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Abstract

We develop two probabilistic approaches that allows to construct
a solution of the Cauchy problem for a class of fully nonlinear second
order PDEs. Within the first one we reduce an original PDE to a quasi-
linear PDE in the second order jet-bundle and construct a probabilistic
counterpart in terms of forward stochastic equations for the resulting
Cauchy problem. The second is based on a reduction to a semilin-
ear PDE that allows to reduce the original problem to a fully coupled
forward-backward BSDE.
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1 Introduction
A deep connection that there exists between stochastic differential equation
(SDE) theory and partial differential equation (PDE) theory was well estab-
lished at the first steps of the SDE theory development. This connection can
be described as follows.

Assume that g(s, x) ∈ Rd is a smooth bounded function and u(s, x) ∈
Rd, s ∈ [0, T ], x ∈ Rd is a classic of the Cauchy problem

us +Au + g = 0, u(T, x) = u0(x), (1.1)

Au(x) =
1

2

d∑

i,j,k=1

Aik(x)∇i∇juAjk(x) +
d∑

j=1

aj(x)∇iu. (1.2)
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The function u is a classic solution to (1.1) if u ∈ C1,2 and satisfies (1.1) for
all s ∈ [0, T ], x ∈ Rd.

We denote by Ck the set of functions f : Rd → R1 with k continuous
bounded derivatives and by C1,2 the set of functions f : [0, T ]×Rd → R1 such
that f(s, x) has a bounded continuous derivative in s and f(s) ∈ C2.

If u ∈ C1,2 solves (1.1) then there exists probabilistic representation of the
form

u(s, x) = E

[
u0(ξs,x(T )) +

∫ T

s

g(τ, ξs,x(τ))dτ

]
, (1.3)

where ξs,x(t) satisfies a stochastic differential equation

dξ(t) = a(ξ(t))dt + A(ξ(t))dw(t), ξ(s) = x. (1.4)

Here w(t) ∈ Rd is a Wiener process defined on a probability space (Ω,F , P ).
An inverse statement is true as well. Namely, let there exists a solution of

SDE (1.4) and the function u given by (1.3) belongs to C1,2, then u(s, x) is a
unique classical solution of (1.1) [1].

One can extend these statements tothe case of a quasilinear PDE [2]-[4].
Let a(x, u), A(x, u), x, u ∈ Rd be twice differentiable in x functions with

sublinear growth in x polynomial growth in u. Consider the Cauchy problem
(1.1) with

Auf(x) =
1

2

d∑

i,j,k=1

Aik(x, u)∇i∇jfAjk(x, u) +
d∑

j=1

aj(x, u)∇jf, (1.5)

Then the function u(s, x) admits a probabilistic representation of the form

u(s, x) = E

[
u0(ξs,x(T )) +

∫ T

s

g(ξs,x(τ), u(τ, ξs,x(τ))dτ

]
, (1.6)

where the process ξs,x(t) satisfies a stochastic differential equation

dξ(t) = a(ξ(t), u(t, ξ(t)))dt + A(ξ(t), u(t, ξ(t))dw(t), ξ(s) = x. (1.7)

Note that this time the equations (1.6),(1.7) make a closed system. Pro-
vided we can prove the existence and uniqueness of a solution (ξ(t), u(s, x)
to this system with u(s) ∈ C2 we can check that this function satisfies the
Cauchy problem

us(s, x) +Auu(s, x) + g(s, x, u(s, x)) = 0, u(T, x) = u0(x), (1.8)

with Au given by (1.5). At the other hand any C2-smooth bounded solution
u(s) of (1.8) can be represented in the form (1.6) with ξs,x(t) satisfying (1.7).
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Below we consider both the Cauchy problem for a semilinear parabolic
equation

us(s, x) +A1
uu(s, x) + g(s, x, u,∇u) = 0, u(T, x) = u0(x), (1.9)

where for φ ∈ C2

A1
uφ(x) =

1

2

d∑

i,j,k=1

Aik(x, u,∇u)∇i∇jφAjk(x, u,∇u) +
d∑

j=1

aj(x, u,∇u)∇jφ

(1.10)
and the Cauchy problem for a fully nonlinear parabolic equation

uk
s + fk(s, x, u,∇u,∇2uk) = 0, k = 1, . . . , d1, u(T, x) = u0(x) (1.11)

under some assumptions on the functions g and f .
We present here two probabilistic approaches to fully nonlinear parabolic

equations. First of them based on ideas by McKean and Freidlin [1]- [3] was
developed in papers [4]-[7] and the second is based on ideas of the BSDE theory
developed by Pardoux and Peng [8]-[9]. To explain the underlying ideas we
need a differential geometry point of view for a nonlinear PDE.

Let X,Y be a couple of Euclidian spaces (or X is a smooth finite dimen-
sional manifold modeled in a Euclidian space) and u(s, x) ∈ Y be a time
depending vector field In the main part of this paper we assume X = Y = Rd.
Given a linear spaces X and Y let X⊗Y denote their tensor product and X×Y
denote their direct product. Below we use notations us,∇iu = uxi

, i = 1, . . . , d
for partial derivatives of a vector field u ∈ Y in s and xi respectively and note
that ∇u ∈ X ⊗ Y .

Let X be a smooth manifold, π : E → X be a vector or a fibre bundle
over X and given an integer k denote by Jk(E) the corresponding k-th jet
bundle. Given integers k and r we denote by πk+r

k : Jk+r(E) → Jk(E) a
mapping that maps a (k + r)-th jet into a corresponding k-th jet, that is
πk+r

k (f(x)) = jk(f)(x). Let ∇u be a covariant derivative in sections of the
corresponding bundle. In this framework it is natural to treat the Cauchy
problem for a fully nonlinear parabolic equation of the second order

us + f(x, u,∇u,∇2u) = 0, u(T, x) = u0(x) (1.12)

as the Cauchy problem for an equation on the jet bundle J2(E) and to construct
its differential prolongations of different orders. In particular we will need a
differential prolongation of (1.12) to an equation on the fibre bundle π5

3 :
J2(J3(E)) → J3(E) or to π3

1 : J2(J1(E)) → J1(E). Here J0(E) = E . It will allow
us to deal with a system consisting of (1.12) and its corresponding differential
prolongations as a quasilinear equation in sections of π5

3 or as a semilinear
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equation in sections of π3
1 respectively. From probabilistic point of view this

gives the possibility to apply the technique developed in [4]- [7]. As a result
this allows to state conditions that ensure the existence and uniqueness of a
(local in time) classical solution to (1.12).

There exists another probabilistic approach to the Cauchy problem for a
semilinear PDE based on the theory of backward backward stochastic differ-
ential equations (BSDE) developed in [8]– [9]. To a fully nonlinear second
order parabolic equations this approach was extended in [10]. Here we con-
sider (1.12) as an equation on the fibre bundle π3

1 : J2(J1(E)) → J1(E) or in
other words as a semilinear equation in sections of π3

1. This allows us to de-
rive a new probabilistic approach to the Cauchy problem for (1.12) based on
the so called fully coupled forward-backward SDEs (FBSDEs). The theory of
FBSDEs was developed by Peng, Hu, Wu and others in papers [11] - [14]. AS
a result we construct a viscosity solution to (1.12).

Let us recall a notion of a viscosity solution of the Cauchy problem for a
nonlinear parabolic equation [15].

Given x, y ∈ Rd let 〈x, y〉 =
∑d

k=1 xkyk and Md
+ ∈ Rd ⊗ Rd denote the set

of positive definite matrices. Given a bounded G ⊂ Rd let u be a mapping
from GT = [0, T ]×G to R1.

The second order superjet of a function u at point (ŝ, x̂) ∈ [0, T ]×G relative
to GT is

P2,+
G u(ŝ, x̂) =

{(a, p, q) ∈ R1 ×Rd ×Md
+ : u(s, x) ≤ u(ŝ, x̂) + a(s− ŝ) + 〈p, x− x̂〉+

1

2
〈q(x− x̂), x− x̂〉+ o(|s− ŝ|+ ‖x− x̂‖2), GT 3 (s, x) → (ŝ, x̂) ∈ GT},

The second order subjet of a function u at point (t̂, x̂) ∈ GT , relative to
GT is

P2,−
G u(ŝ, x̂) =

{(a, p, q) ∈ R1 ×Rd ×Md
+ : u(s, x) ≥ u(ŝ, x̂) + a(s− ŝ) + 〈p, x− x̂〉+ (1.13)

1

2
〈q(x− x̂), x− x̂〉+ o(|s− ŝ|+ ‖x− x̂‖2), GT 3 (s, x) → (ŝ, x̂) ∈ GT}.

Let USC(G) = {the set of upper semicontinuous functions u : G → R1}
and LSC(G) = {the set of lower semicontinuous functions u : G → R1}.

A function u(s, x) is called a subsolution of (1.11) when u ∈ USC(GT ) and

a + F (x, u(s, x), p, q) ≤ 0, for (s, x) ∈ GT , (a, p, q) ∈ P2,+
G u, (1.14)

and a supersolution of (1.11), when u ∈ LSC(GT ) and

a + f(x, u(s, x), p, q) ≥ 0, for (s, x) ∈ GT , (a, p, q) ∈ P2,−
G u. (1.15)
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Though we need a background based on differential geometry treatment of
a fully nonlinear PDE, throughout the whole paper but section 2 we consider
the problem only in a framework of linear spaces.

Nevertheless most of the results should be think of as local results which
one needs as the first step for the investigation of nonlinear parabolic equations
on manifolds and bundles.

Let us just mention one more probabilistic approach based on the theory
of stochastic flows due to Kunita [16], [17] which allows to construct weak
(generalized or distributional) solutions of parabolic equations. This approach
was extended to a quasilinear case in [18].

At the end of the introduction let us note some advantages of the approach
to nonlinear PDEs based on SDEs. One of them is the absence of nondegen-
eracy assumptions both for the case of scalar nonlinear equations and systems
of such equations. In addition under some restrictions this approach can be
used to give a probabilistic background for the vanishing viscosity technique
used to construct solutions of hyperbolic systems [19]. Another advantage of a
probabilistic approach is its weak dependence on a dimension of a phase space
X and a model space of a fibre manifold E that allows to extend some results to
an infinite dimensional case [4],[7]. A drawback of this approach is rather high
smoothness assumptions on the Cauchy problem data. The approach based on
FBSDEs needs less smooth data but allows to deal with a more narrow class
of systems of parabolic equations.

The remaining part of the paper is organized as follows. In section 2 we
expose the differential geometry point of view for nonlinear second order PDEs
and the notion of differential prolongation based mainly on [20]. In section 3
we reduce a quasilinear PDE to a stochastic problem and state conditions to
ensure that its solution gives rise to a classical solution of the original PDE.
Next we apply the idea of differential prolongation to reduce both semilinear
and fully nonlinear PDEs to quasilinear PDEs and then apply the above prob-
abilistic approach to the resulting Cauchy problem. In section 4 we consider
an alternative approach to constructing a solution of the Cauchy problem for
a semilinear parabolic equation based on the FBPDE theory and pay special
attention to fully coupled FBSDEs. We check that the solution of a fully cou-
pled FBSDE gives rise to a viscosity solution of the Cauchy problem for the
original semilinear PDE. Finally in section 5 we apply the idea of a differential
prolongation to a fully nonlinear system of PDEs to reduce it to a semilinear
one and apply the fully coupled FBSDE technique to construct a viscosity
solution of the original problem.
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2 Prolongation of differential equations
To explain the main ideas which allows us to reduce a semilinear or a fully non-
linear equation to a quasilinear one in section 3 or to reduce a fully nonlinear
equation to a semilinear one in section 4 we need some differential geometry
constructions.

From differential geometry point of view a partial differential equation
(PDE) is roughly a collection of relations between the dependent variables
and their derivatives with respect to independent variables.

From this point of view it is natural to think about a PDE as a subman-
ifold of a jet bundle. A prolongation of a PDE is a new PDE obtained by
differentiation of the original one. Below we use a prolongation to reduce a
fully nonlinear parabolic equation to a semilinear or even to a quasilinear one.

To explain how to treat a prolongation of an SDE it is natural to use the
language of jet bundles. To this end we need some notions and notations which
can be found in the book by Pommaret [20].

Assume first that all objects belong to Ck with k large enough or to C∞.
Let π : E → X be a vector bundle. We can think about X as the set of
independent variables and about the manifold E as the set of both independent
and dependent variables (functions). Denote by Γ∞(π) the set of smooth
sections of π : E → X.

Let (Uα, Φα) be an atlas on E and (Uα, φα) be the atlas on X. We denote
by xi

α the local coordinates in Uα and by (xi
α, yk

α) local coordinates in Uα on E .
A (local) section of π is a continuous map s : U → E such that πs(x) = x and
(U, φ) is a chart from the atlas.

Given an integer k and a couple f, g of local sections of a fibre bundle π :
E → X we say that f and g are q-equivalent at a point x ∈ X if f j(x) = gj(x)
and ∂µg

j(x) = ∂µf
j(x) for |µ| ≤ k where µ is a multiindex. An equivalence

class of section f is called a k-jet of this section and is denoted as jk(f)(x). In
fact one can think about jk(f)(x) as a piece of Taylor series of the section f
up to the order k terms inclusively.

We denote by Jk(E) the bundle of k−jets of sections of π and let J0(E) = E .
An element of Jk(E) we typically denote by jkπ(x). We let πk : Jk(E) → X
and πk

l : Jk(E) → Jl(E), l ≤ k be the canonical projections.
A partial differential equation of order k is a fibred submanifoldRk ⊂ Jk(E)

of πk : Jk(E) → X. We denote by π̂ : Rk → X the restriction of πk to Rk. We
also write Rk,x = Rk ∩ π−1

k (x).
A local defining equation for Rk is a quintiple (U,Z, τ, Φ, η) such that U

is a neighborhood of x, τ : Z → U is a fibred manifold, Φ : π−1(U) → Z is
a fibred manifold morphism of constant rank, η of τ : Z → U is a smooth
section and π−1

k (U)∩Rk = kerη Φ = {vk ∈ π−1
k (U)|Φ(vk) = η(πk(vk))}. A local

solution of Rk is a local section (u, U) with the property that jku(x) ∈ Rk for
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every x ∈ U .
As an example let us consider the case X = R2, E = R2 × R1 with

π((x, y), u) = (x, y) and denote coordinate of J2(E) by

(x, y, u, ux, uy, uxx, uxy, uyy).

In this case the bundle of 2-jets is equal to the vector bundle J2(E) = R2 ×
R1 ×R2 ×R2 ⊗R2.

We define a second order partial differential equation by

RLap = {(x, y, u, ux, uy, uxx, uxy, uyy) ∈ J2π|uxx + uyy = 0}.

We note that this is indeed a fibred manifold. The subscript Lap stands for
yhe Laplace equation and RLap is the geometric form for the Laplace equation.

Of course solutions are functions (x, y) 7→ u(x, y) satisfying

∂2u

∂x2
+

∂2u

∂y2
= 0.

To obtain a local defining equation for the Laplace equation we set U = R2,
ZLap = R2 ×R with τ((x, y), z) = (x, y),

ΦLap((x, y, u, ux, uy, uxx, uxy, uyy) = ((x, y), uxx + uyy)

and ηLap(x, y) = ((x, y), 0).
A homogeneous (inhomogeneous) linear partial differential equation of or-

der k is a vector (affine) subbundle Rk ⊂ Jk(E) of πk : Jk(E) → X.
A quasilinear partial differential equation of order k is a partial differential

equation Rk ⊂ Jk(E) such that (πk
k−1)

−1(πk
k−1(vk) ∩ Rk is an affine subspace

of (πk
k−1)

−1(πk
k−1(vk) ∩Rk for each vk ∈ Rk.

Let us describe the above objects in local coordinates. Let π : U → X be
a fibred manifold. We denote local coordinates for X by x ∈ Rd and fibred
coordinates for E as (x, u) ∈ Rd × Rd. Thus the local representation of π is
(x, v) → x and coordinates for Jkπ are

(x, u, v1, . . . , vk) ∈ Rd ×Rd × L1
sym(Rd)× · · · × Lk

sym(Rd).

Let Rk be a k-th order PDE. Its solution is locally presented by a map x 7→
(x, u(x)) with the property that the map x 7→ (x, u(x), Du(x), . . . Dku(x))
takes its value in Rk.

Let (U,Z, τ, Φ, η) be a local defining equation and suppose that U is a
coordinate chart for X with coordinates (x, u) ∈ Rd×Rd and (x, z) ∈ Rd×Rd

for Z. Then Φ has the local representation

(x, u, v1, . . . , vk) 7→ (x, Φ(x, u, v1, . . . , vk))
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defining the map Φ. If the local representation of η is x → (x, η(x)), then
Rk ∩ π−1

k (U) is given by {(x, u, v1, . . . vk)|Φ(x, u, v1, . . . , vk) = η(x)}.
Prolongation of a PDE is the formal differentiation of the PDE arriving

at a PDE of higher order. To be more precise let π : E → X be a fibred
manifold and let Rk ⊂ Jk(E) be a PDE of order k. For an integer m the m−th
prolongation ofRk is the subset ρm(Rk) = Jm(Rk)∩Jk+m(E) of Jk+m(E), where
the natural inclusion of Jk+m(E) in Jm(E) is used.

As an example we consider RLap defined by X = R2, E = R2 ×R and

RLap = {(x, y, u, ux, uy, uxx, uxy, uyy)|uxx + uyy = 0}.

Let us use coordinates (x, y, u, ux, uy, uxx, uxy, uyy) for RLap and note that
since RLap ⊂ J2(E), then

(x, y, u, ux, uy, uxx, uxy, uyy) 7→ (x, y, u, ux, uy, uxx, uxy,−uxx). (2.1)

One can define prolongations project to subsets of prolongations. Given
Rk ⊂ Jk(E) we have πk+l

k+j(ρl(Rk)) ⊂ ρj(Rk) for integer k, l, j with j ≤ l. In
addition π̂k+l

k+j : ρl(Rk) → ρj(Rk) , j ≤ l and π̂k+l(Rk) → X are the canonical
projections.

Let us use coordinates (x, y, u, ux, uy, uxx, uxy, uyy for RLap and note that
the inclusion of RLap into J2(E) is then given by

(x, y, u, ux, uy, uxx, uxy, uyy) 7→ (x, y, u, ux, uy, uxx, uxy,−uxx) (2.2)

Let us denote by ρ1(RLap) the first prolongation of RLap. To determine this
we note that coordinates for J1(R2) are denoted by

(x, y, u, ux, uy, uxx, uxy, u,x, u,y, ux,x, ux,y, uy,x, uy,yuxx,x, uxx,y,

uxy,x, uxy,y).

Here the indices to the right of the commas mean partial differentiation of the
fibre variables of J1(R2). If we think of J1(R2) as a subset of J1(J2(E)) using
the inclusion (2.2), this subset is given by

{(x, y, u, ux, uy, uxx, uxy, uyy, u,x, u,y, ux,x, ux,y, uy,x, uy,y, (2.3)

uxx,x, uxx,y, uxy,x, uxy,y, uyy,x, uyy,y)|uyy = −uxx, uyy,x =

−uxx,x, uyy,y = −uxx,y}
Now, the inclusion of J3(E) in J1(J2(E)) is given by

((x, y, u, ux, uy, uxx, uxy, uyy, uxxx, uxxy, uxyy, uyyy) → ((x, y, u, ux, uy,

uxx, uxy, uyy, ux, uy, uxx, uyx, uyy, uxxx, uxxy, uxxy, uxyy, uxyy, uyyy)).
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Thus J3(E) is the subset of J1(J2(E)) given by

{(x, y, u, ux, uy, uxx, uxy, uyy, u,x, u,y, ux,x, ux,y, uy,x, uy,y, (2.4)

uxx,x, uxx,y, uxy,x, uxy,y, uyy,x, uyy,y)|u,x = ux, u,y = uy,

ux,x = uxx, ux,y = uxy = uy,x, uy,y = −uyy, uxy,x = uxx,y, uxy,y = −uyy,x}.
As a result we receive that J1(R2)∩J3(E) is the subset of J1(J2(E)) derived

by combining (2.3) and (2.4)

ρ1(RLap) = {(x, y, u, ux, uy, uxx, uxy, uyy, u,x, u,y, ux,x, ux,y, uy,x, uy,y,

uxx,x, uxx,y, uxy,x, uxy,y, uyy,x, uyy,y)|u,x = ux, u,y = uy,

ux,x = uxx, ux,y = uxy = uy,x, uy,y = −uyy, uxy,x = uxx,y, uxy,y = −uyy,x}.
This is the first prolongation of RLap thought of as a subset of J1(J2(E)). At
the other hand we can think of this as a subset of J3(E) via (2.4)

ρ1(RLap) = {x, y, u, ux, uy, uxx, uxy, uyy, uxxx, uxxy, uxyx, uxyy, uyyy)|
uxx + uyy = 0, uxxx + uyyx = 0, uxxy + uyyy = 0}.

3 Probabilistic approach to quasilinear and
semilinear parabolic equations
Let d be an integer, a(x) ∈ Rd, A(x) ∈ Rd × Rd, x ∈ Rd, x · y ≡ 〈x, y〉 be
the inner product in Rd, ‖x‖ be the norm in Rd and |A| = (TrA∗A)

1
2 be the

matrix norm. Let Ck(Rd, Rd) denote the set of continuous bounded functions
f : Rd → Rd with continuous bounded derivatives up to the order k, we say
in this time that u is k times differentiable. Let C1,k([0, T ] × Rd, Rd) denote
the set of continuous bounded functions u : [0, T ] × Rd Rd such that u(s, x)
is differentiable in t and k times differentiable in x. We use below the short
notations f ∈ Ck, u ∈ C1,k and denote by ‖u‖k = supx ‖u(k)(x)‖ the sup-norm
in Ck.

Given a probability space (Ω,F , P ) and a Wiener process w(t) ∈ Rd we
denote by Ft a stochastic flow adapted to w(t) and consider a stochastic dif-
ferential equation

dξ(t) = a(ξ(t))dt + A(ξ(t))dw(t), ξ(s) = x. (3.1)

We state conditions on coefficients we will need in the sequel.
Condition C 3.1. Functions a(x) ∈ Rd, A(x) ∈ Md are nonrandom and

there are exist positive constants K, L such that

‖a(x)‖2 + |A(x)|2 ≤ K[1 + ‖x‖2],
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‖a(x)− a(y)‖2 + |A(x)− A(y)|2 ≤ L‖x− y‖2, x, y ∈ Rd.

A classical existence and uniqueness theorem reads.
Theorem 3.1.Let C 2.1 hold. Then there exists a unique solution ξs,x(t) ∈

Rd of (2.3) possessing the Markov property.
Next we state conditions to ensure that the solution ξs,x(t) of (3.1) depends

on initial data smoothly.
Condition C 3.2. Assume that in addition to C 3.1 a(x) and A(x) are

twice differentiable.
Theorem 3.2.Let C 3.2 hold, then there exist processes

η(t) = ∇ξs,x(t) ∈ Rd ×Rd

and
γ(t) = ∇2ξs,x(t) ∈ Rd ×Rd ×Rd

that satisfy the stochastic equations

dη(t) = ∇a(ξ(t))η(t)dt +∇A(ξ(t))(η(t), dw(t)), η(s) = I,

dγ(t) = ∇a(ξ(t))γ(t)dt +∇A(ξ(t))(γ(t), dw(t))+

∇2a(ξ(t))(η(t), η(t))dt +∇2A(ξ(t))(η(t), η(t), dw(t)), γ(s) = 0.

In addition there exist positive constants C1, C2 such that

E‖η(t)h‖2 ≤ C‖h‖2, E‖γ(t)(h, h)‖2 ≤ C2‖h‖2 for h ∈ Rd.

As a result one can prove the following assertion [4].
Theorem 3.3.Let C 2.2 hold and u0(x) ∈ R1 be bounded and twice dif-

ferentiable. Then the function

u(s, x) = E[u0(ξs,x(T ))] (3.2)

is a unique classical solution of the Cauchy problem

us +Au = 0, u(T, x) = u0(x), (3.3)

where
Au = a(x) · ∇u +

1

2
TrA∗(x)∇2uA(x). (3.4)

Note that condition C 3.1 allows to construct the function u(s, x) via (3.2)
but we needC 3.2 to prove that u ∈ C1,2 and solves the Cauchy problem (3.3).

To get a flavor of that how these results can be extended to a quasilinear
case we consider the Cauchy problem for a scalar nonlinear parabolic equation

∂f

∂t
+ 〈a(x, f),∇〉f +

1

2
TrA∗(x, f)f ′′A(x, f) = 0, f(0, x) = f0(x). (3.5)

12



Here a(x, f) ∈ Rd and A(x, f) ∈ L(Rd), x ∈ Rd, f ∈ R1, .
In the sequel we use C, K, L to denote absolute constants (if a constant

depends on a parameter f we denote it by Cf , Kf ).
Condition C 3.3.
The functions a(x, f) ∈ Rd, A(x, f) ∈ Rd × Rd, x ∈ Rd, f ∈ R1 satisfy the

estimates

‖a(x, f)− a(x1, f1)‖2 + |A(x, f)− A(x1, f1)| ≤ L‖x− x1‖2 + L1|f − f1|2,

‖a(x, f)‖2 + |A(x, f)|2 ≤ K[1 + ‖x‖2 + |f |2m],

where L1 depend on max(|f |, |f1|), f0(x) ∈ R1, is bounded and differentiable
and m is an integer. f, f1 ∈ Rd, |A| = ∑d

k=1 ‖Aek‖2, {ek}d
k=1 is an orthonormal

basis in Rd, and

supx‖f0(x)‖ ≤ K0, supx‖∇f0(x)‖ ≤ K1
0 .

To construct the solutions to (3.5) we reduce it to the stochastic system

dξ = a(ξ(τ), f(τ, ξ(τ)))dτ + A(ξ(τ), f(τ, ξ(τ)))dw(τ), ξ(s) = x, (3.6)

f(s, x) = Es,xf0(ξ(t)). (3.7)

Here Es,xf0(ξ(t)) = E[f0(ξ(t))|ξ(s) = x]. We construct the solution to (3.6),
(3.7) by the successive approximation method. Consider the stochastic equa-
tions

dξk(τ) = −a(ξk(τ), fk(τ, ξk(τ)))dτ + A(ξk(τ), fk(τ, ξk(τ)))dw(τ), (3.8)

ξk(0) = x

and the functions

f 0(t, x) = f0(x), fk+1(t, x) = Ef0(ξ
k(t)). (3.9)

To prove the convergence of (3.8), (3.9) to a limit ξ(t), f(t, x) as k → ∞ we
need a number of auxiliary estimates.

Let L be the subspace of the space C(R1×Rd, R1) of continuous bounded
functions consisting of Lipschitz continuous functions f equipped with the
uniform norm ‖f‖L = supx∈Rd|f(x)| for f ∈ L.

Denote by Lf (t) and Kf (t) minimal constants such that inequalities

|f(t, x)− f(t, y)| ≤ Lf (t)‖x− y‖, ‖f(t)‖L ≤ Kf (t)

hold.
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Let v(s, x) be a scalar function such that ‖v(s, ·)‖L ≤ Kv(s) < ∞, |v(s, x)−
v(s, y)| ≤ Lv(s)‖x− y‖, where Lv(s) < ∞ for s ∈ [0, T ].

Consider the stochastic equation

ξ(t) = x−
∫ t

s

a(ξ(τ), v(τ, ξ(τ)))dτ +

∫ t

s

A(ξ(τ), v(τ, ξ(τ))))dw(τ). (3.10)

We use the notation ξs,x,v(t) for the solution of this equation if we are
interested in the particular dependence of the process ξ(t) on these parameters
and fix some constant T such that 0 ≤ s ≤ t < T .

Lemma 3.4.Assume that C 3.3 holds. Then the solution ξx,v(t) of (3.10)
satisfies the following estimates

E‖ξ(t)‖2 ≤ 3[‖x‖2 + (T + 1)

∫ t

s

[C0 + C1K
2m
v (τ)dτ ],

E‖ξx,v(t)− ξy,v(t)‖2 ≤ 3‖x− y‖2e3Q
R t

s L2
v(τ)dτ , (3.11)

E‖ξx,v(t)− ξx,v1(t)‖2 ≤

2Q

∫ t

s

‖v(τ)− v1(τ)‖2
Ldτe2Q

R t
s L2

v(τ)]dτ (3.12)

where Q = (T +1)L(v,v). In addition, for f(s, x) = Ef0(ξs,x,v(t)) the estimates

‖f(t− s)‖L ≤ K0

and
|f(s, x)− f(s, y)|2 ≤ 3[K1

0 ]2‖x− y‖2e3Q
R t

s L2
v(τ)dτ (3.13)

hold.
Proof. The proof of these estimates is standard and based on the properties

of stochastic integrals (see [5]). We show only the proof of (3.11). By stochastic
integral properties and coefficient estimates in C 3.1 we have

E‖ξx(t)− ξy(t)‖2 ≤ 3‖x− y‖2+

3(T + 1)

∫ t

s

L(v,v)‖v(τ, ξx(τ))− v(t− τ, ξy(τ)‖2dτ ≤

3Q

∫ t

s

Lv(τ)‖ξx(τ)− ξy(τ)‖2dτ.

Finally, by Gronwall’s lemma we get

E‖ξx(t)− ξy(t)‖2 ≤ 3‖x− y‖2e3Q
R t

s L2
v(t−τ)dτ .
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Lemma 3.5 Let C 3.3 hold. Then there exists an interval ∆1 = [T1, T ]
and functions α(s), β(s) bounded for s ∈ ∆1. In addition, for all s ∈ ∆1 if
‖v(s)‖L ≤ α(s) and |v(s, x)− v(s, y)| ≤ β(s)‖x− y‖, then

‖f(s)‖L ≤ α(s), |f(s, x)− f(s, y)| ≤ β(s)‖x− y‖. (3.14)

Proof. Under C 3.3 we can choose α(s) = K0 to get ‖f(s)‖L ≤ α(s). To
prove (3.14) we notice that the estimate

Lf (s) ≤ 3[K1
0 ]2e3Q

R T
s Lv(τ)dτ (3.15)

results from (3.11).
We choose for β the solution to the equation

β(s) = 3[K1
0 ]2e3Q

R T
s β(τ)dτ . (3.16)

and notice that β solves the following Cauchy problem

dβ(s)

ds
= −3Qβ2(s), β(T ) = 3[K1

0 ]2

and admits the explicit representation

β(s) =
3[K1

0 ]2

1− 9Q[K1
0 ]2(T − s)

. (3.17)

We see thus that β(s) is bounded on the interval ∆1 = [T1, T ] with

|T − T1| < 1

9Q[K1
0 ]2

(3.18)

and meets the demands of the lemma.
Coming back to the successive approximation system (3.6) we can prove

the following statement.
Theorem 3.7 Assume that C 3.1 holds. Then there exists an interval

[T1, T ] such that for all s ∈ [T1, T ] there exists a unique solution to ξ(t), f(s, x)
the the system (3.3),(3.4). The process ξ(t) is a Markov process in Rd, while
f(s, x) is a bounded and Lipschitz continuous scalar function.

Proof. By lemma 3.5. we know that the mapping

Φ(s, x, v) = Ef0(ξs,x,v(t))

acts in the space L. Let

rk(s, x) = |fk+1(s, x)− fk(s, x)|2 and ζk(s) = supxr
k(s, x).
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By the estimates of lemma 3.4 we have

rk(s, x) ≤

2[K1
0 ]2(T + 1)

∫ T

s

L(fk+1,fk)‖fk(τ)− fk−1(τ)‖2
LdτeQ1

R T
s β(τ)dτ

and hence

ζk(s) ≤ δk

∫ T

s

. . .

∫ T

τ2

‖f 1(τ1)− f 0‖2dτ1 . . . dτk

holds with δ = 2[K1
0 ]2(T + 1)eQ1

R t
s β(τ)dτ and Q1 = 2L(fk,fk−1)(T + 1). Notice

that Q1 depends on sup-norm of functions fk(t), fk−1(t) that are bounded for
t ∈ ∆1 due to estimates of Lemma 3.2

Since fk are uniformly bounded by K0 and

‖f 1(s, ·)− f 0(·)‖L ≤ const < ∞,

we get

‖fk(s, ·)− fk−1(s, ·)‖L ≤ Nk

k!
const

where N = Tδ and T ≥ T1 is fixed. Hence we obtain that for each s ∈ (T1, T ]
the family fk(s, ·) uniformly converges to a limiting function f(s, ·) for all
s ∈ [T1, T ] for T1 satisfying (3.18) In addition, it is easy to check that f(s, x)
is Lipschitz continuous in x. In fact by lemma 3.5 for each s ∈ [T1, T ] we have

|fk(s, x)− fk(s, y)| ≤ β(s)‖x− y‖

where β(s) is given by (3.17) and the estimate is uniform in k.
To prove that the above constructed solution is unique we assume on the

contrary that there exist two solutions f1(s, x), f2(s, x) to (3.6), (3.7) possess-
ing the same initial data f1(0, x) = f2(0, x) = f0(x). It results from lemma 3.4
that there exists a constant C such that

‖f1(s, ·)− f2(s, ·)‖L ≤ C

∫ T

s

‖f1(τ, ·)− f2(τ, ·)‖Ldτ

and hence by the Gronwall lemma ‖f1(s, ·)− f2(s, ·)‖L = 0.
Finally, we know that a stochastic equation with Lipschitz coefficients has

a unique solution of the Cauchy problem. This yields the uniqueness of the
solution to the system (3.6),(3.7).

The Markov property of the process ξ(t) can be deduced in the standard
way since as soon as the Lipschitz continuous function f(s, x) is constructed
we found ourselves in the framework of the classical theory of SDEs.
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When the function f(s, x) given by (3.7) possesses two continuous bounded
derivatives one can easily check using the Ito formula that f(s, x) is a unique
solution to (3.5).

The above results can be easily extended to the case

us + a(x, u) · ∇u +
1

2
TrA∗(x, u)∇2uA(x, u) + f(x, u) = 0, u(T, x) = u0(x).

(3.19)
To construct a solution to (3.19) we reduce it to a stochastic problem

dξ(t) = a(ξ(t), u(t, ξ(t)))dt + A(ξ(t), u(t, ξ(t)))dw(t), ξ(s) = x. (3.20)

u(s, x) = E

[
u0(ξs,x(T )) +

∫ T

s

f(ξs,x(θ), u(θ, ξs,x(θ)))dθ

]
. (3.21)

To prove the existence and uniqueness theorem for the solution of (3.20),
(3.21) we have to add to C 3.3 and assumption that g(x, u) is sublinear in x,
has a polynomial growth in u and Lipschitz continuous in both x and u. We
say in this case that C 3.3’ holds.

To prove the required smoothness of f(s, x) given by (3.7 we need higher
smoothness of the Cauchy problem data.

Condition C 3.3; k. In addition to C 3.3 we assume that a(x, f), A(x, f)
are k-times differentiable in x ∈ Rd, u ∈ R1 and f0(x)) is k-times differentiable
and bounded. Under these conditions we can state the following assertion.

Theorem 3.5.Let C 3.3 and C 3.3; 2+ ε hold. Then there exists an
interval [T2, T ] ⊂ [T1, T ] such that the function f(s, x) given by (3.7) is a
unique classical solution of (3.5), defined on the interval [T2, T ], that is T2 ≤
s ≤ t ≤ T .

Note that to check the required smoothness of f(s, x) we consider the
second order differential prolongation of both the Cauchy problem (3.5) and
the stochastic system (3.6),(3.7). It will immediately leads to the problem to
construct a probabilistic approach to the Cauchy problem for (non-diagonal)
systems of PDEs.

Obviously one can extend the results concerning the solution of (3.5) to a
diagonal system of the form

∂uk

∂s
+Auuk + fk = 0, uk(T, x) = u0k(x), k = 1, . . . , d1, (3.22)

where Auuk(s, x) = a(x, u(s, x)) · ∇uk + 1
2
TrA∗(x, u(s, x))∇2ukA(x, u(s, x)).

To extend this approach to study the Cauchy problem for a non-diagonal
system of the form

∂uk

∂s
+Auuk+

d∑
i=1

d1∑

l=1

Bi
kl(x, u(s, x))∇iul+

d1∑

l=1

ckl(x, u(s, x))ul+fk = 0, (3.23)

17



uk(T, x) = u0k(x), k = 1, . . . d1

we consider a stochastic system of the form

dξ(t) = a(ξ(t), u(t, ξ(t)))dt + A(ξ(t), u(t, ξ(t)))dw(t),

ξ(s) = x ∈ Rd, (3.24)

dη(t) = c(ξ(t), u(t, ξ(t)))η(t)dt + C(ξ(t), u(t, ξ(t)))(η(t), dw(t)),

η(s) = h ∈ Rd1 , (3.25)

〈h, u(s, x)〉 = E

[
〈η(T ), u0(ξs,x(T ))〉+

∫ T

s

〈η(θ), f(ξs,x(θ), u(θ, ξs,x(θ)))〉dθ

]
,

(3.26)
where Bi

kl =
∑d

j=1 Cj
klA

i
j, i = 1, . . . , d, l = 1, . . . , d1, 〈h, u〉 =

∑d1

k=1 ukhk.
We assume that the following conditions hold.
Condition C 3.4. Let C 3.3 hold with u0, f ∈ Rd1 and functions c(x, u) ∈

Rd1 ×Rd1 , C(x, u)y ∈ Rd1 ×Rd1 , x ∈ Rd, u ∈ Rd1 , y ∈ Rd satisfy the estimates

|c(x, u)− c(x1, u1)|2 ≤ L‖x− x1‖2 + L1‖u− u1‖2,

|C(x, u)y − C(x1, u1)y|2 ≤ [L‖x− x1‖2 + L1‖u− u1‖2]‖y‖2,

〈h, c(x, u)h〉 ≤ [K0 + K1‖u‖p]‖h‖2, |C(x, u)y|2 ≤ K[1 + ‖u‖2p]‖y‖2,

where L1 > 0 depend on max(‖u‖, ‖u1‖), L, K0, K1 are constants and L,K1 >
0.

Besides we will need more restrictions on the coefficient smoothness.
Condition C 3.4;k. Let C 3.3;k hold and the functions c(x, u), C(x, u),

f(x, u) be k times differentiable in x ∈ Rd, u ∈ R1 and u0(x) be bounded and
k times differentiable.

Under these conditions we can state the following assertion.
Theorem 3.6.Let C 3.3 and C 3.3;1 hold. Then there exists an interval

[T1, T ] and a unique solution (ξs,x(t), u(s, x)) of the system (3.6), (3.7) defined
on this interval, that is 0 ≤ T1 ≤ s ≤ t ≤ T . The process ξs,x(t) ∈ Rd possesses
the Markov property, η(t) ∈ Rd1 defines a multiplicative operator functional
of the process ξs,x(t) while u(s, x) ∈ Rd1 is bounded and Lipschitz continuous
in x if s ∈ [T1, T ].

Theorem 3.7.Let C 3.4 and C 3.4;2 + ε hold. Then there exists an
interval [T2, T ] ⊂ [T1, T ] such that the function u(s, x) given by (3.18) is a
unique classical solution of (3.11), defined on a smaller interval [T2, T ].

Note that one can easily reduce the system (3.12) to a scalar equation with
respect to a function Φ(s, x, h) = 〈h, u(s, x)〉 and check that conditions C 3.4
imply conditions C 3.3 for coefficients of this new scalar equation under the
assumptions that ‖Φ(s)‖ = supx∈Rd,‖h‖=1 |Φ(s, x, h)| and hence the proof of
theorems 3.5 and 3.6 is similar to the proof of theorems 3.3 and 3.4.
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The detailed proofs of these assertions one may find in [4].
At the next step we consider the Cauchy problem for a semilinear parabolic

equation of the form

∂u

∂s
+ a(x, u,∇u) · ∇u +

1

2
F (x, u,∇u) ¦ ∇2u = 0, (3.27)

u(T, x) = u0(x),

where A∗A = F and
∑d

i,j=1 Fij∇2
jiu = F ¦ ∇2u.

To construct a solution of (3.27) we consider its differential prolongations,
that is we differentiate (3.27) in x variable and consider the solution u of
(3.27) as a component of a solution V = (u, p) of a system consisting of and
its differential prolongation. Here p = ∇u and we result in a system with
coefficients depending only on the unknown function V and independent on
its derivatives.

To this end assuming that coefficients in (3.27) are smooth enough we
denote by p(s, x) = ∇u(s, x), q(s, x) = ∇2u(s, x) and twice differentiate this
equation in x variable. We use notations ax, au, ap to denote partial derivatives
of the function a in x, u and p respectively. As a result we obtain

∂p

∂s
+ a(x, u, p) · ∇p +

1

2
F (x, u, p) ¦ ∇2p + α(a)p + α(F )q = 0, (3.28)

v(T, x) = ∇u0(x) = p0(x),

where α(a) = ax + aup + ap∇p,

∂q

∂s
+a(x, u, p) ·∇q+

1

2
F (x, u, p)¦∇2q+[

1

2
β(F )+α(a)]∇p+α(F )∇q+ (3.29)

α(a)q + β(a)p = 0, q(T, x) = ∇2u0(x) = q0(x),

where

β(a) = axx + 2(axup + axp∇p + auppq) + au∇p + ap∇q + auup + app(∇p)2

Denote by b(x, V ) = a(x, u, p), G(x, V ) = F (x, u, p). Then we we can
rewrite the system (3.27)-(3.29) as a quasilinear system of parabolic equations

∂V k

∂s
+ b(x, V ) · ∇V k +

1

2
G(x, V ) ¦ ∇2V k + Dk(x, V ) ¦ ∇V + (3.30)

3∑

l=1

ck
l (x, V )V l + G(x, V ) = 0,
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where V = (V 1, V 2, V 3) = (u, p, q). The matrix c and the tensor D aa well as
the vector function G can be easily obtained from (3.27)-(3.29).

V (T, x) = V0(x) = (u0(x),∇u0(x),∇2u0(x)).

Next we consider a stochastic problem

dξ(t) = b(ξ(t), V (t, ξ(t)))dt + B(ξ(t), V (t, ξ(t)))dw(t), ξ(s) = x, (3.31)

dη(t) = c(ξ(t), V (t, ξ(t)))η(t)dt + C(ξ(t), V (t, ξ(t)))(η(t), dw(t)), η(s) = h,
(3.32)

〈h, V (s, x)〉 = E

[
〈η(T ), V0(ξs,x(T ))〉+

∫ T

s

〈η(θ), G(ξs,x(θ), V (θ, ξs,x(θ)))〉dθ

]

(3.33)
corresponding to (3.30), where

B(x, V ) = A(x, u, p), D(x, V ) = C(x, V )B(x, V ), V = (u, p, q).

In [5], [7] there were stated conditions that allows to prove the existence
and uniqueness of the solution to (3.31)– (3.33) on a small interval (T1, T ] with
the length depending on functions F and u0 in (1.11). This immediately leads
to the construction of the solution to (1.11), namely the first component V1 of
the function V is a unique classical solution of the Cauchy problem(1.11) with

f(x, u, p, q) = a(x, u, p) · p +
1

2
TrA∗(x, u, p)qA(x, u, p).

The similar approach works for a fully nonlinear parabolic equation of the
form (1.11). To illustrate the construction we consider (1.11) for the case
d = d1 = 1 and F (x, u, p, q) = F (q) still preserving the previous notations for
spatial derivatives.

A differential prolongations of the Cauchy problem

∂u

∂s
+ f(∇2u) = 0, u(T, x) = u0(x) (3.34)

has the form
∂p

∂s
+ f ′(∇p)∇2p = 0, p(T, x) = p0(x) = ∇u0(x), (3.35)

∂q

∂s
+ f ′′(q)(∇q,∇q) + f ′(q)∇2q = 0, q(T, x) = q0(x) = ∇2u0(x) (3.36)

and to obtain the equation with coefficients having nonlinear dependence only
on an unknown function we have to differentiate (3.28) once more to derive
the equation

∂r

∂s
+ f ′′′(q)r2∇q + 3f ′′(q)r∇r + f ′(q)∇2r = 0, r(T, x) = ∇3u0(x). (3.37)
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Finally we rewrite (3.37) in the form

∂u

∂s
+ f(q) + f ′(q)∇2u− f ′(q)q = 0, u(T, x) = u0(x), (3.38)

and present the system (3.35)-(3.38) in the form

∂V k

∂s
+

1

2
A2(V )∇2V k + a(V )∇V k + Bk

l (V )∇V l + ck
l V

l + Gk(V ) = 0, (3.39)

V k(T, x) = V k
0 (x),

where V = (u,∇u,∇2u,∇3u) = (V 1, V 2, V 3, V 4). Here coefficients a,A have
the form

1

2
A2(V ) = f ′(q), a(V ) ≡ 0, (3.40)

the matrices c = (cjk)
4
j,k=1 and B = (Bjk)

4
j,k=1 have the form

c13 = −f ′(q), B33 = f ′′(q)r, B43 = f ′′′(q)r2, B44 = 3f ′′(q)r, (3.41)

cjk = Bjk = 0 for remaining j, k and finally G1 = F (q), Gk = 0 for k = 2, 3, 4.
Here and below we assume a usual convention of summing up in repeating
indices if the contrary is not mentioned.

At the next step we reduce the system (3.35)-(3.38) to a stochastic system
of the form (3.28)-(3.30) with coefficients given by (3.40), (3.41). Next we state
conditions on these coefficients and u0 to ensure the existence and uniqueness
of the solution of a corresponding stochastic system on a certain time interval.
Finally we verify that in this way we have constructed a unique classical
solution to (3.34) on a certain time interval. To be more precise, assuming
that coefficients of (3.39) satisfy condition C 3.4 we ensure existence and
uniqueness of the solution to (3.28)-(3.30) with coefficients given in (3.40)-
(3.41) and the condition C 3.4;2 allows to verify that the function u(s, x)
given by (3.29) is a unique classical solution to (3.34).

In a similar way we can study the Cauchy problem for more general fully
nonlinear parabolic equations and systems (see [5], [7]).

ut + f(x, u, ux, uxx) = 0, u(T ) = Φ(x). (3.42)

Let Φ : Rd → R1, F : Rd × R1 × Rd × Md → R1 be sufficiently smooth
functions. If Γ(x) = f(x, u(x),∇u(x),∇2u(x)) is a three times differentiable
function then one can reduce at least formally the fully nonlinear problem
(3.31) to a quasilinear problem

vt +
1

2
fuxxvxx + G1vx + G2v + G3 = 0, v(T ) = V (x), (3.43)
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where v = (u, ux, uxx, uxxx), V = (Φ, Φx, Φxx, Φxxx), and functions Gi i = 1, 2, 3
depend on the function v. To apply a probabilistic approach in this case we
have to assume that fuxx ua a nonnegative matrix

dξ(θ) = a(ξ(θ), v(θ, ξ(θ))dθ + A(ξ(θ), v(θ, ξ(θ))dw(θ), ξ(t) = x, (3.44)

dη(t) = G2(ξ(θ), v(θ, ξ(θ))η(θ)dθ + G1(ξ(θ), v(θ, ξ(θ))η(θ)dw(θ), η(t) = h,
(3.45)

(h, v(t, x)) = E

[
(η(T ), V0(ξ(T ))) +

∫ T

t

(η(τ), G3(ξ(τ)))dτ

]
. (3.46)

As a final remark in this section we note that all the above results can be
naturally extended to the case when coefficients depends on a time variable as
well.

4 BSDEs and nonlinear parabolic systems
In this section we introduce necessary notions and notations and recall some
results concerning backward stochastic differential equations (BSDE) and their
connections with nonlinear parabolic equations [8], [9]. We will need these re-
sults later in nest sections to apply them to a fully nonlinear parabolic equation
(1.12).

First we consider the Cauchy problem

us+a(x)·∇u+
1

2
TrA∗(x)∇2uA(x)+g(x, u,∇u) = 0, u(T, x) = u0(x). (4.1)

which is a particular case of (1.11) corresponding to f(x, u, p, q) = ap+ 1
2
A∗qA+

g(x, u, p). Here x ∈ Rd, u ∈ Rd, p ∈ Rd⊗Rd = M, g : Rd×Rd×M → Rd and
TrA∗qA ∈ Rd.

To construct a solution to (4.1) in this section we apply a BSDE approach
and compare it with the approach used in the previous sections. To this end
we need some additional notations.

Let M2([0, T ]; Rd) denote the set of progressively measurable square inte-
grable stochastic processes ξ(t) ∈ Rd, E

[∫ T

0
‖ξ(τ)‖2dτ

]
< ∞, and S2([0, T ],

Rd) be the set of semimartingales η(t) ∈ Rd satisfying the estimate

E

[
sup

0≤t≤T
‖η(t)‖2

]
< ∞.

To explain what sort of a stochastic problem we deal with this time let us
consider a stochastic equation

dξ(t) = a(ξ(t))dt + A(ξ(t))dw(t), ξ(s) = x, (4.2)
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with a Wiener process w(t) ∈ Rd and a function u ∈ C1,2 satisfying (4.1). By
the Ito formula we know that the stochastic differential of a random process
y(t) = u(t, ξ(t)) has the form

dy(t) = [ut +∇ua(ξ(t))+
1

2
TrA(ξ(t))∇2uA∗(ξ(t))]dt+∇uA(ξ(t))dw(t). (4.3)

Since by assumption u satisfies (4.1), we easily deduce from (4.3) that the
process y(t) solves the Cauchy problem

dy(t) = −g(y(t),∇u(ξ(t))dt +∇uA(ξ(t))dw(t), y(T ) = u0(ξ(T )). (4.4)

Moreover if ξs,x(t) is a solution to (4.2), then we have u(s, x) = ys,x(s), where
ys,x(t) given by

ys,x(t) = E

[
u0(ξs,x(T )) +

∫ T

t

g(ξs,x(θ), y
s,x(θ),∇u(ξs,x(θ)))dθ/Ft

]
(4.5)

solves the BSDE (4.4).
Remark. Let u0 : [0, T ]×Rd → R1 and g(x, p, q) ∈ R1, x ∈ Rd, p ∈ R1, q ∈

Rd. Then (4.5) yields the integral representation of u(s, x)

u(s, x) = E

[
u0(ξs,x(T )) +

∫ T

s

g(ξs,x(θ), u(θ, ξs,x(θ),∇u(ξs,x(θ)))dθ

]
(4.6)

which coincides with (3.21) provided coefficients in (3.20) do not depend on u.
Let us recall some general results of the BSDE theory.
Consider a function f : Ω× [0, T ]×Rd×Rd×d → Rd. We say that condition

C 4.1 holds if:
1)f(·, t, y, z) is a progressively measurable random variable ∀t and for any

(y, z) valued in Rd ×M ;
2)E‖f̄(t)‖ < ∞, f̄(t) = f(t, 0, 0);
3) there exist a constant µ and positive constants K, L such that
‖f(t, y, z)‖ ≤ f̄(t) + K[‖y‖+ |z|] ∀t ∈ [0, T ], y ∈ Rd, z ∈ M, P − a.s.;
4)‖f(t, y, z)− f(t, y, z1)‖ ≤ L|z − z1|,
∀t ∈ [0, T ], y ∈ Rd, z, z1 ∈ M, P − a.s.;
5)〈y − y1, f(t, y, z)− f(t, y1, z)〉 ≤ µ‖y − y1‖2,
∀t ∈ [0, T ], y, y1 ∈ Rd, z ∈ M, P − a.s.;
6) ‖f(t, y, z)− f(t, y1, z)‖ ≤ L‖y − y1‖,
∀t ∈ [0, T ], y, y1 ∈ Rd, z ∈ M, P − a.s.
Consider a backward stochastic differential equation

dy(t) = −f(t, y(t), z(t))dt + z(t)dw(t), y(T ) = η, (4.7)

where η ∈ Rd is FT measurable.
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By definition a solution of BSDE (4.7) is a pair of progressively measurable
stochastic processes (y(t), z(t)) valued in Rd ×M such that

1) E
∫ T

0
|z(t)|2dt < ∞, sup)≤t≤T E‖y(t)‖2 < ∞;

2) y(t) = η +
∫ T

t
f(s, y(s), z(s))ds− ∫ T

t
z(s)dw(s), 0 ≤ t ≤ T.

Now we state conditions that ensures the existence and uniqueness of a
solution (y(t), z(t)) ∈ Rd1 ×M to (4.7).

We denote by H = S2([0, T ]; Rd) ×M2([0, T ]; M) and define a mapping
Φ(u, v) = (y, z) that acts in H as follows. Given (u(t), v(t)), we define the
process y(t) by

y(t) = E

[
η +

∫ T

t

f(s, u(s), v(s))ds|Ft

]
, 0 ≤ t ≤ T, (4.8)

and the process z(t) by the Ito martingale representation theorem. Namely,
since by the above assumptions

κ = η +

∫ T

0

f(s, u(s), v(s))ds

is a square integrable random variable we apply the Ito martingale represen-
tation theorem to derive the relation

κ = E[κ] +

∫ T

0

z(s)dw(s).

Since y(0) = E
[
η +

∫ T

0
f(s, u(s), v(s))ds

]
= E[κ], we obtain

y(0) = κ−
∫ T

0

z(s)dw(s) = η +

∫ T

0

f(s, u(s), v(s))ds−
∫ T

0

z(s)dw(s). (4.9)

Note that y(0)− ∫ t

0
f(s, u(s), v(s))ds +

∫ t

0
z(s)dw(s) is an Ft- measurable ran-

dom variable and

y(0)−
∫ t

0

f(s, u(s), v(s))ds +

∫ t

0

z(s)dw(s) = (4.10)

η +

∫ T

t

f(s, u(s), v(s))ds−
∫ T

t

z(s)dw(s).

Applying the conditional expectation E[·|Ft] to both sides of (4.10) and taking
into account (4.8) and (4.9) we get

y(t) = η +

∫ T

t

f(s, u(s), v(s))ds−
∫ T

t

z(s)dw(s). (4.11)
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Theorem 4.1. Let C 4.1 hold. Then there exists a unique solution (y, z)
of (4.7) such that (y, z) ∈ H.

Proof. First we prove the uniqueness. Let both (y(t), z(t)) and (y1(t), z1(t))
be solutions to (4.7). Denote by ȳ(t) = y(t) − y1(t) and z̄(t) = z(θ) − z1(θ).
By the Ito formula we deduce

δ(t) = E

[
‖ȳ(t)‖2 +

∫ T

t

|z̄(s)|2ds

]
= (4.12)

2E

∫ T

t

〈ȳ(s), f(s, y(s), z(s))− f(s, y1(s), z1(s))〉ds.

By conditions in C 4.1 on f and an elementary estimate 2ab ≤ a2 + b2 we
deduce

δ(t) ≤ 2E

∫ T

t

[µ‖ȳ(s)‖2 + L‖ȳ(s)‖|z̄(s)|]ds ≤

(2µ + L2)E

∫ T

t

‖ȳ(s)‖2ds + E

∫ T

t

|z̄(s)|2ds.

Hence for ȳ(t) we have an estimate

E‖ȳ(t)‖2 ≤ (2µ + L2)

∫ T

t

E‖ȳ(s)‖2ds

and by the Gronwall lemma we deduce E‖ȳ(t)‖2 = 0 for all t ∈ [0, T ]. Coming
back to (4.13) we note that when ȳ(t) = 0, we get

∫ t

0
E|z̄(s)|2ds = 0 for all

t ∈ [0, T ] and hence E|z(s)− z1(s)|2 = 0.
The couple (y, z) ∈ H satisfies (4.7), if and only if (y, z) is a fixed point of

the mapping Φ defined above by (4.8), (4.11). Hence it remains to check that
under conditions C 4.1 the mapping Φ is a contraction.

We present the proof of this fact in the following two lemmas. In the first
we will prove apriori estimates of a solution to (4.7) and in the second we
prove the contraction property of the map Φ.

Lemma 4.2 Let (y(t), z(t)) be a solution of (4.7) and C 4.1 holds. Then
there exists a constant C depending only on T, µ and L such that

E

(
sup0≤t≤T‖y(t)‖2 +

∫ T

0

|z(θ)|2dθ

)
≤ CE

(
‖ξ‖2 +

∫ T

0

‖f(t, 0, 0)‖2dt

)
.

Proof. If (y, z) is a solution to (4.7), then

y(t) = y(0)−
∫ t

0

f(θ, y(θ), z(θ))dθ +

∫ t

0

z(θ)dw(θ). (4.13)
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For each integer k we define the stopping time

τ k
l = inf

0≤t≤T
{t : |yl(t)| ≥ k},

and set yk
l (t) = yl(t ∧ τk). Then

yk
l (t) = yk

l (0)−
∫ t

0

I[0,τk]fl(y
k(θ), z(θ))dθ +

∫ t

0

I[0,τk]

d∑
m=1

zlm(θ)dwm(θ).

Hence,

E‖yk(t)‖2 ≤ 3(‖yk(0)‖2 + t

∫ t

0

E‖f(θ, yk(θ), z(θ))‖2dθ +

∫ t

0

E|z(θ)|2dθ),

and by the properties of the function f(y, z) stated in C 4.1 and the property
of the process z which is the component of the solution to (4.7) we deduce
that E‖yk(t)‖2 ≤ C[1 +

∫ t

0
E‖yk(θ)‖2dθ] . Applying the Gronwall lemma we

obtain an estimate E‖yk(t)‖2 ≤ CeCt and by the Fatou lemma we get

E‖y(t)‖2 ≤ CeCt.

Applying the Burkholder inequality, we deduce from (4.7) and the above
estimates that

E[sup0≤t≤T‖y(t)‖2] < ∞
and by Ito’s formula we have

E

[
‖y(t)‖2 +

∫ T

t

|z(θ)|2dθ

]
= E

[
‖ξ‖2 + 2

∫ T

t

〈y(θ), f(θ, y(θ), z(θ))〉dθ

]
≤

E‖ξ‖2 + K

∫ T

t

E[‖y(θ)‖2 + |z(θ)|2]dθ + E

∫ T

0

‖f(t, 0, 0)‖2dt,

where the constant depends on T, µ, L. Finally computing the sup of both
sides in the last inequality and applying the Gronwall lemma we obtain

sup0≤t≤T E‖y(t)‖2 +

∫ T

0

E|z(θ)|2dθ ≤ CeKT

where C = E‖ξ‖2 +E
∫ T

0
‖f(t, 0, 0)‖2dt and the required estimate follows from

the Burkholder-Davis-Gundy inequality.
Lemma 4.3.Under the condition 1)-4) and 6) from C 4.1 the map Φ is a

contraction in H.
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Proof. Given (u, v) ∈ H, (u1, v1) ∈ H and (y, z) = Φ(u, v), (y1, z1) =
Φ(u1, v1), we denote by (ū, v̄) = (u− u1, v − v1), (ȳ, z̄) = (y − y1, z − z1). By
the Ito formula we deduce that for any constant C we have

eCtE‖ȳ(t)‖2 +

∫ T

t

eCτ [C‖ȳ(τ)‖2 + |z̄(τ)|2]dτ ≤

2KE

∫ T

t

eCτ‖ȳ(τ)‖[‖ū(τ) + |v̄(τ)|]dτ ≤

4K2E

∫ T

t

eCτ‖ȳ(τ)‖2dτ +
1

2
E

∫ T

t

eCτ [‖ū(τ)‖2 + |v̄(τ)|2]dτ.

Choosing C = 1 + 4K2 we get

E

∫ T

t

eCτ [ ‖ȳ(τ)‖2 + |z̄(τ)|2]dτ ≤ 1

2
E

∫ T

t

eCτ [‖ū(τ)‖2 + |v̄(τ)|2]dτ

which results that Φ is a contraction in H equipped with the norm

‖(y, z)‖H =

(
E

∫ T

t

eCτ [ ‖y(τ)‖2 + |z(τ)|2]dτ

) 1
2

.

By the fixed point theorem we get that Φ has a unique fixed point and
hence there exists a unique solution to (4.7).

The same assertion is true under the condition 1)-5) from C 4.1 [8].
Let the random function f(t, x, y, z) = g(ξ(t), y, z) satisfies C 4.1, where

ξ(t) is a diffusion process that solves an SDE

dξ(t) = a(ξ(t))dt + A(ξ(t))dw(t), ξ(s) = x. (4.14)

Then due to theorem 4.1 there exists a unique solution (y(t), z(t)) of the BSDE

dy(t) = −g(ξ(t), y(t), z(t))dt + z(t)dw(t), y(T ) = η = u0(ξ(T )). (4.15)

Next we have to explain in what sense the function u(s, x) = y(s) given by
(4.15) is a solution to the Cauchy problem

ui
s + a(x) · ∇ui +

1

2
TrA∗(x)∇2uiA(x) + g(x, u, A(x)∇ui) = 0, (4.16)

ui(T, x) = ui
0(x), i = 1, . . . , d.

First note that the following useful assertion holds.
Lemma 4.4.Assume that (ŝ, x̂) ∈ GT and ui ∈ C(GT ), then

P2,+
G ui(ŝ, x̂) = {(φs(ŝ, x̂),∇φ(ŝ, x̂),∇2φ(ŝ, x̂)) : φ ∈ C1,2 (4.17)
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and ui − φ has a local maximum at (ŝ, x̂) ∈ GT},
and

P2,−
G ui(ŝ, x̂) = {(φs(ŝ, x̂),∇φ(ŝ, x̂),∇2φ(ŝ, x̂)) : φ ∈ C1,2 (4.18)

and ui − φ has a local minimum at (ŝ, x̂) ∈ GT}.

We use this assertion to check that the solution of the BSDE (4.15) con-
structed above gives rise to a viscous solution of (4.16).

In other words to prove that u(s, x) is a subsolution of (4.16), we have
to verify that ui(T, x) ≤ ui

0(x) and for any φ ∈ C1,2([0, T ] × Rd) and a point
(s, x) ∈ [0, T ]×Rd which is a local maximum of the function ui−φ the following
inequality holds

φs + f(x, u,∇φ,∇2φ) ≥ 0. (4.19)

Similarly u(s, x) is a supersolution of (4.16) when u(T, x) ≥ u0(x) and for any
φ ∈ C1,2([0, T ]×Rd) and a point (s, x) ∈ [0, T ]×Rd which is a local minimum
of the function ui − φ the following inequality holds

φs + f(x, u,∇φ,∇2φ) ≤ 0. (4.20)

Finally, if u is both a supersolution and a subsolution of (4.16), then it is called
a viscous solution of (4.16).

Theorem 4.5. Let (y, z) solve (4.15) with η = u(T, ξ(T )) = u0(ξ(T )),
then the function u(s, x) = y(s) is a continuous viscous solution of the Cauchy
problem (4.16).

Proof. Continuity of u(s, x) is a consequence of the square mean continuity
of the solution to (4.15).

To show that u(s, x) is a viscosity solution we choose a function φ ∈ C1,2

and a point (s, x) ∈ [0, T ] × Rd such that at (s, x) the function ui − φ has a
local maximum. Without loss of generality we assume that ui(s, x) = φ(s, x).
It yields that at any stopping time τ we have

ui(τ, ξs,x(τ))− φ(τ, ξs,x(τ)) ≤ 0. (4.21)

From the Ito formula we deduce

φ(τ, ξ(τ)) = φ(s, x) +

∫ τ

s

[φθ +Aφ](θ, ξ(θ))dθ +

∫ τ

s

∇φ(θ, ξ(θ))A(ξ(θ))dw(θ).

At the other hand due to the martingale representation theorem we have a
representation

yi(s) = ui
0(ξ(T )) +

∫ T

s

gi(ξ(θ), y(θ), zi(θ))dθ −
∫ T

s

〈zi(θ), dw(θ)〉.
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Since the solution y(t) = u(t, ξ(t)) of the equation (4.7) is unique we deduce

ui(s, x) = yi(s) = yi(τ) +

∫ τ

s

gi(ξ(θ), y(θ), zi(θ))dθ −
∫ τ

s

〈zi(θ), dw(θ)〉 =

ui(τ, ξ(τ)) +

∫ τ

s

gi(ξ(θ), y(θ), zi(θ))dθ −
∫ τ

s

〈zi(θ), dw(θ)〉.

Substituting the last relation into (4.21) we derive

0 ≥ ui(τ, ξ(τ))− φ(τ, ξ(τ)) = ui(s, x)− φ(s, x)−
∫ τ

s

[
∂φ

∂θ
+Aφ](θ, ξ(θ))dθ−

(4.22)∫ τ

s

gi(ξ(θ), y(θ), zi(θ))dθ +

∫ τ

s

d∑
j=1

[zij(θ)−
d∑

m=1

∇xmφAmj]dwj(θ).

Since by assumption the equality ui(s, x) − φ(s, x) = 0 holds at the point
(s, x) we can compute the expectation of the both sides of (4.22) to obtain the
inequality

E

(∫ τ

s

Λl(θ, ξ(θ), y(θ), z(θ))dθ

)
≥ 0, l = 1, . . . d1, (4.23)

where
Λi(s, x, y, z) =

[
∂φ

∂s
+Aφ

]
(s, x) + gi(x, y, zi).

To verify that ui(s, x) is a subsolution of (4.1) we have to show that

Λi(t, x, y, zi) ≥ 0.

Assume on the contrary that there exists δ0 < 0 such that Λi(t, x, y, z) < δ0

for some l and set

τ1 = inf{θ > s : Λi(θ, ξ(θ), y(θ), z(θ)) ≥ δ0} ∧ T.

By definition inequality (4.21) holds for any stopping time and hence for the
stopping time τ1 > s. Thus we come to a contradiction

0 > δ0E(τ1 − s) ≥ E

(∫ τ1

s

Λi(ξ(θ), y(θ), z(θ))dθ

)
≥ 0,

and hence u(s, x) is a subsolution of (4.16). In a similar way we can check that
u(s, x) is a supersolution of (4.16) and hence is a viscosity solution of (4.16).

29



5 Stochastic problems associated with fully
nonlinear parabolic equations
In this section we come back to the Cauchy problem for a fully nonlinear
parabolic equation

uk
s + gk(x, u,∇uk,∇2uk) = 0, k = 1, . . . d, (5.1)

u(T, x) = u0(x) ∈ Rd, x ∈ Rd, s ∈ [0, T ].

We derive a differential prolongation to reduce (5.1) to a semilinear PDE and
then apply the BSDE approach to construct both a solution of an associated
fully coupled FBSDEs and a viscosity solution of (5.1).

Assume that g(x, u, p, q) ∈ Rd, x, u ∈ Rd, p ∈ Rd⊗Rd = M, q ∈ M⊗Rd =
M1 is a differentiable function in all arguments and consider along with the
Cauchy problem (5.1) its first differential prolongation

ps + g1(x, u,∇u,∇2u) + g2(x, u,∇u,∇2u)v + g3(x, u,∇u,∇2u)∇p+ (5.2)

g4(x, u,∇u,∇2u)∇2p = 0, p(T, x) = ∇u0(x).

Here
p = ∇u, g1 =

∂g

∂x
, g2 =

∂g

∂u
, g3 =

∂g

∂p
, g4 =

∂g

∂q
.

We say that condition C 5.1 holds if g : Rd × Rd × M × M1 → Rd has
the form gi(x, u, p, q) = gi(x, u, pi, qi), i = 1, . . . , d and is differentiable in all
arguments. Besides for each component gi of the function g the derivative gi

3

is a positive definite matrix.
Set V (s, x) = (u(s, x), p(s, x)) and rewrite (5.1), (5.2) in the form

us + g(x, u, p,∇p) + g3(x, u, p,∇p)∇u + g4(x, u, p,∇p)∇2u− (5.3)

g3(x, u, p,∇p)p− g4(x, u, p,∇p)∇p = 0,

ps + g1(x, u, p,∇p) + g2(x, u, p,∇p)p + g3(x, u, p,∇p)∇p+ (5.4)

g4(x, u, p,∇p)∇2p = 0

or in the form
Vs + BV −G(X, V,∇V ) = 0. (5.5)

where

BV =
1

2
TrB∗(X, V,∇V )∇2V B(X,V,∇V ) + b(X, V,∇V )∇V. (5.6)
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Here b =

(
g3

g3

)
, [B∗B]jk = 2

(
∂g

∂qjk
0

0 ∂g
∂qjk

)
, X = (x, I), where I is the identity

matrix, V = (u, p) and

G(X, V,∇V ) =

(
g(x, u, p,∇p)− g3(x, u, p,∇p)v − g4(x, u, p,∇p)∇p

g1(x, u, p,∇p) + g2(x, u, p,∇p)p

)
.

Under the assumption 5.1 the equation (5.5) has the form

V i
s + BV i −G(X, V,∇V i) = 0. (5.7)

Denote by H1 = Rd ×M , H2 = M ×M1 and set

X(t) = (ξ(t), η(t)) ∈ H1, Y (t) = (y(t), p(t)) ∈ H1, Z(t) = (z(t), q(t)) ∈ H2.

Consider an FBSDE consisting of FSDEs

dξ = a(ξ(t), Y (t), Z(t))dt + A(ξ(t), Y (t), Z(t))dw(t), ξ(s) = x ∈ Rd, (5.8)

dη = ∇a(ξ(t), Y (t), Z(t))η(t)dt +∇A(ξ(t), Y (t), Z(t))(η(t), dw(t)) (5.9)

with η(s) = I ∈ M , ∇a(x, y(x), z(x)) = ax + ay∇y + az∇z and BSDEs

dy(t) = −f(ξ(t), y(t), p(t), q(t))dt + p(t)dw, y(T ) = η ∈ Rd, (5.10)

dp(t) = −G(ξ(t), η(t), y(t), p(t), q(t))dt + q(t)dw, p(T ) = ζ ∈ M. (5.11)

We can rewrite this system in the form of an FBSDE

dX(t) = b(X(t), Y (t), Z(t))dt + B(Y (t), Z(t))dw(t), X(s) = (x, I) = χ ∈ H1

(5.12)
dY (t) = −F (X(t), Y (t), Z(t))dt+Z(t)dW, κ = Y (T ) = (η, ζ) ∈ H1. (5.13)

Here F = (f, G) ∈ H1,

f(x, y, p, q) = g(x, y, p, q) + g2(x, y, p, q)p + g3(x, y, p, q)q,

G(x, y, p, q) = g1(x, y, p, q)p, W (t) = (w(t), w(t)) ∈ Rd×Rd, Y (t) ∈ H1, Z(t) ∈
H2 = M × M1 are Ft-measurable random processes, Y (T ) ∈ M2([0, T ]; H1)
and Z(T ) ∈M2([0, T ]; H2), b(x, (u, p), (p, q)) = a(x, u, p, q).

We say that condition C 5.2 holds if a random function

G(t,X, Y, Z) = F (X(t), Y, Z) ∈ H1

satisfies condition C 4.1.
Let

H1 = {Y (t) ∈ H1 : E sup
t∈[0,T ]

‖Y (t)‖2 < ∞},
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H2 = {Z(t) ∈ H2 : E

∫ T

0

‖Z(t)‖2dt < ∞}.

Denote by H = H1×H1×H2 and let ‖ · ‖H denote the norm in H, that is for
α = (X, Y, Z) ∈ H

‖α‖2
H = E

[
sup
[0,T ]

‖X(t)‖2 + sup
[0,T ]

‖Y (t)‖2 +

∫ T

0

‖Z(t)‖2dt

]
.

Denote by D = H1 ×H1 ×H2 and let

Υ(Θ) = (−F (Θ), b(Θ), B(Θ)) for Θ = (X, Y, Z) ∈ D.

Let M2(0, T ; D) denote the set of all D-valued Ft progressively measurable
processes Θ(t) and D = M2(0, T ; D) ∩H.

Assume that there exists a constant C > 0 such that Υ : D → D and
u0 : Rd → Rd satisfy the estimates

‖Υ(Θ)−Υ(Θ1)‖D ≤ C‖Θ−Θ1‖D, ∀Θ, Θ1 ∈ D, P − a.e.

‖V0(X)− V0(X1)‖ ≤ C‖X −X1‖, ∀X,X1 ∈ H1 P − a.e..

We say in this case that condition C 5.3 holds.
We say that condition C 5.4 holds if there exist a positive constant C1,

C2 > 0 such that

〈〈Υ(Θ)−Υ(Θ1), Θ−Θ1〉〉 ≤ −C1‖X −X1‖2, ∀X,X1 ∈ H1, P − a.e.,

where 〈〈·, ·〉〉 is an inner product in D and

〈V0(X)− V0(X1), X −X1〉 ≥ C1‖X −X1‖2 X, X1 ∈ H1, P − a.e..

We say that condition C 5.4’ holds if there exist positive constants C2

such that

〈〈Υ(Θ)−Υ(Θ1), Θ−Θ1〉〉 ≤ −C1‖Y − Y1‖2, ∀Y, Y1 ∈ H1, P − a.e.,

and

〈V0(X)− V0(X1), x− x1〉 ≥ C1‖X −X1‖2 X, X1 ∈ H1, P − a.e..

Set κ = (η, ζ) ∈ H1, χ = (x, I) ∈ H1, Y (t) = (y(t), p(t)) ∈ H1, Z(t) =
(p(t), q(t)) ∈ H2, F (X, Y, Z) = (f(X,Y, Z), G(X,Y, Z)).

The solution of the FBSDE (5.12), (5.13) is a triple

Θ(t) = (X(t), Y (t), Z(t)) ∈ D,
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such that P -a.s.

X(t) = χ+

∫ t

0

b(X(θ), Y (θ), Z(θ))dθ+

∫ t

0

B(X(θt), Y (θ), Z(θ))dW (θ), (5.14)

Y (t) = κ +

∫ T

t

F (X(θ), Y (θ), Z(θ))dθ −
∫ T

t

Z(θ)dW (θ), (5.15)

where κ ∈ H1 is an FT -measurable random variable.
First we note that the system can have at most one solution.
Lemma 5.1. Let assumptions C 5.1- C 5.4 hold . Then then there exists

at most one solution of the system (5.14), (5.15)
Proof. Assume on the contrary that there exist two solutions Θ1 = (X1, Y1,

Z1) and Θ2 = (X2, Y2, Z2) of the system (5.14), (5.15). Denote X̄ = X1 −
X2, Ȳ = Y1 − Y2, Z̄ = Z1 − Z2 and let

b̄ = b(Θ1)− b(Θ2), B̄ = B(Θ1)−B(Θ2), F̄ = F (Θ1)− F (Θ2).

From assumption C 5.2 we deduce that X̄(t), Ȳ (t) are continuous and the
estimates E supt∈[0,T ] ‖X(t)‖2 < ∞, E supt∈[0,T ] ‖Y (t)‖2 < ∞ are valid.

Next by the Ito formula we deduce that

〈Ȳ (T ), X̄(T )〉 =

∫ T

0

〈〈Υ(Θ1(t))−Υ(Θ2(t)), Θ1(t)−Θ2(t)〉〉dt+

∫ T

0

〈X̄(t), Z̄(t)dW (t)〉+

∫ T

0

〈Ȳ (t), B̄dW (t)〉

and hence
E〈V0(X1(T ))− V0(X2(T ), X̄(T )〉 =

E

[∫ T

0

〈〈Υ(Θ1(t))−Υ(Θ2(t)), Θ1(t)−Θ2(t)〉〉dt

]

By assumptions C 5.2- C 5.4 we deduce

C2‖X1(T )−X2(T )‖2 ≤ 〈V0(X1(T ))− V0(X2(T ), X̄(T )〉 ≤

−C2E

∫ T

0

‖Θ1(t)−Θ2(t)‖2dt

that yields Θ1 = Θ2.
To construct a solution of the fully coupled FBSDE (5.14), (5.15) following

the papers [11], [12] we apply the homotopy continuation method that reads
as follows.

Assume that we are looking for a solution of an equation g(x) = 0, x ∈ Rd.
Include the equation g(x) = 0 in the family of equations Φ(µ, x) = 0, where

33



Φ(µ, x) = µg(x)+(1−µ)A(x−x0) with a constant matrix A and construct the
path connecting zeros of Φ(x, µ) from the value µ = 0 where they are supposed
to be known to the value µ = 1.

We construct a solution of (5.14), (5.15) as a homotopy continuation of a
solution to a certain simple FBSDE which will be studied in lemma 5.1 below.

Lemma 5.2.Assume (b0, F 0, B0) ∈ D, κ0 ∈ L2(Ω,FT , P ). Then the linear
FBSDE

dX(t) = −[Y (t)− b0(t)]dt− [Z(t)−B0(t)]dw(t), X(0) = χ, (5.16)

dY (t) = −[X(t)− F 0(t)]dt + Z(t)dw(t), Y (T ) = X(T ) + κ, 0 ≤ t ≤ T.
(5.17)

has a unique adapted solution (X, Y, Z) ∈ D.
Proof. Consider a BSDE

Ŷ (t) = κ−
∫ T

t

[Ŷ (θ) + F 0(θ)− b0(θ)]dθ

−
∫ T

t

[2Ẑ(θ)−B0(θ)]dW (θ), 0 ≤ t ≤ T. (5.18)

By theorem 4.1 we know that this equation has a unique adapted solution
(Ŷ , Ẑ) ∈M2(H)×M2(H1).

Consider next the forward equation

X̂(t) = χ−
∫ t

0

[X̂(θ) + Ŷ (θ)− b0(θ)]dθ−
∫ t

0

[Ẑ(θ)−B0(θ)]dw(θ), 0 ≤ t ≤ T.

(5.19)
Setting Y (t) = Ŷ (t) + X̂(t), Z(t) = Ẑ(t) we can easily check that

dY (t) = dŶ (t) + dX̂(t) = [−Ŷ (t)− F 0(t) + b0(t) + X̂(t) + Ŷ (t)− b0(t)]dt+

[2Ẑ(t)−B0(t)− Ẑ(t) + B0(t)]dW (t) = −[F 0(t)− X̂(t)]dt + Ẑ(t)dW (t)

and
dX̂(t) = −[Y (t)− b0(t)]dt− [Ẑ(t)−B0(t)]dw(t).

Hence we see that X̂(t) = X(t) and the triple (X, Y, Z) solves (5.16)-(5.17).
The uniqueness of the solution to (5.16)-(5.17) obviously results from the
uniqueness of (5.18)-(5.19).

At the next step for µ ∈ [0, 1] we consider

bµ(X,Y, Z) = (1− µ)Y − µb(X,Y, Z), Bµ(X, Y, Z) = (1− µ)z − µB(x, y, z),

F µ(X, Y, Z) = (1− µ)X − µF (X,Y, Z), V µ
0 (X) = µV0(X) + (1− µ)X.
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It results from lemma 5.1 that there exists a unique solution of the system

X(t) = χ−
∫ t

0

[bµ(Θ(τ))− b0(τ)]dτ −
∫ t

0

[Bµ(Θ(τ))−B0(τ)]dW (τ), (5.20)

Y (t) = (V µ
0 (X(T ))+κ0)−

∫ T

t

[F µ(Θ(τ))−F 0(τ)]dτ −
∫ T

t

Z(τ)dW (τ) (5.21)

at least for µ = 0.
Next we prove that if we know that there exists a solution to (5.20), (5.21)

for some µ = µ0 ∈ [0, 1) then we can prove that there exists δ0 > 0 such that
the solution to (5.20), (5.21) exists as well for µ = µ0 + δ for each δ ∈ [0, δ0].

Let Υµ(Θ) = (−F µ(Θ), bµ(Θ), Bµ(Θ)) ∈ D for Θ = (X, Y, Z) ∈ D.
Lemma 5.3. Assume that C5.1-C 5.3 and C5.4 or C5.4’ hold and

given µ = µ0 ∈ [0, 1] the system (5.20), (5.21) has an adapted solution Θµ =
(Xµ, Y µ, Zµ) ∈ D for any (bµ, Bµ, F µ) ∈ D Then there exists a constant δ0 ∈
[0, 1) depending only on C1, C2 and T such that for any δ ∈ [0, δ0] and the
system (5.20), (5.21) has an adapted solution (Xµ, Y µ, Zµ) ∈ D for µ = µ0+δ.

Proof. Let us note first that

bµ0+δ(Θ) = bµ0(Θ) + δ(Y + b(Θ)), Bµ0+δ(Θ) = Bµ0(Θ) + δ(Z + B(Θ)),

F µ0+δ(Θ) = bµ0(Θ) + δ(X + F (Θ)), V µ0+δ
0 (X) = V µ0

0 (X) + δ(−X + V0(X)).

Next we set Θ0 = (X0, Y0, Z0) = 0 and consider a system of successive
approximations

Xk+1(t) = χ +

∫ t

0

[bµ0(Θk+1(θ)) + δ[Yk(θ) + b(Θk(θ))]− b0(θ)]dθ+ (5.22)

∫ t

0

[Bµ0(Θk+1(θ)) + δ[Zk(θ) + B(Θk(θ))]−B0(θ)]dW (θ),

Yk+1(t) = [V µ0

0 (Xk+1(T )) + δ[(−Xk(T ) + V0(Xk(T )))]−
∫ T

t

F µ0(Θk+1(θ))dθ+

(5.23)∫ T

t

[δ[Xk(θ) + F (Θk(θ))]− F 0(θ)]dθ −
∫ T

t

Zk+1(θ)dW (θ).

Applying the Ito formula to 〈Ȳk+1(t), X̄k+1(t)〉, where Ȳk+1 = Yk+1 − Yk,
X̄k+1 = Xk+1 −Xk, we obtain

E〈〈V µ0

0 (Xk+1(T ))− V µ0

0 (Xk(T )), X̄k+1(T )〉〉 =

δE〈〈X̄k(T )− (V0(Xk(T ))− V0(Xk−1(T ))), X̄k+1(T )〉〉+
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E

∫ T

0

〈〈Υµ0(Θk+1(τ))−Υµ0(Θk(τ)), Θ̄k+1(τ)〉〉dτ+

δE

∫ T

0

〈〈Θk(τ) + Υ(Θk(τ))−Υ(Θk−1(τ)), Θ̄k+1(τ)〉〉dτ.

Taking into account the estimates inC 5.3, C 5.4 we deduce the inequality

E‖X̄k+1(T )‖2 + E

∫ T

0

‖Θ̄k+1(τ)‖2dτ ≤ δ(1 + C)

C2

[
E‖X̄k(T )‖‖X̄k+1(T )‖+

(5.24)∫ T

0

E[‖Θ̄k+1(θ)‖‖Θ̄k(θ)‖]dθ

]
,

where C2 = min(1, C).
By the elementary inequality ab ≤ a2

2ε
+ b2ε

2
choosing ε = C2

δ(1+C)
we get

E‖X̄k+1(T )‖2 + E

∫ T

0

‖Θ̄k+1(τ)‖2dτ ≤

[
δ(1 + C)

C2

]2 [
E‖Xk(T )‖2 + E

∫ T

0

‖Θk(t)‖2dt

]
.

Given
X̄k(T ) =

∫ T

0

[bµ0(Θk(θ))− bµ0(Θk−1(θ)) + δ(Ȳk−1(θ) + b(Θk−1(θ))− b(Θk−2(θ))]dθ+

∫ T

0

[Bµ0(Θk(θ))−Bµ0(Θk−1(θ))+δ(Zk−1(θ)+B(Θk−1(θ)))−B(Θk−2(θ))]dW (θ)

by standard estimates taking into account C 5.3 and C 5.4 we show that
there exists a constant K such that

E‖X̄k(T )‖2 ≤ K

[∫ T

0

E[‖Θ̄k(θ))‖2 + ‖Θ̄k−1(θ))‖2]dθ

]
.

Hence from this inequality and (5.24) we obtain
∫ T

0

E‖Θ̄k+1(θ))‖2dθ ≤ K1δ
2

[∫ T

0

E[‖Θ̄k(θ))‖2 + ‖Θ̄k−1(θ))‖2]dθ

]
.

Finally we can find δ0 ∈ (0, 1) which depends only on C, C1 and T such
that when 0 < δ ≤ δ0

∫ T

0

E‖Θ̄k+1(θ))‖2dθ ≤ 1

4

∫ T

0

E‖Θ̄k(θ))‖2dθ +
1

8

∫ T

0

E‖Θ̄k−1(θ))‖2dθ (5.25)
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for any k ≥ 1.
Note that given a real sequence {ak}∞k=1 of positive numbers satisfying the

estimate
ak+1 ≤ 1

4
ak +

1

8
ak−1, k ≥ 1,

we can deduce that there exists a positive constant L such that ak ≤ L2−k. As
a result we show that Θk(θ) is a Cauchy sequence in D and denote its limit
by Θ = (X, Y, Z). Now if we pass to the limit k → ∞ in equations (5.22) -
(5.23) we show that V solves (5.20), (5.21) for µ = µ0 + δ, where 0 < δ ≤ δ0.

Lemmas 5.1 and 5.3 immediately yield the following result.
Theorem 5.4. Let C 5.1 - C 5.4 hold, then there exists a unique adapted

solution (X, Y, Z) of (5.11)-(5.12).
Finally let us come back to PDEs.
Theorem 5.5. Let C 5.1-C 5.4 holds and Θ = (X, Y, Z) solves (5.14),

(5.15) with κ = V (T, X(T )) = V0(X(T )), then the function V (s, χ) = Y (s) is
a continuous viscous solution of the Cauchy problem (5.7).

Proof. Continuity of V (s, χ) is a consequence of the square mean continuity
of the solution to (5.14)-(5.15).

To show that V (s, χ) is a viscosity solution we choose a function Φ(s, χ) ∈
R1 belonging to the class C1,2 and a point (s, χ) ∈ [0, T ]×H such that at (s, χ)
the functions V i−Φ, i = 1, . . . , d+d2 have a local maximum. Without loss of
generality we assume that V i(s, χ) = Φ(s, χ). It yields that at any stopping
time τ we have

V i(τ,Xs,χ(τ))− Φ(τ, Xs,χ(τ)) ≤ 0, l = 1, . . . d1. (5.26)

From the Ito formula we deduce

Φ(τ,X(τ)) = Φ(s, χ)+

∫ τ

s

[Φθ +BΦ](θ, X(θ))dθ +

∫ τ

s

〈∇Φ(θ,X(θ)), BdW (θ)〉.

At the other hand due to martingale representation theorem we have a repre-
sentation

Y i(s) =

V i
0 (X(T ))−

∫ T

s

F i(X(θ), Y (θ), Z i(θ))dθ −
∫ T

s

〈Zi(θ), dW (θ)〉.

Since the solution Y (t) = V (t,X(t)) of the equation (5.15) is unique we deduce

V i(s, χ) = Y i(s) =

Y i(τ)−
∫ τ

s

F i(X(θ), Y (θ), Z i(θ))dθ −
∫ τ

s

〈Zi(θ), dW (θ)〉 =

V i(τ, Xs,χ(τ))−
∫ τ

s

F i(X(θ), Y (θ), Z i(θ))dθ −
∫ τ

s

〈Zi(θ), dW (θ)〉.
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Substituting the last relation into (5.26) we derive for i = 1, . . . , d + d2

0 ≥ V i(τ, Xs,χ(τ))− Φ(τ,Xs,χ(τ)) =

V i(s, χ)− Φ(s, χ)−
∫ τ

s

[
∂Φ

∂θ
+ BΦ](θ,Xs,χ(θ))dθ−

∫ τ

s

F i(Xs,χ(θ), Y (θ), Z i(θ))dθ +

∫ τ

s

〈Zi(θ), dW (θ)〉

−
∫ τ

s

〈∇Φ(θ,Xs,χ(θ)), BdW (θ)〉.

Recall that by assumption V i(s, χ)−Φ(s, χ) = 0 and compute the expectation
of the both sides of the last relation. As a result we obtain the inequality

E

(∫ τ

s

Λi(θ, Xs,χ(θ), Y (θ), Z i(θ))dθ

)
≥ 0, (5.27)

where
Λi(s,X, Y, Z i) = [

∂Φ

∂θ
+ BΦ](s,X) + F i(X,Y, Z i).

To verify that V (s, χ) is a subsolution of (5.5) we have to show that

Λi(s,X, Y, Z i) ≥ 0.

Assume on the contrary that there exists δ0 < 0 such that Λi(s,X, Y, Z i) < δ0

and set τ1 = inf{θ > s : Λi(θ,X(θ), Y (θ), Z i(θ)) ≥ δ0} ∧ T.
By definition inequality (5.27) holds for any stopping time and hence for

the stopping time τ1 > s. Thus we come to a contradiction

0 > δ0E(τ1 − s) ≥ E

(∫ τ1

s

Λi(θ,X(θ), Y (θ), Z i(θ))dθ

)
≥ 0,

and hence V (s, χ) is a subsolution of (5.7). In a similar way we can check that
V (s, χ) is a supersolution of (5.7) and hence is a viscosity solution of (5.7).

As a result we deduce that the first component u of the function

V (s, χ) = (u(s, x),∇u(s, x))

is a viscosity solution of (5.1).
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