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Abstract
Some existence of solution theorems are proved for second order

differential inclusions on the groups of diffeomorphisms of a flat n-
dimensional torus. The technical tool for the proofs is the use of the
notion of parallelism on those groups.
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1 Introduction and preliminaries
We investigate second order differential equations and inclusions on the group
Ds(T n) of Sobolev Hs-duffeomorphisms of flat n-dimensional torus T n, s >
n
2

+ 1. The necessary preliminaries on their group and Hilbert manifold struc-
tures can be found in [2, 4].

Besides the group structure mentioned above, on Ds(T n) there exists an
additional structure generated by the global parallelism of the tangent bundle
on T n. This structure is the main technical tool of our consideration. It is
described as follows (see, e.g., [4]).
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Definition 1. Introduce the operators:
(i) B : TT n → Rn, the projection to the second factor in TT n = T n×Rn;
(ii) A(m) : Rn → TmT n, the inverse to B (see (i)) mapping to the tangent

space to T n at m ∈ T n;
(iii) Qg = A(g(m)) ◦ B, a linear isomorphism Qg : TmT n → Tg(m)T n,

where g ∈ Ds and m ∈ T n .

The operator Qe is a one, different from the right shift, that sends every
tangent space to the group isomorphically to the tangent space at the unit e.
Thus, besides the right-invariant vector fields on Ds(T n) there is another class
of fields with a property of invariance, this time with respect to the action of
operator Q. We call these fields parallel.

Definition 2. A vector filed X on Ds(T n) is called parallel if at every point
η ∈ Ds(T n) its value Xη = QηXe where Xe ∈ TeD

s(T n).

Note that the parallel vector field X is invariant with respect to Qθ for
every θ ∈ Ds(T n).

By i we denote an isometric embedding of T n to a Euclidean space Rk for
k large enough, that exists by well-known Nash’s theorem.

This embedding i : T n → Rk generates the embedding of Ds(T n) to the
Hilbert space Hs(T n,Rk), which we denote by the same symbol i.

Recall that a tubular neighborhood U of the submanifold iDs(T n) in
Hs(T n,Rk) has the structure of direct product U = iDs(T n) ×W , where W
is a ball in the space normal to the tangent space TeD

s(T n), e = id is the unit
in the group Ds(T n). By r we denote the retraction r : U → Ds(T n). Thus
the tangent spaces to U are represented as TξU = TrξD

s(T n)× TξW . If X(η)
is a vector field on Ds(T n), the tangent map Ti sends it into the vector field
TiX on iDs(T n). By symbol X̄ we denote the extension of TiX to U of the
form X̄ξ = (TiXrξ, 0).

On Ds(T n) one can introduce a strong Riemannian metric, say, as in [2, 4].
By dist(η, θ) we denote the Riemannian distance between η and θ (i.e., the
infimum of curve lengths for curves joining η and θ). Introduce on TDs(T n)
the distance d by the formula

d((X(η)), (Y (θ))) = dist(η, θ) + ‖QeX(η)−QeY (θ)‖, (1.1)

where the norm in TeD
s(T n) is generated by the strong Riemannian metric.

Besides, we shall use the distance between the above-mentioned vectors in Rk

after embedding. This distance is denoted by ‖iX(η)− iY (θ)‖.
Introduce another strong Riemannian metric on TDs

µ(T n) as follows (see
[3]). Represent the tangent space T(m,X)TDs

µ(T n) as the direct product of
the vertical subspacde V̄(m,X) and the space of Live-Civita connection H̄(m,X)

of the weak Riemannian metric (see [2]) on Ds
µ(T n). For every U and V
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from V̄(m,X) define the inner product as (KU,KV )s
η where K is the connector

of the above-mentioned Levi-Civita connection and (·, ·)s
η is the strong inner

product in TηD
s(T n) generated by the strong Riemannian metric. For every

X and Y from H̄(m,X) define the inner product as (TπX, TπY )s
η. Set H̄(m,X)

and V̄(m,X) to be orthogonal to each other. Thus, on TDs
µ(T n) a certain strong

Riemannian metric is well-defined. The Riemannian distance, i.e., the infimum
of the length of curves, connecting the points in TDs, with respect to the above
Riemannian metric, is denoted by d1.

Construct the distance d2(X, Y ) on TTDs
µ(T n), analogous to the distance

d on TDs
µ(T n), by the formula

d2(X,Y ) = d(π1X, π1Y ) + ‖QeKXv −QeKYv‖

+‖QeTπXh −QeTπYh‖, (1.2)

where π : TDs
µ(M) → Ds

µ(M) is the natural projection, Xv and Yv are the
vertical components of X and Y while Xh and Yh are their horizontal compo-
nents.

For the metrics dist, d, d1 and d2 and for the norm ‖ · ‖ in TeD
s(T n) we

shall consider their Kuratowski measures of non-compactness which will be
denoted by αdist, αd, αd1 , αd2 and α‖·‖, respectively. We refer the reader, say,
to [1], where the definitions of measures of non-compactness and of condensing
operators are given and the corresponding theory is described in details.

We say that a force field F (t,m,X) is given on a manifold M if in the
tangent space TmM at every m ∈ M a certain vector F (t, m,X) depending on
the time t and the vector X ∈ TmM , is given. The force fields are right-hand
sides of the second order differential equations on manifolds given in terms of
covariant derivatives (see, e.g., [4]).

The main aim of the paper is investigation of set-valued force fields and the
corresponding second order differential inclusions on the groups of diffeomor-
phisms of the flat n-dimensional torus with the use of the notion of parallelism.
On this base some existence of solution theorems for second order differential
inclusions on the above-mentioned groups are obtained.

The definitions and principal facts from the theory of set-valued maps and
differential inclusions are contained in [6].

2 Second order differential inclusions
Lemma 1. Let a set-valued force field F : [0, l] × TDs (T n) → TDs (T n)
with convex values satisfy the upper Caratheodory condition and be such that
for almost all t for the mapping A : [0, l] × TDs (T n) → TeD

s (T n) of the
form A (t, η, X) = QeF (t, η,X) and for every bounded set Ω ⊂ Ds (T n) the
inequality α‖.‖ (A (t, Ω)) ≤ g (t) αd (Ω) holds. Then for almost all t the vector
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field F (t, η,X) is k-bounded with respect the measure of non-compactness αd

with the coefficient 1 + g(t).

Proof. By the hypothesis for every Ω ⊂ TDs, for which αd (Ω) is finite,
the inequality α‖.‖ (A (t, Ω)) ≤ g (t) αd (Ω) holds. Specify t ∈ [0, l]. Suppose
that αd (Ω) = ξ, i.e., for every ε > 0 there exists a finite cover of Ω by the sets
Θi with diameters ξ + ε

2
. Then from the hypothesis it follows that there exists

a finite cover of A (t, Ω) ⊂ TeD
s (T n) by the sets Gj with diameters g (t) ξ + ε

2
.

Consider the set QηA (t, Ω) ⊂ TηD
s (T n). Then the set =

⋃
η∈Ω

QηA (t, Ω) has

the natural structure of direct product Ω × A (t, Ω). Consider the set Gij =⋃
η∈Θi

QηGj. The collection of sets Gij forms a finite cover of Γ and the diameter

of every such set with respect to the distance d is not greater then ξ+g (t) ξ+ε.
Hence αd () ≤ (1 + g (t))ξ. Since F (t, Ω) ⊂ Γ, for almost all t the vector field
F (t, η, X) is k-bounded with respect to the measure of non-compactness αd

with the coefficient 1 + g(t). 2

Lemma 2. Let the set-valued force field F on TDs (T n) is as in the previous
Lemma. Then the vertical lift of this mapping

F l : [0, l]× TDs (T n) → TTDs (T n)

is k-bounded with respect to the measures of non-pcompactness αd and αd2

with the coefficient 2 + g(t).

Proof. Specify t ∈ [0, l]. Consider the set Θ ⊂ TDs (T n). Let its measure
of non-compactness αd (Θ) = ξ. This means that for every ε >0 it can be
covered by a finite number of sets Θi with diameter ξ + ε. Then from the
definition of distance d it follows that the set πΘ can be covered by a finite
number of sets πΘi whose diameter is not greater than ξ +ε, i.e., αd (πΘ) ≤ ξ.
Then by the hypothesis α‖.‖ (A (t, πΘ)) ≤ g (t) ξ, i.e., (A (t, πΘ)) ⊂ TeD

s (T n)
can be covered by a finite number of sets Gj with the diameter nit greater
than g (t) ξ + ε. By analogy with the proof of the previous Lemma consider
the sets Gl

ij =
⋃

θ∈Θi

(QπθGj)
l
θ. It is evident that the collection of all Gl

ij covers

the image F l (t, Θ). Since we have the finite number of those sets and the
diameter of each one is not greater than 2ξ + g(t)ξ + ε, the Lemma follows. 2

Introduce the norm
∥∥∣∣F l

∣∣∥∥ = sup
y∈F l

‖|y|‖. Choose an arbitrary point Z ∈
TDs(T n). Since at every given t the set-valued map F l is upper semicontinu-
ous, there exists a neighborhood V ′(Z) ⊂ TDs (T n) of the point Z such that
for Y ∈ V ′ (Z) the relation

∥∥∣∣F l (t, Y )
∣∣∥∥ <

∥∥∣∣F l (t, Z)
∣∣∥∥ + C holds.

Determine the neighborhood Ṽ (Z) ⊂ TDs (T n) by the formula Ṽ = V
⋂

V ′

where V is the neighborhood from [3, Theorem 1]. Specify a neighborhood
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D ⊂ U of Z as in [5, Theorem 1.4] such that r (D) ⊂ Ṽ . By [5, Theorem 1.4]
the retraction r is Lipschitz continuous on D with the constant 2.

Theorem 3. On the domain D for almost all t the vector field F̄ l is k-bounded
with respect to the measure of non-compactness α‖·‖ with the coefficient

2 (2 + g(t))
(
1 + a + k(C +

∥∥∣∣F l (t, Z)
∣∣∥∥)

)
.

Proof. Consider the set Ω ⊂ D. Let α (Ω) = ξ. I.e., for every ε > 0 it
can be covered by a finite number of sets Ωi with diemeter non greater than
ξ + ε. Consider the set r (Ω) ⊂ TDs(T n), where r the retraction mentioned
above. By [5, Theorem 1.4] the retraction r is Lipschitz continuous on D with
the constant 2 with respect to the norm ‖ · ‖ on D and the distance d1 on
TDs(T n). Hence the set r (Ω) can be covered by a finite number of the sets
with diameter not greater than 2ξ + ε wigth respect to d1. Consider the set
F l (t, r (Ω)) ⊂ TTDs (T n). This set can be covered by a finite number of sets
with diameter not greater than 2 (2 + g(t)) ξ + ε with respect to the distance
d2. Now from Lemma 2 and from the construction of the neighborhoods Ṽ and
of D it follows that the set F̄ l (t, Ω) can be covered by a finite number of sets
with diameter not greater tan 2 (2 + g(t))

(
1 + a + k(C +

∥∥∣∣F l (t, Z)
∣∣∥∥)

)
ξ + ε.

Hence F̄ l is condensing on D with respect to α‖cdot‖ with the coefficient

2 (2 + g(t))
(
1 + a + k(C +

∥∥∣∣F l (t, Z)
∣∣∥∥)

)
. 2

Let F be a set-valued force field with convex images on TDs(T n) that
satisfies the upper Caratheodory condition. Consider the differential inclusion

D̃

dt
η̇(t) ∈ F (t, η, η̇) . (2.1)

This problem is reduced to the differential inclusion η̇ ∈ S̃ + F l on TDs(T n)
where F l is the vertical lift of F TO Ds(T n) and S̃ is the geodesic spray of
the Levi-Civita connection of the weak metrics. It is known that S̃ is smooth
and satisfies the condition TπS̃(X) = X. Consider the extension S̄ : U → U of
S̃ : TDs(T n) → TTDs (T n) defined by the formula S̄(x) = TjS(r(x)), x ∈ U .

Theorem 4. Let the set-valued force field F : [0, l]× TDs (T n) → TDs (T n)
with convex images satisfy the upper Caratheodory condition and be such that
for almost all t the map A : [0, l] × TDs (T n) → TeD

s (T n) of the form
A (t,X) = QeF (t,X) is k-bounded with respect to the measures of non-
compactness αd and α‖·‖ with the coefficient g(t). Then for almost all t the
vector field S̄ + F̄ l is locally k-bounded on a small enough neighborhood U in
TDs(T n) with respect to the measures of non-compactness α‖|·|‖ .
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Proof. By Theorem 3 for almost all t ∈ [0, l] for every Z ∈ TDs(T n)
there exists its neighborhood D in U , on which the set-valued force field F̄ l is
k-bounded with the coefficient k = 2 (2 + g(t))

(
1 + a + k(C +

∥∥∣∣F l (t, Z)
∣∣∥∥)

)

relative to the measure of non-compactness α‖|·|‖. The geodesic spray S̃ is a
C∞-smooth vector field. The embedding j and the retraction r are S∞-smooth
as well. Thus the vector field S̄ on U is C∞ smooth and so, in particular,
locally Lipschitz continuous. Hence on a small enough neighborhood of the
point Z the field S̄ is Lipschitz continuous with a certain constant g > 0.
Without loss of generality one can suppose that D is the above-mentioned
neighborhood. By the properties of Kuratowski’s measure of non-compactness
the sum of locally k-bounded and a locally Lipschitz continuous field is locally
k-bounded. Hence the set-valued vector field S̄ + F̄ l is locally k-bounded
with respect to the measure of non-compacness α‖|·|‖ with the coefficient k =
2 (2 + g(t))

(
1 + a + k(C +

∥∥∣∣F l (t, Z)
∣∣∥∥)

)
+ g. 2

Theorem 5. Let the hypothesis of Theorem 4 are fulfilled and the function
g(t) be square integrable on the interval [0, T ]. Specify a point Z0 ∈ TDs(T n).
Suppose that on the closure D̄ of a certain neighborhood D of this point the
estimate ‖F (t,X) ‖ < f(t), X ∈ D̄ holds, where f(t) > 0 is a real function
that is square integrable on [0, l]. Then the initial value problem (2.1) with
initial condition η(0) = πZo, η̇(0) = Z0 has a local solution.

Proof. Without loss of generality one can consider D as a neighborhood
from the proof of Theorem 4. Consider the initial value problem γ′(t) ∈ S̄ + F̄ l

on U with the initial condition γ(0) ∈ Z0 ∈ jTeD
s(T n). Under the hypothesis,

the function

k(t) = 2 (2 + g(t))
(
1 + a + k(C +

∥∥∣∣F l (t, Z)
∣∣∥∥)

)
+ g

is integrable on [0, l]. Then from Theorem 4 it follows that the right-hand
side of the latter differential inclusion satisfies the conditions of [6, Theorm
5.2.1] and so this initial value problem has a local solution. By analogy with
[5, Theorm 2.4] one can easily prove that this solution belongs to jTDs(T n).
Inclusion (2.1) is reduced to the inclusion with right-hand side S̃ + F l. This
means that πγ(t) satisfies inclusion (2.1). 2
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