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Abstract

In this paper we use the description of differential invariant algebras
for affine geometrical quantities ([1]) to propose a new method of inte-
gration in quadratures of ordinary differential equations. The method is
applied for differential equations given by affine differential invariants.
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1 Introduction
In this paper we propose a new method of integration in quadratures of or-
dinary differential equations. We use the description of differential invariant
algebras for affine geometrical quantities given in ([1]) and consider the classes
of ordinary differential equations defined by affine differential invariants. We
write such equations in terms of basic differential invariants and invariant dif-
ferentiations (Tresse derivatives). Solutions of such equations can be viewed
as ordinary differential equations of the second order. The last equations sat-
isfy the conditions of Lie-Bianchi theorem ([3]) and therefore are integrable in
quadratures.

Recall that the affine geometry of a straight line is defined by the group of
affine transformations, so-called ”ax + b” - group.
Affine transformations of a straight line: x 7→ ax + b, where a, b ∈ R and
a 6= 0, constitute the 2-dimensional solvable Lie group. The corresponding Lie
algebra a is generated by vector fields X = ∂x, Y = x∂x:

a = 〈∂x, x∂x〉.

79

Global and Stochastic Analysis
Vol. 1, No. 1, January-June, 2014 
Copyright: MuK Publications 
www.mukpublications.com



The application of affine geometry to ordinary differential equations is
based on the following observations:

1) If an ordinary differential equation of the second order possesses of 2-
dimensional solvable Lie algebra a, which is a lift of an action on a straight
line, then there is an affine structure on the line such that solutions of the
differential equations are represented by affine quantities.

2) If the differential operator, which defines the differential equation, is
an invariant of the Lie algebra a action, then the differential equation can be
written in terms of affine differential invariants.

3) Affine algebra a is a solvable Lie algebra of dimension 2. Therefore, due
to Lie-Bianchi theorem ([3]), the given 2-nd order differential equation can be
integrated in quadratures.

Let us consider the following example.
Differential equations of the form

y′′ = y′ + f(y),

having two dimensional symmetry algebra, and by that integrable in quadra-
tures, can be divided on two classes (see [3], [2]):

(I) f = a(y + b)c − 2c+2
(c+3)2

(y + b),
where a, b, c ∈ R, c 6= −3, and

(II) f = aeby − 2
b
, where a, b ∈ R, b 6= 0.

At first we analyze class (I).
Assume that

f = ayc − 2c + 2

(c + 3)2
y.

Then the equation

y′′ = y′ + ayc − 2c + 2

(c + 3)2
y (1.1)

has symmetry algebra with generators ([2]):

A = ∂x, B = ekx∂x +
k + 1

2
ekxu∂u,

where k = 1−c
3+c

.
The vector fields A and B satisfy the commutation relation: [A,B] = kB.
Therefore, if we put

X = ekx∂x, Y = −1

k
∂x, (1.2)

we get that vector fields

X = B, Y = −1

k
A,

80



as well as vector fields X and Y , satisfy the following commutation relations:

[X, Y ] = X, [X, Y ] = X.

Thus, the symmetry algebra 〈A,B〉 = 〈X, Y 〉 can be viewed as a lift of Lie
algebra 〈X, Y 〉.

The Lie algebra 〈X, Y 〉 defines an affine structure on the line. To see this,
let us introduce an affine parameter t such that: X(t) = 1. In other words,
let t = − 1

k
e−kx.

As a second coordinate v on the plane R2, we consider the first integral of
vector field X = B, for example v = e−xu

1
α .

In these coordinates the Lie algebra 〈X, Y 〉 has the canonical form X = ∂t,
Y = t∂t, and Lie algebra 〈X, Y 〉 is generated by vector fields

X = ∂t, Y = t∂t +
1

k
v∂v.

Thus, solutions of differential equation (1.1) can be viewed as linear affine
quantities.
It is easy to check that they are tensors of the form

h(t)
(
∂t

)⊗ 1
k ,

if 1
k
∈ Z.
For differential equations of class (II):

y′′ = y′ + aeby − 2

b
(1.3)

the symmetry algebra is generated by vector fields ([2]):

A = ∂x, B = e−x∂x +
2

b
e−xu∂u,

satisfying to the following commutation relation: [A,B] = −B.
Let X = e−x∂x, Y = ∂x. Then, as above, A = Y , B = X and [X, Y ] = X.
We take function t = ex, as an affine parameter and let v = e−xu

b
2 .

In these coordinates vector fields X, Y have the following form

X = ∂t, Y = t∂t − v∂v.

Therefore solutions of differential equation (1.3) can be viewed as differential
forms on the affine line.
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2 Classification of 1-dimensional affine quantities
We define 1-dimensional affine quantities as sections of homogeneous bundles:

π : R2 → R,

π : (u, x, ) 7→ x.

In other words, affine quantities are sections of 1-dimensional bundles equipped
an action of the affine algebra.

Let
X = ∂x + A(x, u)∂u, Y = x∂x + B(x, u)∂u

be lifts of vector fields X and Y correspondingly.
The following theorem ([1]) gives the complete classification of such actions:

Theorem 1. One-dimensional affine quantities can be divided on two classes
which correspondent to the following representations of the affine Lie algebra:

Class 1.
X = ∂x − ϕx

ϕu

∂u, Y = xX.

Class 2.
X = ∂x − ϕx

ϕu

∂u, Y = xX +
1

ϕu

∂u,

where ϕ(x, u) - is a such smooth function, that ϕu 6= 0.

3 Differential equations for affine quantities of
class 1

In this section we consider one-dimensional affine quantities of class 1 and
ordinary differential equations associated with them. To this end we need a
description of affine differential invariants.

In paper ([1]) it has been shown that the algebra of affine differential in-
variants for such quantities has the following structure.

Theorem 2. Differential invariants for affine quantities of class 1 have two
basic invariants:

- invariant of the zero order

I = ϕ(x, u),

and
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- invariant of the second order

J =

(
d2ϕ
dx2

)

(
dϕ
dx

)2 .

All other differential invariants are generated by the Tresse derivatives ([4])

DkJ

DIk
.

Here we denoted by d
dx

the total derivation in x.
Thus, due to this theorem, any affine differential invariant of class 1 can

be written in the form:

F
(
I, J,

DJ

DI
, . . . ,

DkJ

DIk

)
. (3.1)

Differential invariants of form (3.1) define the ordinary differential equations

F
(
I, J,

DJ

DI
, . . . ,

DkJ

DIk

)
= 0, (3.2)

which have order k + 2 and possess 2-dimensional symmetry Lie algebra with
generators:

X = ∂x − ϕx

ϕu

∂u, Y = xX.

This Lie algebra is solvable. Therefore, due to Lie-Bianchi theorem, any equa-
tion of form (3.2), having second order, can be integrated in quadratures ([3],
[2]).

For general differential equation (3.2) let us assume that this equation,
considered as the differential equation in Tresse derivatives, can be integrated.

Then solutions of the last equation can be considered as ordinary differ-
ential equations of the second order. These equations possess 2-dimensional
solvable symmetry Lie algebra and therefore can be integrated in quadratures
for arbitrary function

J = f(I). (3.3)

For example, assume that equation (3.2) is a linear differential equation of
the 1-order with respect to Tresse derivatives:

DJ

DI
+ A(I)J = B(I). (3.4)

It is worth to note that this equation considered as an ordinary differential
equation has the 3-order.
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Solving equation (3.4) with respect to function J , we find 1-parameter
family of solutions

J = F (c, I), (3.5)

which are ordinary differential equations of the 3-rd order

d2ϕ

dx2
= F (c, ϕ)

(
dϕ

dx

)2

,

where c - is a constant.
The last equations have 2-dimensional solvable Lie algebra of symmetries.

Therefore, these equations can be integrated in quadratures.
As another example we consider 4-th order differential equations, corre-

sponding to the second order linear differential equations in Tresse deriva-
tives. In the case of constant coefficients and distinct characteristic roots their
solutions have the form:

J = K1e
λ1I + K2e

λ2I , (3.6)

and the last second order differential equations can be integrated in quadra-
tures.

Thus, for the case of harmonic oscillator, we have differential equations of
the form

D2J

DI2
+ ω2J = 0,

and general solutions

J = K1 cos(ωI) + K2 sin(ωI). (3.7)

As we have seen relations (3.6) and (3.7) can be considered as ordinary differ-
ential equations of the second order having 2-dimensional solvable Lie algebra
of symmetries. Hence, they can be integrated in quadratures.

Finally, let’s consider another classes of differential equations integrated in
quadratures.
These differential equations have the form:

u4 − 7u−1
1 u2u3 + 8u2

2 + W (u)u2 = A(u)u2
1, (3.8)

and posses the two dimensional symmetry algebra, corresponding to ϕ = u.
In these equations A and W are arbitrary functions.
Writing these equations in terms of differential invariants we get the following
differential equations of the second order in Tresse derivatives:

D2J

DI2
+ W (I)J = A(I).
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The last equations are integrable in quadratures if the potential functions W (I)
is integrable in the sense of paper ([3]).

For example, it’s true when
W (u) = Cu−2, or W (u) = C(u2 + pu + q)2,

where C, p, q are constants.
This is also true, when W (u) is a solution of the stationary Korteweg and

de Vries equation, or its higher generalizations (see [3]).
Differential equations of the form:

u2
1u4 − 7u1u2u3 + 8u2

2 − u3
1u3 + 2u2

1u
2
2 = a

uk
2

u2k−6
1

− 2(k + 1)

(k + 3)2
u4

1u2 (3.9)

also have the two dimensional symmetry algebra, corresponding to ϕ = u.
Writing these equations in terms of differential invariants we get the following
differential equations of the second order in Tresse derivatives:

D2J

DI2
=

DJ

DI
+ aJk − 2(k + 1)

(k + 3)2
J.

The last equation is integrable in quadratures due to ([2], [3]), and therefore,
differential equation (3.9) is integrable in quadratures too.

Examples of such equations are the following:
k = a = 2 : u2

1u4 − 7u1u2u3 + 8u3
2 − u3

1u3 + 6
25

u4
1u2 = 0,

k = 3, a = 8 : u1u4 − 7u2u3 − u2
1u3 + 2u1u

2
2 + 2

9
u2

1u2 = 0.

4 Differential equations for affine quantities of
class 2

In this section we consider ordinary differential equations associated with affine
quantities of class 2. In paper ([1]) it has been shown that the algebra of affine
differential invariants for such quantities has the following structure.

Theorem 3. Algebra of differential invariants for affine quantities of class 2
has basic differential invariant of the first order

J = eϕ dϕ

dx
,

and invariant differentiation
∇ = eϕ d

dx
,

such that any differential invariant of order (k + 1) can be represented in the
form

F

(
J,∇J, . . . ,∇kJ

)
. (4.1)
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Each differential invariant of the above form generates an ordinary differ-
ential equation of the (k + 1)-order

F

(
J,∇J,∇2J, . . . ,∇kJ

)
= 0. (4.2)

This equation has two dimensional symmetry algebra with generators

X = ∂x − ϕx

ϕu

∂u, Y = xX +
1

ϕu

∂u.

For the case k = 1 such equations

F

(
J,∇J

)
= 0

have the second order, and therefore, due to Lie-Bianchi theorem, are inte-
grable in quadratures.

In the case k = 2 such equations

F

(
J,∇J,∇2J

)
= 0 (4.3)

have the 3-rd order and can be integrated in quadratures if the first integral
of this equation is known.

Namely, assume that H(J,∇J) is such an integral. Then function

∇(
H(J,∇J)

)
is proportional to F

(
J,∇J,∇2J

)
and equation (4.3) is equiv-

alent to the family of differential equations

H(J,∇J) = const

of the second order.
The last differential equations have the two dimensional symmetry algebra

and therefore can be integrated in quadratures.
Thus, the harmonic oscillator equation with respect to derivation ∇:

∇2J + J = 0, (4.4)

which is the ordinary differential equation of the 3-rd order has the first integral

H = (∇J)2 + J2. (4.5)

Therefore, differential equation (4.4) is equivalent to 1-parametrical family of
the second order differential equations:

H = (∇J)2 + J2 = const.
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These equations have the two dimensional symmetry algebra and therefore
they are integrable in quadratures.
In general, the integration method for differential equations of type (4.3) can
be formulated as follows: introduce a formal variable s, which we call affine
parameter, in such a way, that ∇ = d

ds
. Then differential equation (4.3) can

be considered as an ordinary differential equation with respect to function
J = J(s).

Let J = f(s) be a solution of this equation. Applying operator ∇ to this
relation we get the following system of equations:

J = f(s),

∇J = f ′(s).

Eliminating parameter s, we get the following relation:

G(J,∇J) = 0.

The last equation is an ordinary differential equation of the second order,
which has the two dimensional symmetry algebra. Therefore, this equation is
integrated in quadratures.

As an example of application of this method let us consider the following
case:

ϕ = ln |u|, ∇ = u
d

dx
, J = u1.

Then differential equations of the 3-rd order

u2u3 + uu1u2 − uu2 = auk
1 −

2(k + 1)

(k + 3)2
u1 (4.6)

have the two dimensional symmetry algebra, corresponding ϕ = ln |u|.
In terms of differential invariants this equation can be writing as follows:

∇2J = ∇J + aJk − 2(k + 1)

(k + 3)2
J.

The last equation has the first integral (see [2], [3]) and, therefore, can be
integrated in quadratures.
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