

T k

k!
ϕ(k)(0) = ϕ(T ). (35)

The latter equality means that the distribution Pv2(ξ0) is a unit mass at
point T, that expresses a well-known fact that the quadratic variation of the
Wiener process is not random and equal to T with probability 1.

This statement can be easily extended to the case (example 6)

g = (−1)m+1 δ(2m)

(2m)!
.

In this case we consider v2m, the variation of order 2m instead of the
quadratic variation v2. As above for ν =

∑n
k=1 xkδtk and ξ0(t) = ν([0, t]) we

have

v2m(ξ0) =
n∑

k=1

x2m
k .

The distribution Pv2m(ξ0) = v2m(ξ0)L (−1)m+1δ(2m)

(2m)!

acts on a test function

ϕ ∈ Hfin as
(Pv2m(ξ0), ϕ) = L (−1)m+1δ(2m)

(2m)!

ϕ(v2m(ξ0)) =
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∞∑
k=0

T k((−1)m+1)k

k!((2m)!)k

(
(δ(2m))⊗k, ϕ(x2m

1 + · · ·+ x2m
k )

)
=

∞∑
k=0

T k((−1)m+1)k

k!
ϕ(k)(0) = ϕ((−1)m+1T ). (36)

Thus we prove that the order 2m variation of the process (with respect to
the generalized function L (−1)m+1δ(2m)

(2m)!

) is constant but for even m this constant

is negative. Below we explain the reason for this strange result. Namely we
show that a generalized process has a probabilistic sense not for all generalized
functions g, but only for nonnegative (in some sense) g. For a generalized
function g of the form (g, ϕ) = aϕ(k)(0), where a is constant, this nonnegativity
means that a is nonnegative. So for even m = 2n only a complex-valued
process (33) (with respect to a generalized function L δ(4n)

(4n)!

) from the example

7 has a probabilistic meaning. It is absolutely clear that the variation of the
order 4n for this process is negative.

The next object we define is a stochastic integral with respect to a gener-
alized process ξ(t). Let f : [0, T ] → R be a Borel function and ξ(t) = ν[0, t].

For every trajectory ξ(·) we define a stochastic integral
∫ T

0
f(t)dξ(t) as a usual

Stieltjes integral with respect to the jump function ξ(·) (we recall that tra-
jectories of our process have only a finite number of jumps). Namely for
ν =

∑k
j=1 xjδtj ∈ Ω0 we put

I1(f) =

∫ T

0

f(t)dξ(t) =

∫ T

0

f(t)dν(t) =
∑

1≤j≤k

f(tj)xj,

(by definition this sum is equal to 0 if k = 0).
To construct a distributions PI1(f) = I1(f)Lg corresponding a generalized

function g we calculate the Fourier transform P̂I1(f)(p) of a distribution PI1(f).
We have

P̂I1(f)(p) = Lge
ip

R T
0 f(t)dξ(t) =

∞∑
k=0

1

k!

∫
[0,T ]k

(
g⊗k, eip

Pk
j=1 f(tj)xj

)
dmk =

exp

( ∫ T

0

(gx, e
ipf(t)x)dt

)
. (37)

Let us consider some examples.
Example 1. For g = −δ(1) (so that (g, ϕ) = ϕ′(0)) using (37) we have

P̂I1(f)(p) = exp

(
ip

∫ T

0

f(t)dt

)
. (38)
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It follows from (38) that the distribution of the stochastic integral is a
δ−measure at the point

∫ T

0
f(t)dt. This means that the stochastic integral is

nonrandom and coincides with the Lebesgue integral.
Example 2.
For g = δ(2)

2
we have

P̂I1(f)(p) = exp
(
− p2

2

∫ T

0

f 2(t)dt
)
,

hence the corresponding distribution is a normal one with parameters
(0,

∫ T

0
f 2(t)dt).

Example 3. For g = (−1)m+1δ(2m)

(2m)!
we have

P̂I1(f)(p) = exp
(
− p2m

(2m)!

∫ T

0

f 2m(t)dt
)
.

Note that for m > 1 the corresponding distribution is not a probability
distribution.

Example 4.
For g(x) = |x|−α−1, and α ∈ (4m, 4m+2) where m ∈ N0 (example 4 of the

section 3), it is not difficult to prove that

P̂I1(f)(p) = exp
(
− c|p|α

∫ T

0

|f(t)|αdt
)

where c is a positive constant.
The corresponding distribution is a symmetric stable distribution if m = 0

and it is a signed measure if m > 0.
Similarly we can define multiple stochastic integrals. Namely, let f :

[0, T ]n → R be a Borel function of n arguments. We define a stochastic
integral In(f) of multiplicity n in the following way.

For ν =
∑k

j=1 xjδtj ∈ Ω0 we set

In(f) =

∫
[0,T ]n

f(t1, . . . , tn)dξ(t1) . . . dξ(tn) =

∑
j1 6=j2···6=jn

f(tj1 , tj2 . . . tjn)xj1xj2 . . . xjn

(this sum is equal to 0 if k < n).
We show that for g = −δ(1) this multiple stochastic integral is nonrandom

and coincides with the multiple Lebesgue integral.

Theorem 3. If g = −δ(1) and f ∈ L1([0, T ]n) then for every n ∈ N the distri-
bution PIn(f) = In(f)L−δ(1) of the multiple stochastic integral is a δ−measure
at the point

∫
[0,T ]n

f(t1, . . . , tn)dt1 . . . dtn.
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Proof. For simplicity we consider only the case n = 2.
To prove the statement it is sufficient to check the following equality

L−δ(1)eipI2(f) = exp
(
ip

∫
[0,T ]2

f(t1, t2)dt1dt2
)

(39)

for every p ∈ R. We have

L−δ(1)eipI2(f) =
∞∑

d=0

(ip)dL−δ(1)(I2(f))d

d!

Further, for every d we have

L−δ(1)(I2(f))d =
∞∑

k=2

1

k!

∫
[0,T ]k

dmk

(
(−δ(1))⊗k,

( k∑
j,l=1
j 6=l

f(tj, tl)xjxl

)d
)

.

It is easy to show that all terms in the sum on the right hand side, except
the term with k = 2d, are equal to 0 and the term with k = 2d is equal to
(
∫

[0,T ]2
f(t1, t2)dt1dt2

)d
. This proves (39).

Further, we can show that when g = δ(2)

2
a multiple stochastic integral

coincides with a multiple stochastic integral with respect to the Wiener process.
We omit the proof since it is completely similar to the proof of theorem 3.

Theorem 4. If g = δ(2)

2
and f ∈ L2([0, T ]n) then for every n ∈ N the distrib-

ution PIn(f) = In(f)L δ(2)

2

of the multiple stochastic integral coincides with the
distribution of the Wiener multiple stochastic integral∫

[0,T ]n
f(t1, . . . , tn)dw(t1) . . . dw(tn)

and moreover for n 6= m and any functions f1 ∈ L2([0, T ]n), f2 ∈ L2([0, T ]m),
we have

L δ(2)

2

(In(f1)Im(f2)) = 0.

5. The probability space (Ω,F , Pg).

In this section we additionally suppose that a generalized function g is ei-
ther a regularization of a nonnegative function (previously we did not assume
nonnegativity) or g = a(−1)rδ(r), for some a > 0.

Let us first consider the case where g is a nonnegative function satisfying
the condition

∫
R min(|x|r, 1)g(x)dx < ∞ for some r ∈ N (we use the same

letter g for the function itself and for the corresponding generalized function).
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We put

n0 = max{n :

∫
|x|>1

|x|ng(x)dx < ∞}. (40)

Let X = X (G), be the space of configurations on G = [0, T ] × (R \ {0}).
We equip X with the vague topology (see [12]) and denote by B(X ) the Borel
σ−algebra. On the measurable space (X ,B(X )) we consider the Poisson mea-
sure Pg with intensity measure Π(dt, dx) = dtg(x)dx.

Further, for every ε > 0 we denote a restriction of the measure Pg to the
space X (Gε) of configurations on Gε = [0, T ] × (R \ [−ε, ε]) by Pg,ε. It is
clear that for every ε the measure Pg,ε is a Poisson measure with an intensity
measure Π |Gε . As before we denote by m the Lebesgue measure on [0, T ].

For a probability space we take the space Ω = Ω([0, T ]) of all discrete
signed measures on [0, T ]. Each element of this space can be represented in
the form

∑
j xjδtj , where as above we denote the unit mass at point tj by δtj

Note that Ω0 ⊂ Ω.
Let Θ denote the mapping X → Ω that maps a configuration

⋃
i(ti, xi) ∈ X

to a signed measure
∑

i xiδti ∈ Ω.
Using the mapping Θ we equip Ω with a topology and a Borel σ−algebra

F . In this way on Ω we construct probability measures Pg = PgΘ
−1 and

Pg,ε = Pg,εΘ
−1. It is natural to call these measures Poisson measures. Note

that for every ε > 0 Pg,ε(Ω
0) = 1.

Let us study the connection between a generalized function Lg on Ω0 and
a measure Pg on Ω.

Let v be a C∞−smooth function on R and d denote an operator

(dv)(x) = v(0) = Const.

For k = 1, 2, 3, . . . let d(k) denote a linear operator that acts as

(d(k)v)(x) =
xk

k!
v(k)(0) (41)

for k ≤ n0, and

(d(k)v)(x) =
xk

k!
1[0,1](|x|)v(k)(0) (42)

for k > n0. It is important to note that due to the difference between (41) and
(42) d(k) depends on g.

Further, we define a linear operator ∆ by

∆v(x) = v(x)− v(0) = v(x)− dv(x), (43)

and define a sequence of operators (which also depend on g) ∆(k), k ∈ N by

(∆(k)v)(x) = v(x)− dv(x)− d(1)v(x)− · · · − d(k)v(x).
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Note that ∆+d is the identity operator and for every k = 1, 2, . . . we have

∆(k) = ∆(k + 1) + d(k+1). (44)

For r > 1 and a test function ϕ we have

(g, ϕ) =

∫
R

∆(r − 1)ϕ(x)g(x)dx = lim
ε→0

∫
Rε

∆(r − 1)ϕ(x)g(x)dx, (45)

where Rε = R \ [−ε, ε], and for r = 1 and a test function ϕ we have

(g, ϕ) =

∫
R

∆ϕ(x)g(x)dx = lim
ε→0

∫
Rε

∆ϕ(x)g(x)dx.

We also set
τl(ε) =

∫
Rε

xlg(x)dx, (46)

for ε > 0 and l ≤ n0 and

τl(ε) =

∫
ε≤|x|≤1

xlg(x)dx (47)

for l > n0.
Note that for an even function g and odd l all the functions τl(ε) are

identically equal to 0.
First we consider the case r = 1.

Theorem 5. Suppose that r = 1. Then for every f ∈ G

lim
ε→0

∫
Ω

fdPg,ε = Lgf,

that means, that for r = 1 the generalized function Lg is a limit (in generalized
functions sense, that is on each test function) of the probability measures Pg,ε.

Proof. For ε > 0, f ∈ G we have∫
Ω

fdPg,ε = e−Π(Gε)

∞∑
k=0

1

k!

∫
Gk

ε

fkdΠk. (48)

Denote the action of the operators ∆, d with respect to the variable xi by
∆i, di.

For every finite set I of natural numbers let |I| denote the cardinality of
the set I. We put

dI =
∏
i∈I

di, ∆I =
∏
i∈I

∆i. (49)
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If I = {1, . . . , k} then for the corresponding operator ∆I we use a notation
∆⊗k that is

∆⊗k = ∆1∆2 . . . ∆k.

We use as well corresponding notations for operators
∆(m), d(m), m ∈ N, that is

d
(m)
I =

∏
i∈I

d
(m)
i , ∆I(m) =

∏
i∈I

∆i(m)

and
∆⊗k(m) = ∆1(m)∆2(m) . . . ∆k(m).

For every fixed k, let CI denote the set {1, . . . , k} \ I. We note that for
any k the function dCIfk depends only on xi, i ∈ I.

Using the identity

1 =
k∏

i=1

(di + ∆i) =
∑

I⊂{1,...,k}

∆IdCI ,

and (48), we get∫
Ω

fdPg,ε = e−Π(Gε)

∞∑
k=0

1

k!

∫
Gk

ε

k∏
i=1

(∆i + di)fkdΠk =

e−Π(Gε)

∞∑
k=0

1

k!

∫
Gk

ε

∑
I⊂{1,...,k}

∆IdCIfkdΠk =

e−Π(Gε)

∞∑
k=0

1

k!

∑
I⊂{1,...,k}

Π(Gε)
|CI|

∫
G
|I|
ε

∆IdCIfk

∏
i∈I

Π(dxi) =

e−Π(Gε)

∞∑
k=0

1

k!

k∑
j=0

Π(Gε)
k−j

(
k

j

) ∫
Gj

ε

∆⊗jfjdΠj =

e−Π(Gε)

∞∑
j=0

1

j!

∫
Gj

ε

∆⊗jfjdΠj

∞∑
k=j

Π(Gε)
k−j

(k − j)!
=

∞∑
k=0

1

k!

∫
Gk

ε

∆⊗kfkdΠk. (50)

Thus, we have∫
Ω

fdPg,ε =
∞∑

k=0

1

k!

∫
Gk

ε

∆⊗kfkdΠk −→
ε→0

∞∑
k=0

1

k!

∫
Gk

∆⊗kfkdΠk = Lgf.
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Let us introduce some additional notations. Namely, we define a sequence
{Dj}∞j=1 of differential operators For f ∈ G we define as follows D1f : Ω0 → R,
such that for every k ∈ N0

(D1f)k((t1, x1), . . . , (tk, xk)) =∫ T

0

dtk+1
∂

∂xk+1

fk+1((t1, x1), . . . , (tk, xk), (tk+1, xk+1)) |xk+1=0 .

By analogy we define the differential operators D2,D3, . . . . Namely, for
m = 2, 3, . . . we set

(Dmf)k((t1, x1), . . . , (tk, xk)) =∫ T

0

dtk+1
∂m

∂xm
k+1

fk+1((t1, x1), . . . , (tk, xk), (tk+1, xk+1)) |xk+1=0 .

For t ∈ R we also denote the corresponding operator exponents by

Qt
1 = etD1 , Qt

2 = et
D2
2! , . . . , Qt

m = etDm
m! , . . . .

Consider properties of the operator Qt
1. It is easy to show that,

Qt
1(ν[0, T ]) = ν[0, T ] + tT.

Moreover it is not hard to prove (see [2]) that properties of the operator Qt
1 are

similar to the properties of a shift operator. For example for every ϕ ∈ Hfin we
have Qt

1(ϕ(f)) = ϕ(Qt
1(f)). In particular we have Qt

1(ϕ(ν[0, T ])) = ϕ(ν[0, T ]+
tT ). For this reason we call Qt

1 generalized shift operators.
Now we consider the case r = 2, so that

∫
R min(x, 1)g(x)dx = ∞ and∫

R min(x2, 1)g(x)dx < ∞.
Using (44),(50) we have∫
Ω

fdPg,ε =
∞∑

k=0

1

k!

∫
Gk

ε

∆⊗kfkdΠk =
∞∑

k=0

1

k!

∫
Gk

ε

k∏
i=1

(∆i(1) + d
(1)
i )fkdΠk =

∞∑
k=0

1

k!

∫
Gk

ε

∑
I⊂{1,...,k}

∆I(1)d
(1)
CIfkdΠk =

∞∑
k=0

1

k!

∫
Gk

ε

k∑
j=0

(
k

j

)
∆⊗j(1)(d(1))⊗(k−j)fkdΠk =

(in the latter formula we suppose that the operator ∆⊗j(1) acts with respect
to the variables x1, x2, . . . , xj, and the operator (d(1))⊗(k−j) acts with respect
to the other k − j variables)

∞∑
k=0

∫
Gk

ε

k∑
j=0

1

j!(k − j)!
∆⊗j(1)(d(1))⊗(k−j)fkdΠk =
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∞∑
k=0

k∑
j=0

1

j!(k − j)!

∫
Gk

ε

∆⊗j(1)Dk−j
1 fk(τ1(ε))

k−jdΠj =

∞∑
j=0

1

j!

∫
Gj

ε

∆⊗j(1)
( ∞∑

k=0

1

k!
Dk

1fj+k(τ1(ε))
k
)
dΠj =

∞∑
j=0

1

j!

∫
Gj

ε

∆⊗j(1)
(
Q

τ1(ε)
1 f

)
j
dΠj.

Rename Q
τ1(ε)
1 f as f. We get∫

Q
−τ1(ε)
1 fdPg,ε =

∞∑
k=0

1

k!

∫
Gk

ε

∆⊗k(1)fkdΠk. (51)

Denote the operator Q
−τ1(ε)
1 by Aε, and its conjugate operator (which acts

on measures), by A∗
ε, namely for f ∈ G we set

(A∗
εPg,ε, f) =

∫
AεfdPg,ε =

∞∑
k=0

1

k!

∫
Gk

ε

∆⊗k(1)fkdΠk. (52)

Then as ε → 0 the right hand side of (52) converges to a limit

∞∑
k=0

1

k!

∫
Gk

∆⊗k(1)fkdΠk = Lgf.

Thus, we have proved the following statement.

Theorem 6. Suppose that r = 2. Then for every f ∈ G

lim
ε→0

∫
Ω

AεfdPg,ε = lim
ε→0

(A∗
εPg,ε, f) = Lgf,

where Aε is a generalized shift operator. This means, that for r = 2 a gener-
alized function Lg is a limit of generalized functions A∗

εPg,ε.

Now consider the case r > 2. By the same arguments we can prove that∫
Q
−τr−1(ε)
r−1 Q

−τr−2(ε)
r−2 . . . Q

−τ1(ε)
1 fdPg,ε =

∞∑
k=0

1

k!

∫
Gk

ε

∆⊗k(r − 1)fkdΠk. (53)

Denote an operator Q
−τr−1(ε)
r−1 Q

−τr−2(ε)
r−2 . . . Q

−τ1(ε)
1 by Aε and its conjugate

operator by A∗
ε. We have

(A∗
εPg,ε, f) =

∫
AεfdPg,ε =
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∞∑
k=0

1

k!

∫
Gk

ε

∆⊗k(r − 1)fkdΠk −→
ε→0

∞∑
k=0

1

k!

∫
Gk

∆⊗k(r − 1)fkdΠk = Lgf.

Thus, we have proved that A∗
εPg,ε converges to a generalized function Lg

as ε → 0, and we have the following statement.

Theorem 7. Suppose that r > 2. Then for every f ∈ G we have

lim
ε→0

∫
Ω

AεfdPg,ε = lim
ε→0

(A∗
εPg,ε, f) = Lgf,

where operators Aε are defined by (53). That means, that the generalized
function Lg is a limit of generalized functions A∗

εPg,ε.

The following theorem shows the actions of the operatorAε on the functions
that are of the form ϕ(ν[0, T ]).

Theorem 8. For every ϕ ∈ Hfin we have

Aε(ϕ(ν[0, T ])) = (bε ∗ ϕ)(ν[0, T ]))

where the Fourier transform b̂ε(p) of the function bε is

b̂ε(p) = exp

(
− T

[
(−ip)r−1τr−1(ε)

(r − 1)!
+ · · ·+ (−ip)2τ2(ε)

2!
+
−ipτ1(ε)

1!

])
.

The proof can be found in [16].
Now we consider the case where the generalized function g acts on a test

function ϕ as
(g, ϕ) = aϕ(r)(0),

where a > 0 and r ∈ N. Without loss of generality we can assume that a = 1
r!
.

In this case A = 1
r!

dr

dxr .
We remark that in the previous case when g was a regularization of a

nonnegative function our arguments were based on the formula (45). Now
instead of (45) we use another formula. Namely, it can easily be proved that
for ϕ ∈ Hfin we have

(g, ϕ) =
1

r!
ϕ(r)(0) = lim

ε→0

∫ eε

ε

∆(r − 1)ϕ(x)
dx

xr+1
(54)

(where e stands for the base of the natural logarithm).
As above we take the space Ω = Ω([0, T ]) as a probability space and on

(Ω,F) we consider the Poisson measure Pg with intensity measure Π(dt, dx) =
dt dx

x1+r 1(0,+∞)(x). By Pg,ε we denote the Poisson measure with intensity mea-
sure dt dx

x1+r 1(ε,eε)(x). It is obvious that, for every ε > 0, Pg,ε(Ω
0) = 1.
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We also set
G0

ε = [0, T ]× [ε, eε].

Now we study the connection between the generalized function Lg on Ω0

and the measure Pg on Ω.
For l < r we set

τ 0
l (ε) =

∫ eε

ε

xldx

xr+1
=

1

(r − l)εr−l

(
1− 1

er−l

)
−→
ε→0

∞.

By the same arguments as above it is easily shown that for f ∈ G we have∫
Q
−τ0

r−1(ε)

r−1 Q
−τ0

r−2(ε)

r−2 . . . Q
−τ0

1 (ε)
1 fdPg,ε =

∞∑
k=0

1

k!

∫
(G0

ε)k

∆⊗k(r − 1)fkdΠk. (55)

Denote the operator Q
−τ0

r−1(ε)

r−1 Q
−τ0

r−2(ε)

r−2 . . . Q
−τ0

1 (ε)
1 by A0

ε and its conjugate
operator by A0,∗

ε .

Theorem 9. Suppose that a generalized function g acts on a test function ϕ
as (g, ϕ) = 1

r!
ϕ(r)(0). Then for every f ∈ G we have

lim
ε→0

∫
Ω

A0
εfdPg,ε = (A0,∗

ε Pg,ε, f) = Lgf,

where operators A0
ε are defined by (55). That means, that the generalized

function Lg is a limit of generalized functions A0,∗
ε Pg,ε.

Proof. It remains to note that by (54) the right hand side of (55) converges
to Lgf as ε → 0.

Acknowledgements. This paper was partly supported by DFG 436 RUS
113/823, NSh 4472.2010.1, NSh 5931.2010.1. The third author was supported
by Russian Foundation for Basic Research 09-01-00515a and 11-01-90402-
Ukr_f_a.

References
[1] S.Albeverio, N.Smorodina. “A Distributional Approach to Multiple Sto-

chastic Integrals and Transformations of the Poisson Measure”, Acta Appl.
Math., Vol. 94, pp. 1-19, 2006

[2] S.Albeverio, N.Smorodina. “A distributional approach to multiple stochas-
tic integrals and transformations of the Poisson measure. II”, Acta Appl.
Math., Vol. 102, pp. 319–343, 2008

146



[3] L.Beghin, E.Orsingher. “The distribution of the local time for “pseudo-
process” and its connection with fractional diffusion equatios”, Stochastic
Process. Appl., Vol. 115, pp. 1017-1040, 2005.

[4] K.Burdzy, A.Madrecki. “Ito formula for an asymptotically 4-stable
process”, Ann. Appl. Probab., Vol. 6, No. 1, pp. 200-217, 1996.

[5] Yu.L.Daletskii, S.V. Fomin. “Measures and Differential Equations on Infi-
nite Dimensional Spaces”, Nauka, Mockow, 1984; English transl., Kluwer
Academic Publishers, 1992.

[6] T.Funaki. “Probabilistic construction of the solution of some higher order
parabolic differential equations”, Proc. Japan Acad. Vol. A 55, pp. 176-179,
1979.

[7] B.Gaveau, P.Sainty. “A path integral formula for certain fourth-order el-
liptic operators”, Lett. Math. Phys., Vol. 15, No. 4, pp. 345-350, 1988.

[8] I.M. Gel’fand, G.E. Shilov, “Generalized Functions, vol. 1, Properties and
Operations”, Academic Press, New York, 1964.

[9] K.Hochberg. “A signed measure on path space related to Wiener measure”,
Ann. Probab., Vol. 6, No. 3, pp. 433-458, 1978.

[10] K.Hochberg. “Central limit theorem for signed distributions”, Proc. Amer.
Math. Soc., Vol. 79, No. 2, pp. 298-302, 1980.

[11] K.Hochberg, E.Orsinger. “Composition of stochastic processes governed
by higher-order parabolic and hyperbolic equations”, J. Theoret Probab.,
Vol. 9, No. 2, pp. 511-532, 1996.

[12] J.Kerstan, K.Mattes, and J.Mecke. “Infinite divisible point processes”,
Akademie-Verlag, Berlin, 1978.

[13] V.Yu. Krylov. “Some properties of the distributions corresponding to the
equation ∂u/∂t = (−1)q+1∂2qu/∂x2q”, Dokl. Akad. Nauk SSSR, Vol. 132,
pp. 1254-1257, 1996 (Russian)

[14] Y.Nikitin, E.Orsingher. “On Sojourn Distribution of Process Related to
Some Higher-Order Heat-Type Equation”, Journal of Theoretical Probab.,
Vol.13, No 4, pp. 997-1012, 2000.

[15] A.V.Skorokhod. “Stochastic processes with independent increments”,
"Nauka", Moskow, 1986; English transl., Kluver, Dordrecht, 1991.

147
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