Global and Stochastic Analysis Vol. 1, No. 1, January-June, 2014 Copyright: MuK Publications www.mukpublications.com

Some Properties of Force Fields on the Groups of Diffeomorphisms of the flat *n*-Dimensional Torus, connected with the Notion of Parallelism

S.V. Filchakov

Department of Information Technologies Kursk branch of Russian State Trade-Economical University ul. Sofii Perovskoy 16, 305001 Kursk, Russia E-mail: sergeifil@gmail.com

Received by the Editorial Board on March 14, 2011

Abstract

Some existence of solution theorems are proved for second order differential inclusions on the groups of diffeomorphisms of a flat n-dimensional torus. The technical tool for the proofs is the use of the notion of parallelism on those groups.

Key words: Flat torus; groups of diffeomorphisms; differential inclusions; parallelism

1 Introduction and preliminaries

We investigate second order differential equations and inclusions on the group $D^s(\mathcal{T}^n)$ of Sobolev H^s -duffeomorphisms of flat *n*-dimensional torus \mathcal{T}^n , $s > \frac{n}{2} + 1$. The necessary preliminaries on their group and Hilbert manifold structures can be found in [2, 4].

Besides the group structure mentioned above, on $D^s(\mathcal{T}^n)$ there exists an additional structure generated by the global parallelism of the tangent bundle on \mathcal{T}^n . This structure is the main technical tool of our consideration. It is described as follows (see, e.g., [4]).

Definition 1. Introduce the operators:

(i) $B: TT^n \to R^n$, the projection to the second factor in $TT^n = T^n \times R^n$; (ii) $A(m): R^n \to T_mT^n$, the inverse to B (see (i)) mapping to the tangent space to T^n at $m \in T^n$;

(iii) $Q_g = A(g(m)) \circ B$, a linear isomorphism $Q_g : T_m \mathcal{T}^n \to T_{g(m)} \mathcal{T}^n$, where $g \in D^s$ and $m \in \mathcal{T}^n$.

The operator Q_e is a one, different from the right shift, that sends every tangent space to the group isomorphically to the tangent space at the unit e. Thus, besides the right-invariant vector fields on $D^s(\mathcal{T}^n)$ there is another class of fields with a property of invariance, this time with respect to the action of operator Q. We call these fields parallel.

Definition 2. A vector filed X on $D^{s}(\mathcal{T}^{n})$ is called parallel if at every point $\eta \in D^{s}(\mathcal{T}^{n})$ its value $X_{\eta} = Q_{\eta}X_{e}$ where $X_{e} \in T_{e}D^{s}(\mathcal{T}^{n})$.

Note that the parallel vector field X is invariant with respect to Q_{θ} for every $\theta \in D^{s}(\mathcal{T}^{n})$.

By *i* we denote an isometric embedding of \mathcal{T}^n to a Euclidean space \mathbb{R}^k for k large enough, that exists by well-known Nash's theorem.

This embedding $i : \mathcal{T}^n \to \mathbb{R}^k$ generates the embedding of $D^s(\mathcal{T}^n)$ to the Hilbert space $H^s(\mathcal{T}^n, \mathbb{R}^k)$, which we denote by the same symbol *i*.

Recall that a tubular neighborhood U of the submanifold $iD^s(\mathcal{T}^n)$ in $H^s(\mathcal{T}^n, \mathbb{R}^k)$ has the structure of direct product $U = iD^s(\mathcal{T}^n) \times W$, where W is a ball in the space normal to the tangent space $T_eD^s(\mathcal{T}^n)$, e = id is the unit in the group $D^s(\mathcal{T}^n)$. By r we denote the retraction $r: U \to D^s(\mathcal{T}^n)$. Thus the tangent spaces to U are represented as $T_{\xi}U = T_{r\xi}D^s(\mathcal{T}^n) \times T_{\xi}W$. If $X(\eta)$ is a vector field on $D^s(\mathcal{T}^n)$, the tangent map Ti sends it into the vector field TiX on $iD^s(\mathcal{T}^n)$. By symbol \bar{X} we denote the extension of TiX to U of the form $\bar{X}_{\xi} = (TiX_{r\xi}, 0)$.

On $D^{s}(\mathcal{T}^{n})$ one can introduce a strong Riemannian metric, say, as in [2, 4]. By $dist(\eta, \theta)$ we denote the Riemannian distance between η and θ (i.e., the infimum of curve lengths for curves joining η and θ). Introduce on $TD^{s}(\mathcal{T}^{n})$ the distance d by the formula

$$d((X(\eta)), (Y(\theta))) = dist(\eta, \theta) + \|Q_e X(\eta) - Q_e Y(\theta)\|,$$
(1.1)

where the norm in $T_e D^s(\mathcal{T}^n)$ is generated by the strong Riemannian metric. Besides, we shall use the distance between the above-mentioned vectors in \mathbb{R}^k after embedding. This distance is denoted by $\|iX(\eta) - iY(\theta)\|$.

Introduce another strong Riemannian metric on $TD^s_{\mu}(\mathcal{T}^n)$ as follows (see [3]). Represent the tangent space $T_{(m,X)}TD^s_{\mu}(\mathcal{T}^n)$ as the direct product of the vertical subspace $\bar{V}_{(m,X)}$ and the space of Live-Civita connection $\bar{H}_{(m,X)}$ of the weak Riemannian metric (see [2]) on $D^s_{\mu}(\mathcal{T}^n)$. For every U and V from $\bar{V}_{(m,X)}$ define the inner product as $(KU, KV)^s_\eta$ where K is the connector of the above-mentioned Levi-Civita connection and $(\cdot, \cdot)^s_\eta$ is the strong inner product in $T_\eta D^s(\mathcal{T}^n)$ generated by the strong Riemannian metric. For every X and Y from $\bar{H}_{(m,X)}$ define the inner product as $(T\pi X, T\pi Y)^s_\eta$. Set $\bar{H}_{(m,X)}$ and $\bar{V}_{(m,X)}$ to be orthogonal to each other. Thus, on $TD^s_\mu(\mathcal{T}^n)$ a certain strong Riemannian metric is well-defined. The Riemannian distance, i.e., the infimum of the length of curves, connecting the points in TD^s , with respect to the above Riemannian metric, is denoted by d_1 .

Construct the distance $d_2(X, Y)$ on $TTD^s_{\mu}(\mathcal{T}^n)$, analogous to the distance d on $TD^s_{\mu}(\mathcal{T}^n)$, by the formula

$$d_2(X,Y) = d(\pi_1 X, \pi_1 Y) + \|Q_e K X_v - Q_e K Y_v\| + \|Q_e T \pi X_h - Q_e T \pi Y_h\|,$$
(1.2)

where $\pi : TD^s_{\mu}(M) \to D^s_{\mu}(M)$ is the natural projection, X_v and Y_v are the vertical components of X and Y while X_h and Y_h are their horizontal components.

For the metrics dist, d, d_1 and d_2 and for the norm $\|\cdot\|$ in $T_e D^s(\mathcal{T}^n)$ we shall consider their Kuratowski measures of non-compactness which will be denoted by α_{dist} , α_d , α_{d_1} , α_{d_2} and $\alpha_{\|\cdot\|}$, respectively. We refer the reader, say, to [1], where the definitions of measures of non-compactness and of condensing operators are given and the corresponding theory is described in details.

We say that a force field F(t, m, X) is given on a manifold M if in the tangent space $T_m M$ at every $m \in M$ a certain vector F(t, m, X) depending on the time t and the vector $X \in T_m M$, is given. The force fields are right-hand sides of the second order differential equations on manifolds given in terms of covariant derivatives (see, e.g., [4]).

The main aim of the paper is investigation of set-valued force fields and the corresponding second order differential inclusions on the groups of diffeomorphisms of the flat *n*-dimensional torus with the use of the notion of parallelism. On this base some existence of solution theorems for second order differential inclusions on the above-mentioned groups are obtained.

The definitions and principal facts from the theory of set-valued maps and differential inclusions are contained in [6].

2 Second order differential inclusions

Lemma 1. Let a set-valued force field $F : [0, l] \times TD^s(\mathcal{T}^n) \to TD^s(\mathcal{T}^n)$ with convex values satisfy the upper Caratheodory condition and be such that for almost all t for the mapping $A : [0, l] \times TD^s(\mathcal{T}^n) \to T_eD^s(\mathcal{T}^n)$ of the form $A(t, \eta, X) = Q_eF(t, \eta, X)$ and for every bounded set $\Omega \subset D^s(\mathcal{T}^n)$ the inequality $\alpha_{\parallel,\parallel}(A(t, \Omega)) \leq g(t) \alpha_d(\Omega)$ holds. Then for almost all t the vector field $F(t, \eta, X)$ is k-bounded with respect the measure of non-compactness α_d with the coefficient 1 + g(t).

Proof. By the hypothesis for every $\Omega \subset TD^s$, for which $\alpha_d(\Omega)$ is finite, the inequality $\alpha_{\parallel,\parallel}(A(t,\Omega)) \leq g(t) \alpha_d(\Omega)$ holds. Specify $t \in [0,l]$. Suppose that $\alpha_d(\Omega) = \xi$, i.e., for every $\varepsilon > 0$ there exists a finite cover of Ω by the sets Θ_i with diameters $\xi + \frac{\varepsilon}{2}$. Then from the hypothesis it follows that there exists a finite cover of $A(t,\Omega) \subset T_eD^s(\mathcal{T}^n)$ by the sets G_j with diameters $g(t) \xi + \frac{\varepsilon}{2}$. Consider the set $Q_\eta A(t,\Omega) \subset T_\eta D^s(\mathcal{T}^n)$. Then the set $= \bigcup_{\eta \in \Omega} Q_\eta A(t,\Omega)$ has

the natural structure of direct product $\Omega \times A(t, \Omega)$. Consider the set $G_{ij} = \bigcup_{\eta \in \Theta_i} Q_{\eta}G_j$. The collection of sets G_{ij} forms a finite cover of Γ and the diameter

of every such set with respect to the distance d is not greater then $\xi + g(t) \xi + \varepsilon$. Hence $\alpha_d() \leq (1 + g(t))\xi$. Since $F(t, \Omega) \subset \Gamma$, for almost all t the vector field $F(t, \eta, X)$ is k-bounded with respect to the measure of non-compactness α_d with the coefficient 1 + g(t). \Box

Lemma 2. Let the set-valued force field F on $TD^{s}(\mathcal{T}^{n})$ is as in the previous Lemma. Then the vertical lift of this mapping

$$F^{l}: [0, l] \times TD^{s}(\mathcal{T}^{n}) \to TTD^{s}(\mathcal{T}^{n})$$

is k-bounded with respect to the measures of non-pcompactness α_d and α_{d_2} with the coefficient 2 + g(t).

Proof. Specify $t \in [0, l]$. Consider the set $\Theta \subset TD^s(\mathcal{T}^n)$. Let its measure of non-compactness $\alpha_d(\Theta) = \xi$. This means that for every $\varepsilon > 0$ it can be covered by a finite number of sets Θ_i with diameter $\xi + \varepsilon$. Then from the definition of distance d it follows that the set $\pi\Theta$ can be covered by a finite number of sets $\pi\Theta_i$ whose diameter is not greater than $\xi + \varepsilon$, i.e., $\alpha_d(\pi\Theta) \leq \xi$. Then by the hypothesis $\alpha_{\parallel,\parallel}(A(t,\pi\Theta)) \leq g(t)\xi$, i.e., $(A(t,\pi\Theta)) \subset T_eD^s(\mathcal{T}^n)$ can be covered by a finite number of sets G_j with the diameter nit greater than $g(t)\xi + \varepsilon$. By analogy with the proof of the previous Lemma consider the sets $G_{ij}^l = \bigcup_{\theta \in \Theta_i} (Q_{\pi\theta}G_j)_{\theta}^l$. It is evident that the collection of all G_{ij}^l covers the image $F^l(t,\Theta)$. Since we have the finite number of those sets and the

the image $F^*(t, \Theta)$. Since we have the finite number of those sets and the diameter of each one is not greater than $2\xi + g(t)\xi + \varepsilon$, the Lemma follows. \Box

Introduce the norm $|||F^l||| = \sup_{y \in F^l} |||y|||$. Choose an arbitrary point $Z \in D^s(\mathcal{T}^n)$. Since at every given t the set valued map E^l is upper conjugation.

 $TD^{s}(\mathcal{T}^{n})$. Since at every given t the set-valued map F^{l} is upper semicontinuous, there exists a neighborhood $V'(Z) \subset TD^{s}(\mathcal{T}^{n})$ of the point Z such that for $Y \in V'(Z)$ the relation $|||F^{l}(t,Y)||| < |||F^{l}(t,Z)||| + C$ holds.

Determine the neighborhood $\tilde{V}(Z) \subset TD^s(\mathcal{T}^n)$ by the formula $\tilde{V} = V \bigcap V'$ where V is the neighborhood from [3, Theorem 1]. Specify a neighborhood $D \subset U$ of Z as in [5, Theorem 1.4] such that $r(D) \subset \tilde{V}$. By [5, Theorem 1.4] the retraction r is Lipschitz continuous on D with the constant 2.

Theorem 3. On the domain D for almost all t the vector field \overline{F}^l is k-bounded with respect to the measure of non-compactness $\alpha_{\parallel,\parallel}$ with the coefficient

$$2(2+g(t))(1+a+k(C+|||F^{l}(t,Z)|||)).$$

Proof. Consider the set $\Omega \subset D$. Let $\alpha(\Omega) = \xi$. I.e., for every $\varepsilon > 0$ it can be covered by a finite number of sets Ω_i with diemeter non greater than $\xi + \varepsilon$. Consider the set $r(\Omega) \subset TD^s(\mathcal{T}^n)$, where r the retraction mentioned above. By [5, Theorem 1.4] the retraction r is Lipschitz continuous on D with the constant 2 with respect to the norm $\|\cdot\|$ on D and the distance d_1 on $TD^s(\mathcal{T}^n)$. Hence the set $r(\Omega)$ can be covered by a finite number of the sets with diameter not greater than $2\xi + \varepsilon$ wigth respect to d_1 . Consider the set $F^l(t, r(\Omega)) \subset TTD^s(\mathcal{T}^n)$. This set can be covered by a finite number of sets with diameter not greater than $2(2+g(t))\xi + \varepsilon$ with respect to the distance d_2 . Now from Lemma 2 and from the construction of the neighborhoods \tilde{V} and of D it follows that the set $\bar{F}^l(t, \Omega)$ can be covered by a finite number of sets with diameter not greater than $2(2+g(t))(1+a+k(C+|||F^l(t,Z)|||))\xi + \varepsilon$. Hence \bar{F}^l is condensing on D with respect to $\alpha_{\parallel cdot \parallel}$ with the coefficient

$$2(2+g(t))(1+a+k(C+|||F^{l}(t,Z)|||)).$$

Let F be a set-valued force field with convex images on $TD^{s}(\mathcal{T}^{n})$ that satisfies the upper Caratheodory condition. Consider the differential inclusion

$$\frac{\dot{D}}{dt}\dot{\eta}(t) \in F\left(t,\eta,\dot{\eta}\right).$$
(2.1)

This problem is reduced to the differential inclusion $\dot{\eta} \in \tilde{S} + F^l$ on $TD^s(\mathcal{T}^n)$ where F^l is the vertical lift of F TO $D^s(\mathcal{T}^n)$ and \tilde{S} is the geodesic spray of the Levi-Civita connection of the weak metrics. It is known that \tilde{S} is smooth and satisfies the condition $T_{\pi}\tilde{S}(X) = X$. Consider the extension $\bar{S}: U \to U$ of $\tilde{S}: TD^s(\mathcal{T}^n) \to TTD^s(\mathcal{T}^n)$ defined by the formula $\bar{S}(x) = TjS(r(x)), x \in U$.

Theorem 4. Let the set-valued force field $F : [0, l] \times TD^s(\mathcal{T}^n) \to TD^s(\mathcal{T}^n)$ with convex images satisfy the upper Caratheodory condition and be such that for almost all t the map $A : [0, l] \times TD^s(\mathcal{T}^n) \to T_eD^s(\mathcal{T}^n)$ of the form $A(t, X) = Q_eF(t, X)$ is k-bounded with respect to the measures of noncompactness α_d and $\alpha_{\parallel \cdot \parallel}$ with the coefficient g(t). Then for almost all t the vector field $\overline{S} + \overline{F}^l$ is locally k-bounded on a small enough neighborhood U in $TD^s(\mathcal{T}^n)$ with respect to the measures of non-compactness $\alpha_{\parallel \parallel \cdot \parallel}$. **Proof.** By Theorem 3 for almost all $t \in [0, l]$ for every $Z \in TD^s(\mathcal{T}^n)$ there exists its neighborhood D in U, on which the set-valued force field \bar{F}^l is k-bounded with the coefficient $k = 2(2 + g(t))(1 + a + k(C + |||F^l(t, Z)|||))$ relative to the measure of non-compactness $\alpha_{|||\cdot|||}$. The geodesic spray \tilde{S} is a C^{∞} -smooth vector field. The embedding j and the retraction r are S^{∞} -smooth as well. Thus the vector field \bar{S} on U is C^{∞} smooth and so, in particular, locally Lipschitz continuous. Hence on a small enough neighborhood of the point Z the field \bar{S} is Lipschitz continuous with a certain constant g > 0. Without loss of generality one can suppose that D is the above-mentioned neighborhood. By the properties of Kuratowski's measure of non-compactness the sum of locally k-bounded and a locally Lipschitz continuous field is locally k-bounded. Hence the set-valued vector field $\bar{S} + \bar{F}^l$ is locally k-bounded with respect to the measure of non-compacness $\alpha_{|||\cdot|||}$ with the coefficient $k = 2(2 + g(t))(1 + a + k(C + |||F^l(t, Z)|||)) + g$. \Box

Theorem 5. Let the hypothesis of Theorem 4 are fulfilled and the function g(t) be square integrable on the interval [0,T]. Specify a point $Z_0 \in TD^s(T^n)$. Suppose that on the closure \overline{D} of a certain neighborhood D of this point the estimate $||F(t,X)|| < f(t), X \in \overline{D}$ holds, where f(t) > 0 is a real function that is square integrable on [0,l]. Then the initial value problem (2.1) with initial condition $\eta(0) = \pi Z_o, \dot{\eta}(0) = Z_0$ has a local solution.

Proof. Without loss of generality one can consider D as a neighborhood from the proof of Theorem 4. Consider the initial value problem $\gamma'(t) \in \overline{S} + \overline{F}^l$ on U with the initial condition $\gamma(0) \in Z_0 \in jT_eD^s(\mathcal{T}^n)$. Under the hypothesis, the function

$$k(t) = 2(2 + g(t)) \left(1 + a + k(C + \left\|\left|F^{l}(t, Z)\right|\right\|)\right) + g$$

is integrable on [0, l]. Then from Theorem 4 it follows that the right-hand side of the latter differential inclusion satisfies the conditions of [6, Theorm 5.2.1] and so this initial value problem has a local solution. By analogy with [5, Theorm 2.4] one can easily prove that this solution belongs to $jTD^s(\mathcal{T}^n)$. Inclusion (2.1) is reduced to the inclusion with right-hand side $\tilde{S} + F^l$. This means that $\pi\gamma(t)$ satisfies inclusion (2.1). \Box

References

- R.R. Akhmerov, M.I. Kamenskii, A.S. Potapov et al., "Measures of noncompactness and condensing operators", Basel: Birkhäuser, 1992.
- [2] D.G. Ebin, and J Marsden, "Groups of diffeomorphisms and the motion of an incompressible fluid", Annals of Math., Vol. 92, No. 1, pp. 102–163, 1970.

- [3] A.Y. Gliklikh, "On existence of integral curves of cvontinuous rightinvariant vector fields of groups of diffeomorphisms", Fixed point theory, Vol. 6, No. 2, pp. 279-284, 2005.
- [4] Yu.E. Gliklikh, "Global and stochastic analysis with applications to mathematical physics", Springer-Verlag London, 2011.
- [5] Yu. E. Gliklikh and V.V. Obukhovskii, "Tubular neighbourhoods of Hilbert manifolds and differential equations of Caratheodory type on groups of diffeomorphisms", New Approaches in Nonlinear Analysis (T.M. Rassias, Ed.), Palm Harbor, FL.: Hadronic Press, pp. 109-123, 1999.
- [6] M. Kamenskii, V. Obukhovskii and P. Zecca, "Condensing multivalued maps and semilinear differential inclusions in Banach spaces", Walter de Gruyter, 2001.