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Abstract

We use a geometric singular perturbations method for reducing the

model order in optimal estimation problems for singularly perturbed

stochastic differential systems. The method relies on the theory of inte-

gral manifolds, which essentially replaces the original system by another

system on an integral manifold.
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1 Introduction

The effect of random inputs on the movement of systems of solid bodies was
investigated by many authors, see, for example, [1]. The paper deals with the
analysis of the equations of gyroscopic systems under the influence of random
forces. The possibility of the replacement of the equations of motion by the
corresponding precessional equations is investigated. This approach is wide-
spread in mechanics and gives suitable results in numerous cases. But there
are a great number of examples when the substitution of the original equations
by the precessional ones leads to inaccurate or qualitatively incorrect results.
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In this respect, there have been a few works studying either the reasoning be-
hind such a procedure, or the conditions under which it gives an appropriate
result [9, 10].

This problem was solved by the method of integral manifolds [19]. The
essence of this method is in the separation of the class of slow motions of
the original system. The dimension of the system is reduced, but the system
obtained, while of lower dimension, inherits the main features of its qualitative
behavior. In this paper the equations of motion of the gyroscopic system of
the form suggested by Merkin [10] are analyzed. It is shown that the method
of integral manifolds can be applied to systems of this type.

Note that the equations of the flow along the integral manifold to the
specified accuracy coincide with the corresponding precessional equations. In
most applications the restrictions under which this slow integral manifold is
stable are fulfilled. This means that any solution of the original equations,
starting in the vicinity of the integral manifold, may be represented as a sum
of some solution of the precessional equations and a small rapidly vanishing
term. In this sense conversion to the precessional equations is permissible.

The main result of the paper is concerned with the possibility of conversion
to the precessional equations in the presence of random terms. It is shown that
the use of precessional equations as the basis for equations of the filtering error
in the problem of optimal estimation may provide inadmissible errors.

2 Elements of the Integral Manifolds Method

2.1 Slow integral manifolds

It is common knowledge that a wide range of processes in various aspects
of nature are characterized by extreme differences in the rates of change of
variables, so singularly perturbed ordinary differential systems are used as
models of such processes [13, 23, 24]).

Consider the ordinary differential system

dx

dt
= f(x, y, t, ε),

ε
dy

dt
= g(x, y, t, ε),

(2.1)

with vector variables x and y, and a small positive parameter ε. The usual
approach in the qualitative study of (2.1) is to consider first the degenerate
system
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dx

dt
= f(x, y, t, 0),

0 = g(x, y, t, 0),

and then to draw conclusions about the qualitative behavior of the full system
(2.1) for sufficiently small ε. A special case of this approach is the quasi–steady
state assumption. A mathematical justification of that method can be given
by means of the theory of integral manifolds for singularly perturbed systems
(2.1) (see e.g. [5, 11, 18, 23, 25, 26]). The integral manifolds method has been
applied to a wide range of problems (see e. g. [2, 3, 6, 11, 12, 17, 19, 20, 22, 21]).
In order to recall a basic result of the geometric theory of singularly perturbed
systems we introduce the following terminology and assumptions.
The system of equations

dx

dt
= f(x, y, t, ε) (2.2)

represents the slow subsystem, and the system of equations

ε
dy

dt
= g(x, y, t, ε) (2.3)

the fast subsystem, so it is natural to call (2.2) the slow subsystem and (2.3)
the fast subsystem of system (2.1). In the present paper we use a method
for the qualitative asymptotic analysis of differential equations with singular
perturbations. The method relies on the theory of integral manifolds, which
essentially replaces the original system by another system on an integral man-
ifold with dimension equal to that of the slow subsystem. In the zero-epsilon
approximation (ε = 0), this method leads to a modification of the quasi-
steady-state approximation. Recall, that a smooth surface S in Rm × Rn × R
is called an integral manifold of the system (2.1) if any trajectory of the system
that has at least one point in common with S lies entirely in S. Formally,
if (x(t0), y(t0), t0) ∈ S, then the trajectory (x(t, ε), y(t, ε), t) lies entirely in S.
An integral manifold of an autonomous system

ẋ = f(x, y, ε),

εẏ = g(x, y, ε)

has the form S1× (−∞,∞), where S1 is a surface in the phase space Rm×Rn.
The only integral manifolds of system (2.1) of relevance here are those of
dimension m (the dimension of the slow variables) that can be represented as
the graphs of vector-valued functions

y = h(x, t, ε).
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We also stipulate that h(x, t, 0) = h(0)(x, t), where h(0)(x, t) is a function whose
graph is a sheet of the slow surface, and we assume that h(x, t, ε) is a suffi-
ciently smooth function of ε. In autonomous systems the integral manifolds
will be graphs of functions

y = h(x, ε).

Such integral manifolds are called manifolds of slow motions – the origin of
this term lies in nonlinear mechanics. An integral manifold may be regarded
as a surface on which the phase velocity has a local minimum, that is, a
surface characterized by the most persistent phase changes (motions). Integral
manifolds of slow motions constitute a refinement of the sheets of the slow
surface, obtained by taking the small parameter ε into consideration.

The motion along an integral manifold is governed by the equation

ẋ = f(x, h(x, t, ε), t, ε).

If x(t, ε) is a solution of this equation, then the pair
(

x(t, ε), y(t, ε)
)

, where

y(t, ε) = h(x(t, ε), t, ε), is a solution of the original system (2.1), since it defines
a trajectory on the integral manifold.

Consider the associated subsystem, that is,

dy

dτ
= g(x, y, t, 0), τ = t/ε,

treating x and t as parameters. We shall assume that some of the steady states
y0 = y0(x, t) of this subsystem are asymptotically stable and that a trajectory
starting at any point of the domain approaches one of these states as closely
as desired as t → ∞. This assumption will hold, for example, if the matrix

(∂g/∂y)(x, y0(x, t), t, 0)

is stable for part of the stationary states and the domain can be represented
as the union of the domains of attraction of the asymptotically stable steady
states.

Let Ii be the interval Ii := {ε ∈ R : 0 < ε < εi}, where 0 < εi ≪ 1,
i = 0, 1, . . . .

(A1). f : Rm × Rn × R × I0 → Rm, g : Rm × Rn × R × I0 → Rn are
sufficiently smooth and uniformly bounded together with their derivatives.

(A2). There is some region G ∈ Rm and a map h : G × R → Rm of the
same smoothness as g such that

g(x, h(x, t), t, 0) ≡ 0, ∀(x, t) ∈ G × R.

(A3). The spectrum of the Jacobian matrix gy(x, h(x, t), t, 0) is uniformly
separated from the imaginary axis for all (x, t) ∈ G × R.
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Then the following result is valid (see e.g. [23, 25]):
Proposition 1.1. Under the assumptions (A1)–(A3) there is a sufficiently

small positive ε1, ε1 ≤ ε0, such that, for ε ∈ I1, system (2.1) has a smooth

integral manifold Mε with the representation

Mε := {(x, y, t) ∈ Rn+m+1 : y = ψ(x, t, ε), (x, t) ∈ G × R}.

Remark. The global boundedness assumption in (A1) with respect to
(x, y) can be relaxed by modifying f and g outside some bounded region of
Rn × Rm.

2.2 Asymptotic representation of integral manifolds

When the method of integral manifolds is being used to solve a specific prob-
lem, a central question is the calculation of the function h(x, t, ε) in terms of
the manifold described. Exact calculation is generally impossible, and various
approximations are necessary. One possibility is the asymptotic expansion of
h(x, t, ε) in integer powers of the small parameter:

h(x, t, ε) = h0(x, t) + εh1(x, t) + · · · + εkhk(x, t) + . . . . (2.4)

Substituting this formal expansion in equation (2.3) i.e.,

ε
∂h

∂t
+ ε

∂h

∂x
f(x, h(x, t, ε), t, ε) = g(x, h, ε),

we obtain the relationship

ε
∑

k≥0

εk ∂hk

∂t
+ ε

∑

k≥0

εk ∂hk

∂x
f(x,

∑

k≥0

εkhk, t, ε)

= g(x,
∑

k≥0

εkhk, t, ε). (2.5)

We use the formal asymptotic representations

f(x,
∑

k≥0

εkhk, t, ε) =
∑

k≥0

εkf (k)(x, h0, . . . , hk−1, t),

and

g(x,
∑

k≥0

εkhk, t, ε) = B(x, t)
∑

k≥1

εkhk +
∑

k≥1

εkg(k)(x, h0, ..., hk−1, t),

where the matrix
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B(x, t) ≡ (∂g/∂y)(x, h0, t, 0) (2.6)

and where g(x, h(0)(x, t), t, 0) = 0.
Substituting these formal expansions into (2.5) and equating powers of ε,

we obtain
∂hk−1

∂t
+

∑

0≤p≤k−1

∂hp

∂x
f (k−1−p) = Bhk + g(k).

Since B is invertible

hk = B−1

[

g(k) −
∂hk−1

∂t
−

∑

0≤p≤k−1

∂hp

∂x
f (k−1−p)

]

. (2.7)

Note that asymptotic expansions of slow integral manifolds were first used in
[19, 21, 22].

2.3 Stability of slow integral manifolds

In applications it is often assumed that the spectrum of the Jacobian matrix

gy(x, h(x, t), t, 0)

is located in the left half plane. Under this additional hypothesis the manifold
Mε is exponentially attracting for ε ∈ I1. In this case, the solution x = x(t, ε),
y = y(t, ε) of the original system that satisfied the initial condition x(t0, ε) =
x0, y(t0, ε) = y0 can be represented as

x(t, ε) = v(t, ε) + εϕ1(t, ε),
y(t, ε) = ȳ(t, ε) + ϕ2(t, ε).

(2.8)

There exists a point v0 which is the initial value for a solution v(t, ε) of the
equation v̇ = f(v, h(v, t, ε), t, ε); the functions ϕ1(t, ε), ϕ2(t, ε) are corrections
that determine the degree to which trajectories passing near the manifold tend
asymptotically to the corresponding trajectories on the manifold as t increases.
They satisfy the following inequalities:

|ϕi(t, ε)| ≤ N |y0 − h(x0, t0, ε)| exp[−β(t − t0)/ε], i = 1, 2, (2.9)

for t ≥ t0.
From (2.8) and (2.9) we obtain the following reduction principle for a stable

integral manifold defined by a function y = h(x, t, ε): a solution x = x(t, ε),
y = h(x(t, ε), t, ε) of the original system (2.1) is stable (asymptotically stable,
unstable) if and only if the corresponding solution of the system of equations
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v̇ = F (v, t, ε) = f(x, h(x, t, ε), t, ε) on the integral manifold is stable (asymp-
totically stable, unstable). The Lyapunov reduction principle was extended
to ordinary differential systems with Lipschitz right–hand sides by Pliss [14],
and to singularly perturbed systems in [23]. Thanks to the reduction princi-
ple and the representation (2.8), the qualitative behavior of trajectories of the
original system near the integral manifold may be investigated by analyzing
the equation on the manifold.

The case in which the assumption (A3) is violated is called critical. We
consider the following subcase: The Jacobian matrix gy(x, y, t, 0) has eigen-
values on the imaginary axis with nonvanishing imaginary parts. A similar
case has been investigated in [16, 19, 23]. If this part of the eigenvalues is pure
imaginary but, after taking into account the perturbations of higher order, they
move to the complex left half-plane, then the system under consideration has
stable slow integral manifolds. Such systems appear in modelling gyroscopic
systems and double spin satellites [19, 21, 22, 23].

3 Optimal Estimation in Gyroscopic Systems

3.1 Gyroscopic systems

Let some of the eigenvalues have a pure imaginary part which moves to the
complex left half plane at higher orders of the perturbations. In this case the
system has a stable slow integral manifold. The general equations of gyroscopic
systems on a fixed base may be represented in the form [23]:

dx

dt
= y,

ε
d

dt
(Ay) = −(G + εB)y + εR + εQ, R =

1

2

[

∂(Ay)

∂x

]T

y. (3.1)

Here x ∈ Rn, A(t, x) is a symmetric positive definite matrix, G(x, t) is a skew-
symmetric matrix of gyroscopic forces, and B(x, t) is a symmetric positive
definite matrix of dissipative forces, Q(x, t) is a vector of generalized forces
and ε = H−1 is a small positive parameter.

The precessional equations take the form

(G + εB)
dx

dt
= εQ. (3.2)

Equations (3.2) are obtained from (3.1) by neglecting some of the terms
multiplied by the small parameter. All roots of the characteristic equation

det(G − λI) = 0
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are situated on the imaginary axis, so the main assumption of the Tikhonov
theorem [24] is violated. To justify the permissibility of the precessional equa-
tions we use the integral manifold method.

3.2 The equations of a Kalman-Bucy filter for gyroscopic

systems

We derive the equations of the Kalman-Bucy filter for gyroscopic systems.
Consider the equations of motion of gyroscopic system in the non-stationary
case under the action of random forces in the form in [10]

ẍ + [HG0(t) + G1(t)]ẋ + N(t)x = B(t)ω̇(t). (3.3)

Here x is the n−dimensional vector of the system state, G0(t) is a skew-
symmetric matrix of gyroscopic forces, and possessing a bounded inverse for
all t ≥ 0, G1(t) is a symmetric matrix of damping forces, N(t) is the matrix of
potential and non-conservative forces, H is a large parameter proportional to
the angular velocity of the proper rotation of the gyroscope and which is much
larger than the values of all the other system parameters for many gyroscopic
systems.

Let the observation take place in the presence of Gaussian white noise
described by the equation

z = C(t)x + ξ̇(t), (3.4)

where z is m−dimensional vector, C(t) is m × n matrix. Let ω̇(t) and ξ̇(t) be
independent Gaussian white noise with zero expected values and correlation
matrices Q(t)δ(t − s) and R(t)δ(t − s), respectively, where Q(t) and R(t) are
symmetric positive semidefinite m × m−matrices.

Introducing ε = 1/H , we rewrite (3.3) as a system

{

ẋ = y
εẏ = −[G0(t) + εG1(t)]y − εN(t)x + εB(t)ω̇.

(3.5)

For simplicity of presentation we assume that x0 = x(0) and y0 = y(0) are
known vectors.

We are required to obtain an estimate (x̂(t), ŷ(t))T of the state (x(t), y(t))T ,
(T stands for transposition), of system (3.5) in accordance with the vector-
function z(t) available for measurement at t > 0. The vector-function x(t)
is not available for measurement. The system which determines the vector
(x̂(t), ŷ(t))T is usually called the filter. We examine filters which are non-
stationary linear systems of the form

ρ̇ = F (t)ρ + G(t)z,
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where ρ(t) is a 2n dimensional vector, F (t) is a 2n × 2n matrix, G(t) is a
2n × m matrix. It is known ([4]) that the filter which provides an unbiased
estimate

e(t) = (x(t), y(t))T − (x̂(t), ŷ(t))T

for the system
ẋ = A(t)x + B(t)ẇ,

with the observation (3.4), is defined by the differential equation

dρ

dt
= [A(t) − G(t)C(t)]ρ + G(t)z(t), (3.6)

and satisfies the initial condition

ρ(0) = E[(x(0), y(0))T ].

Here E[·] is an expected value. Those filters which satisfy equation (3.6)
contain the matrix G(t) as a parameter, and it should be chosen to minimize
the variance of the error e(t). To ensure that the estimate is unbiased, we
require that

E[(x(t), y(t))T ] = E[ρ(t)],

at all t > 0, whence E[e(t)] = 0.
Consequently, the correlation matrix P (t) of the error e(t) has the form

P (t) = E[e(t)eT (t)].

It is clear that P (t) is a symmetric matrix satisfying the initial condition

P (0) = E[e(0)eT (0)] = P0,

and the differential equation
dP
dt

=

[A(t) − G(t)C(t)]P + P [A(t) − G(t)C(t)]T + B(t)Q(t)BT (t) + G(t)R(t)GT (t).

Note that matrix G(t) is still unknown. Following [4] the filter is optimal
if

G(t) = P (t)CT (t)R−1(t). (3.7)

Taking (3.7) into consideration we obtain the equation for the correlation
matrix of errors in the form of the Riccati equation

dP

dt
= A(t)P + PAT (t) − PCT R−1CP + BQBT , (3.8)

P (0) = P0. (3.9)
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It was shown in [4] that, if P0 is a positive definite matrix, equation (3.8) can
be solved uniquely for the matrix P (t), which exists for all t ≥ 0. Then the
equation for the optimal filter, on using (3.6) and (3.7), takes the form

dρ

dt
= [A(t) − P (t)CT (t)R−1(t)C(t)]ρ + P (t)CT (t)R−1(t)z(t),

ρ(0) = E[(x(0), y(0))T ],

where P (t) is the solution of the differential Riccati equation (3.8) satisfying
the initial conditions (3.9).

Let m1(t, ε) and m2(t, ε) be the mathematical expectations of the vectors
x(t) and y(t) of system (3.5), i. e.,

m1(t, ε) = E[x(t)],m2(t, ε) = E[y(t)].

Then the vector m(t, ε) = (m1(t, ε),m2(t, ε))
T satisfies the differential equation

ṁ = A(t)m + PCT (t)R−1(t)(z − C(t)m). (3.10)

We apply the above results to system (3.5). A(t) is the matrix of linear
terms of the system (3.5) and is defined by

A(t) =

(

0 I
−N(t) −1

ε
G0(t) − G1(t)

)

.

Let B1(t) and C1(t) denote the block matrices

B1(t) =

(

0
−B(t)

)

, C1(t) =
(

C(t) 0
)

.

Then the Riccati equation for the correlation matrix P (t, ε) of system (3.5) is

dP

dt
= A(t)P + PAT (t) − PCT

1 R−1C1P + B1QBT
1 . (3.11)

We designate the n × n blocks of the matrix P (t, ε) as follows:

P (t, ε) =

(

P1(t, ε) P2(t, ε)
P T

2 (t, ε) P3(t, ε)

)

.

Then equation (3.11) implies the system

Ṗ1 = P T
2 + P2 − P1SP1, (3.12)

εṖ2 = εP3 − εP1N
T − P2(G0 + εG1)

T − εP1SP2, (3.13)

εṖ3 = −ε(NP2 + P T
2 NT ) − P3(G0 + εG1)

T
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−(G0 + εG1)P3 − εP T
2 SP2 + εL, (3.14)

where S = CT R−1C,L = BQBT .
Equation (3.10) may also be rewritten as a system:

{

ṁ1 = m2 + P1CR−1(z − Cm1),
εṁ2 = −(G0 + εG1)m2 − εNm1 + εP2CR−1(z − Cm1),

where m1(t, ε) and m2(t, ε) satisfy the initial conditions

m1(0, ε) = x0, m2(0, ε) = y0.

We now use some results of integral manifold theory. The existence of
an attracting integral manifold permits us to reduce the singularly perturbed
system to a system of lower dimension.

3.3 Precessional equations in the deterministic case

Let’s analyze the equations of a gyroscopic system

ẍ + (HG0 + G1)ẋ + Nx = 0,

in the deterministic case. The notation coincides with that introduced above.
Having denoted ε = 1/H, we obtain

εẍ + (G0 + εG1)ẋ + εNx = 0. (3.15)

It is a commonly held view that equations (3.15) may be replaced by the
corresponding precessional equations

(G0 + εG1)ẋ + εNx = 0. (3.16)

Note that the dimension of (3.16) is half the dimension of (3.15). We shall
apply the results of the theory of integral manifolds to prove the possibility
of such a replacement. With that aim in view, we transform Equation (3.15)
into the first order system

ẋ = y, εẏ = −(G0 + εG1)y − εNx. (3.17)

In terms given in the preceding subsection, we have the equation g(t, x, y, 0)
= 0 in the form G0y = 0. Hence, y = h0(t, x) = 0, and the flow on the integral
manifold is described by an equation

y = h(x, ε). (3.18)
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The function h(x, ε) may be found as an asymptotic series

h(x, ε) =
∑

i≥1

εihi(x) (3.19)

from the equation

ε
∂h(x, ε)

∂x
= −(G0 + εG1)h(x, ε) − εNx. (3.20)

Now, the usual technique of asymptotic analysis is applied. The expansion
(3.19) is put into (3.20). Having equated the coefficients of powers of the
small parameter ε, we compute the approximate solution of (3.20) in the form

h(x, ε) = −(G0 + εG1)
−1εNx + O(ε2).

Thus, Equation (3.17) turns into

ẋ = −(G0 + εG1)
−1εNx + O(ε3). (3.21)

We compare equations (3.16) and (3.21). Evidently, they coincide to the
accuracy of O(ε3). Consequently, the solutions of the system (3.17) and the
solutions of the precessional equations (3.16) differ in the rapidly vanishing
terms only, which correspond to the so-called nutational oscillations in the
gyroscopic system. So it is quite correct to examine the precessional equation
instead of the full equations of the gyroscopic system in the deterministic case.

Notice that the dimension of the slow integral manifold coincides with the
dimension of vector of slow variables.

3.4 Optimal filtering in the precessional equations of gy-

roscopic systems

Let us now examine optimal filtering in gyroscopic systems described by the
precessional equations.

We do not discuss here the physical aspects of obtaining the precessional
equations. We remark only that such equations may be derived by neglecting
the second derivative terms in (3.3). Consider precessional equations corre-
sponding to (3.3) in the form

ẋ = −(G0 + εG1)
−1εNx + ε(G0 + εG1)

−1Bẇ.

Denote the correlation matrix of the vector x(t) by Φ(t). Then, according to
(3.11), this matrix must satisfy the equation

(G0 + εG1)Φ̇ = −εNΦ − ε(G0 + εG1)ΦNT ((G0 + εG1)
−1)T
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− (G0 + εG1)ΦCT R1CΦ + ε2BQBT ((G0 + εG1)
T )−1. (3.22)

Notice that at ε = 0 equation (3.22) has much in common with equation (3.12).
Still this similarity is not sufficient to consider the precessional equations (3.3)
to be acceptable as the basis for Kalman-Bucy filtering.

We examine this topic in detail. System (3.12)–(3.14) has a stable integral
manifold of slow motions [23]. The flow along this manifold is governed by
the regularly (not singularly) perturbed equations of this system. At first sight
only equation (3.12) is regular, and (3.22), being quite similar to it, may replace
the full system (3.12)–(3.14). But, in fact, there are more regular equations
in the system (3.12)–(3.14). We require that the matrix G0(t) has no zero
eigenvalues for all t ∈ R. But the linear operator

LY = Y G − GY

has a nontrivial kernel, since differences (λi(t) − λj(t)), i, j = 1, . . . , n, form
its spectrum. That is why there are many regular scalar equations in (3.14),
since this operator has many zero eigenvalues. Thus, the dimension of the slow
integral manifold of (3.12)–(3.14) is greater than the dimension of the matrix
Φ(t), and the use of precessional equation for filtering can give unacceptable
results.

Next we consider one problem illustrating this result.

4 The plane gyroscopic pendulum

The gyroscopic pendulum is the simplest apparatus for indicating the proper
vertical line direction in a moving ship or aeroplane.

Consider the equations of the plane gyroscopic pendulum with the hori-
zontal axis of a gimbal. This pendulum is provided with a gyroscope which
can turn near the axis of its housing. The turning of the gyroscope housing is
limited by a spring. We investigate the movement of a plane gyroscopic pen-
dulum under the rolling of a ship. Assume that the system is supplied with an
apparatus for radial correction. The latter imposes the moment proportional
to the rotation angle of the gyroscope housing round the axis of the pendulum
oscillation. Then the equations of motion of the plane gyroscopic pendulum
are of the form

I1α̈ + Hβ̇ + lpα + Mβ + nα̇ + bẇ = 0,

I2β̈ − Hα̇ + Eβ̇ + κβ = 0. (4.1)

Here α is the angle of the pendulum rotation around its axis; β is the angle
of gyroscope rotation around its housing axis; I1 and I2 are the corresponding
moments of inertia; H is a moment of momentum of the gyroscope; lp is

115



Figure 1: The plane gyroscopic pendulum

the static moment of the pendulum; M is the steepness of the moment of
the radial correction; κ is the rigidity of the spring connecting the gyroscope
housing with the pendulum; E and n are the coefficients of the viscous friction;
ẇ is a stationary random process corresponding to the angle of roll of the ship.
Let ẇ be a Gaussian white noise process with zero mean value and correlation
function qδ(t − s).

Let the variable z = β+ξ̇ be observed. At first, we consider the precessional
equations for (4.1) neglecting the inertial terms I1α̈ and I2β̈ :

Hβ̇ + lpα + nα̇ + Mβ + bẇ = 0,

−Hα̇ + Eβ̇ + kβ = 0. (4.2)

Having divided both parts of the equations (4.2) by H and set 1/H = ε,
(α β)T = ω we obtain:

ω̇ = ε

(

−εElp −εEM + κ
−lp −M − εnκ

)

ω − ε

(

εEb
b

)

ẇ + O(ε3). (4.3)

Then the equations of the Kalman-Bucy filter for the correlation matrix P
of the errors in the angles take the form

Ṗ = ε

(

εElp −εEM + κ
−lp −M − εnκ

)

P + εP

(

−εElp −lp
−εEM + κ −M − εnκ

)

−P T SP + ε2q

(

ε2E2b2 b2E
εEb2 b2

)

+ O(ε3), (4.4)
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where

S =

(

0 0
0 1/r

)

.

We seek a solution of (4.4) as a series:

P (ε) = D0 + εD1 + O(ε2).

From (4.4) we obtain that D0 = 0, and D1 satisfies the equation

Ḋ1 =

(

0 κ
−lp −M

)

D1 + D1

(

0 −lp
κ −M

)

− D1SD1 +

(

0 0
0 qb2

)

.

It should be noted, that this mechanical system (plane gyroscopic pendu-
lum) was examined in [15] by means of the precessional theory of gyroscopes,
provided that n = E = 0. Under such assumptions, Equation (4.4) does not
contain O(ε3) terms and, in coordinate form, is as follows:

ḋ1 = 2
κ

H
d2 −

d2
2

r
,

ḋ2 = −
lp

H
d1 −

M

H
d2 +

κ

H
d3 −

d2d3

r
,

ḋ3 = −2
lp

H
d2 − 2

M

H
d3 −

d2
3

r
+

qb2

H2
.

Here d1, d2 and d3 denote the elements of the symmetric correlation matrix D.
But we cannot compare these equations with those obtained on the basis of
the theory of integral manifolds, since, for n = E = 0, the equations of motion
of the plane gyroscopic pendulum may have no attracting integral manifold.

Next we consider the full equations (4.1) in the form

εα̈ +
β

I1

+ ε
n

I1

α̇ + ε
lp

I1

α + ε
M

I1

β + ε
b

I1

ẇ = 0,

εβ̈ −
1

I2

α + ε
E

I2

β + ε
κ

I2

β = 0,

or, in the more convenient form,

ε

(

α̈

β̈

)

+

(

0 1/I1

−1/I2 0

) (

α̇

β̇

)

+ ε

(

n/I1 0
0 E/I2

) (

α
β

)

+ ε

(

lp/I1 M/I1

0 κ/I2

)(

α
β

)

= −ε

(

b/I1

0

)

ẇ. (4.5)

We use the following notation:

G0 =

(

0 1/I1

−1/I2 0

)

, G1 =

(

n/I1 0
0 E/I2

)

,
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N =

(

lp/I1 M/I1

0 κ/I2

)

, B2 =

(

b/I1

0

)

.

We designate the elements of the 2 × 2 matrices P1, P2, P3 from (3.12)-
(3.14) as follows:

P1 =

(

p1 p2

p2 p3

)

, P2 =

(

p4 p7

p5 p8

)

, P3 =

(

p6 p9

p9 p10

)

.

Then equation (3.14) for the plane gyroscopic pendulum may be transformed
into a system of three scalar equations:

εṗ6 = −
2

I1

p9 − 2ε
lp

I1

p4 − 2ε
M

I1

p5 − 2ε
n

I1

p6 + ε
b2

I2
1

q − ε
p2

5

r
,

εṗ9 =
p6

I2

−
p10

I1

− ε

(

κ

I2

p5 +
M

I1

p8 +
lp

I1

p7 +

(

E

I2

+
n

I1

)

p9

)

− ε
p5p8

r
, (4.6)

εṗ10 = 2
1

I2

p9 − 2ε
κ

I2

p8 − 2ε
E

I2

p10 − ε
p2

8

r
.

Introduce the new variable as a linear combination of p6 and p10:

p11 = I1p6 + I2p10. (4.7)

Then for p10 we obtain the equation

ṗ11 = −2lpp4 − 2Mp5 −
2n

I1

p11 +

(

2nI2

I1

− 2E

)

p10 − 2κp8 −
I1

r
p2

5 −
I2

r
p2

8 +
b2q

I1

.

Thus, the variable p11 is slow. The equations for the correlation matrix
P (t, ε) may be written now in the following form:

ẋ = f(x, y), (4.8)

εẏ = g0(x, y) + εg1(x, y), (4.9)

where f(x, y) =























2y1 −
1
r
x2

2

y2 + y3 −
1
r
x2x3

2y3 −
1
r
x2

3

2lpy1 − 2My2 −
2n
I1

x4 +
(

2nI2
I1

− 2E
)

y6 − 2κy4 −
I1
r
y2

2 −
I2
r
y2

4 + b2q

I1























,
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g0(x, y) =



































− 1
I1

y3

− 1
I1

y4

1
I2

y1

1
I2

y2

− 2
I2

y6 + 1
I1I2

x4

2
I2

y5



































,

g1(x, y) =





































1
I1

x4 −
I2
I1

y6 −
lp

I1
x1 −

M
I1

x2 −
n
I1

y1 −
1
r
x2y2

y5 −
lp

I1
x2 −

M
I1

x3 −
n
I1

y2 −
1
r
x3y2

y5 −
κ
I2

x2 −
E
I2

y3 −
1
r
x2y4

y6 −
κ
I2

x3 −
E
I2

y4 −
1
r
x3y4

− lp

I1
y3 −

M
I1

y4 −
(

n
I1

+ E
I2

)

y5 −
κ
I2

y2 −
1
r
y2y4

−2 κ
I2

y4 − 2 E
I2

y6 −
1
I2

y2
4





































.

The role of slow variable in (4.8)–(4.9) is played by vector x with coordi-
nates (p1, p2, p3, p11) and the role of fast variable is played by vector y with
coordinates p4, p5, p7 − p10

The system (4.8)–(4.9) possesses a four-dimensional stable slow invariant
manifold. We search for this manifold as an asymptotic series according to
(2.4). The matrix B in (2.6) takes on form

B =

















0 0 −1/I1 0 0 0
0 0 0 −1/I1 0 0

1/I2 0 0 0 0 0
0 1/I2 0 0 0 0
0 0 0 0 0 −2/I1

0 0 0 0 2/I2 0

















and it is invertible. Then we calculate the terms of asymptotic expansion
h0, h1, h2 and receive equation for slow variables on invariant manifold
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f(x, h(x, ε)) =





















−1
r
x2

2 + 2εκx2 − ε2
((

I2n
I1

+ E
)

x4 −
b2qI2

I1
− 2Elpx1 − 2EMx2

)

−1
r
x2x3 + ε (κx3 − lpx1 − Mx2) − ε2

(

Elpx2 + EMx2 + nκx2 −
I1
r
x2x4

)

−1
r
x2

3 − ε (2lpx2 + 2Mx3) − ε2
(

n
2
x4 + EI1

2I2
x4 + 2nκx3 −

I1
r
x3x4 −

3b2q

2

)

−nI2+EI1
I1I2

x4 + b2q

I1
+ O(ε)





















The latter differential system has the attractive invariant manifold

x4 =
b2qI2

nI2 + EI1

+ O(ε).

This constant is substituted into the equations for the first three slow variables.
Thus, we receive the system of corrected differential equations of optimal filter.

ẋ1 = −
1

r
x2

2 + 2ε(κ − EMε)x2 − 2ε2Elpx1,

ẋ2 = −
1

r
x2x3 − εlpx1

−ε2

(

Elp + Mε + nκ −
b2qI1I2

2r(nI2 + EI1)

)

x2 + ε2(κε − EM)x3,

ẋ3 = −
1

r
x2

3 − 2lpεx2 − 2ε2

(

Mε + nκ −
b2qI2

2r(nI2 + EI1)

)

x3 + ε2 b2q

2

Now we can correct the precessional equations, using on the received equa-
tions.

ω̇ = ε

(

−εElp −εEM + κ

−lp −M − εnκ + ε b2I1I2
r(nI2+EI1)

)

ω − ε

(

0
b

)

ẇ + O
(

ε3
)

(4.10)

The approximations derived above permit us to follow how equation (4.3),
derived on the basis of precessional equations, differs from the equations which
describe the flow along the attracting invariant manifold of the system (4.1).
We have received the corrected system of the same dimension that gives pre-
cessional theory. However the corrected system should yield more exact result
during filtering process.

We compare the results obtained in this Example for the full equations
of motion (4.1), and those got on the basis of the precessional equations (4.3)
and on the corrected precessional equations (4.10). All the systems were solved
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numerically with the same initial conditions. The program for numerical mod-
elling of Kalman-Bucy filters based on full, precessional and corrected equa-
tions has been written in MATLAB 7. Thus the result of solution modelling
of the stochastic differential equations [8] of the movement of the plane gyro-
scopic pendulum was used as an input signal for filters.

By this is meant that the use of corrected system based on the stable
invariant manifold of slow motions gives an accurate account of the behaviour
of the original system, whereas the use of precessional equations, instead of
the original ones, for calculating the filtering error may lead to an intolerable
error if the motion is performed under the action of random forces of Gaussian
white noise type.

5 Conclusion

We have examined the optimal estimation problem for a class of stochastic
differential systems with slow and fast variables using the invariant manifolds
theory. The gyroscopic systems are considered as an applications. It is stated
that the use of the equation of the precessional theory may lead to an intol-
erable error in the case of random forces but in designing the Kalman-Bucy
filter the full model can be replaced by the reduced order slow model.
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[6] P. V. Kokotović, K. H. Khalil, and J. O’Reilly, “Singular Perturbation
Methods in Control: Analysis and Design”, Academic Press, Inc., London,
1986.

[7] L. I. Kononenko and V. A. Sobolev, “Asymptotic expansion of slow inte-
gral manifolds”, Sib. Math. J., Vol. 35, pp. 1119–1132, 1994.

[8] D. F. Kuznetsov, “Numerical solution of stochastic differential equations
and stochastic integrals”, Saint-Petersburg State Polytechnical Univer-
sity, Saint-Petersburg, 1999 (in Russian).

[9] K. Magnus, “Kreisel. Theorie und Anwendungen”, Springer-Verlag,
Berlin-New York, 1971 (in German).

[10] D. R. Merkin, “Gyroscopic Systems”, Nauka, Moscow, 1974 (in Russian).

[11] M.P. Mortell, R.E. O’Malley, A.V. Pokrovskii, and V.A. Sobolev, eds.,
“Singular Perturbations and Hysteresis”, SIAM, 2005.

[12] D. S. Naidu, “Singular perturbations and time scales in control theory
and applications: an overview”, Dyn. Contin. Discrete Impuls. Syst. Ser.
B Appl. Algorithms, Vol. 9, No 2, pp. 233–278, 2002.

[13] R. E. O’Malley, “Singular Perturbation Methods for Ordinary Differential
Equations”, Appl. Math. Sci., Vol. 89, Springer–Verlag, New-York, 1991.

[14] V. A. Pliss, “A reduction principle in the theory of stability of motion”, Izv.
Akad. Nauk SSSR Ser. Mat., Vol. 28, pp. 1297–1324, 1964 (in Russian).

[15] Ya. N. Roitenberg, “Automatic Control”, Nauka, Moscow, 1992 (in
Russian).

[16] V. A. Sobolev, “Nonlocal integral manifolds and decoupling of nonlinear
parabolic systems”, Global Analysis - Studies and Applications, Springer
Lect. Notes in Math., Vol.1453, pp. 101-108, 1990.

[17] V. A. Sobolev, “Geometrical theory of singularly perturbed control sys-
tems”, Proc. 11th Congress of IFAC, Tallinn, Vol. 6, pp. 163–168, 1990.

[18] V. A. Sobolev, “Integral manifolds and decomposition of singularly per-
turbed systems”, System and Control Lett., Vol. 5, pp. 169–179, 1984.

[19] V. A. Sobolev and V. V. Strygin, “Permissibility of changing over to
precession equations of gyroscopic systems”, Mechanics of Solids, Vol. 5,
pp. 7–13, 1978.

123



[20] M. W. Spong, K. Khorasani, and P. V. Kokotovic, “An integral manifold
approach to feedback control of flexible joint robots”, IEEE Journal of
Robotics and Automation, Vol. 3, No 4, pp. 291–301, 1987.

[21] V. V. Strygin and V. A. Sobolev, “Asymptotic methods in the problem of
stabilization of rotating bodies by using passive dampers”, Mechanics of
Solids, Vol. 5, pp. 19–25, 1977.

[22] V. V. Strygin and V. A. Sobolev, “Effect of geometric and kinetic para-
meters and energy dissipation on orientation stability of satellites with
double spin”, Cosmic Research, Vol. 14, No 3, pp. 331–335, 1976.

[23] V. V. Strygin and V. A. Sobolev, “Separation of Motions by the Integral
Manifolds Method”, Nauka, Moscow, 1988 (in Russian).

[24] A. B. Vasil’eva, V. F. Butuzov, and L. V. Kalachev, “The Boundary
Function Method for Singular Perturbation Problems”, SIAM Studies in
Appl. Math., 14, 1995.

[25] K. V. Zadiraka, “On a non-local integral manifold of a singularly perturbed
differential system”, Ukrain. Mat. Ž., Vol. 17, No 1, pp. 47–63, 1965 (in
Russian).

[26] K. V. Zadiraka, “On the integral manifold of a system of differential equa-
tions containing a small parameter” (in Russian), Dokl. Akad. Nauk SSSR,
Vol. 115, pp. 646–649, 1957.

124


