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DYNAMICS OF PARALLEL DEVELOPMENT OF THE BOND
MARKET INDICES IN THE US MARKET AND ITS
MULTIDIMENSIONAL COPULA MODELS

TOMAS BACIGAL, JOZEF KOMORNIK, MAGDA KOMORNIKOVA,
AND CUONG NGUYEN

ABSTRACT. In this paper (which is a substantially extended version of a con-
ference paper from SMTDA 2016 [10]) we focus our attention to 3-dimensional
copula models of returns of indices of US financial markets (various bond in-
dices have been investigated in the literature much less than stock indices).
We have gained interesting experience in constructing Vine copula models.
Although, for our particular data (comprising two triples of bond indices:
US Investment Bond indices and US Corporate Bond indices), the global
dominance of more traditional classes of elliptic (especially Student type)
3-dimensional copulas was demonstrated (and some conclusions concerning
optimizations of investment portfolios can be based on fairly simple argu-
ments), the optimal local Vine copulas helps to obtain more insight in the
detailed development of the investigated triples of investments.

1. Introduction

In this paper we apply 3-dimensional copula models to two triples of time series
of returns of indices of US financial markets (using daily data from Bloomberg).
The first triple US Investment Bond indices (US IBI) includes the Investment grade
bond index (Ighi), High yield corporate bond index (Hybi), and the Investment
grade bond index SP500 (SP) in the period from January 2010 to April 2015. Here
we follow the approach of Hong et al. [8] that decomposed corporate bonds into
investment grade and high-yield bonds claiming that the returns of the second
group can be predicted by past stock market returns. The second triple of US
Corporate Bond indices (US CBI) contains the Bank of America Merrill Lynch
US Corporate Bond Index (ML), the Barclays US Corporate & Investment Grade
Index (Bar), Dow Jones Corporate Bond Index (DJ) in the (longer) period from
January 1997 to May 2014. Our results show high values of Kendall’s correlation
coefficients as well as tail dependencies between all couples of this triple of indices.
Very interestingly (from the investor’s point of view), the correlations between the
returns of Hybi and Igbi (as well as their tail dependencies) are remarkably weak.

The paper is a substantially extended version of the contribution to SMTDA
2016 conference [10]. It is organized as follows. First we recall some theory about
copulas, their classes and construction used in higher dimensions, then review
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estimation and goodness of fit methods used in our analysis. Finally we discuss
results and conclude.

2. Theory

Copulas are fundamental tools for modelling dependence between/among ran-
dom variables leaving alone their marginal distributions. Due to Sklar [15]

F(ml, ,.Tn) =C [Fl(ajl); ;Fn(x'rL)] )

where F is joint cumulative distribution function of random vector (X1, ..., X,),
F; is marginal cumulative distribution function of X;, and C : [0,1]" — [0,1]
is a copula which is a n-increasing function with 1 as neutral element and 0 as
annihilator, see e.g. monograph Nelsen (2006) [11]. Besides three fundamental
copulas

M('rlv 7*7;77,) = mil’l(fEl, "'7xn)7 W(xlvxZ) = ma'X(xl +x2 — 170)7

n
I(xy,...,zp) = Hxi,
i=1

which model perfect positive dependence, perfect negative dependence (not appli-
cable for n > 2) and independence, respectively, there exist numerous parametric
classes, such as Archimedean, Extreme-Value and elliptical copulas. Within the
last one there belong such important parametric families as Gaussian copulas

Ca(a1, oy ) = @ [®7 (21), ..., D, (20)]
and Student t-copulas
Ci(z1,.yzp) =t [tl_l(:rl), ...,t;l(xn)] ,

(where @ and ¢ are joint distribution functions of multivariate normal and Student
t distributions, similarly ®; L and t; !¢ =1,...,n are univariate quantile functions
related to X;), able to flexibly describe dependence in multidimensional random
vector. On the contrary, the Archimedean class

Ca(er,ytn) = o'V [p(a1), ., ()]

(with generator ¢ : [0,1] — [0,00] and its pseudo-inverse (=) is much easier
to handle, yet it is reasonably useful only in two-dimensional case. However it
can be a building block in a so-called pair-copula construction originally proposed
in Joe (1996) [9] in terms of distributions functions, later reformulated in terms
of densities by Bedford & Cooke (2001) [2] and organized by Bedford & Cooke
(2002) [3] in a graphical way involving a sequence of nested trees (vines), see
Figure 1 for illustration. More about Vine copulas can be found in [1, 14] and [4],
here we outline the construction of three-dimensional probability density function
f (needed in our analysis)

f(x1,20,23) = fi(z1)- f2\1(5017l’2) 'f3|12(I1,I27I3) =
= fi(x1) - crio [Fi(21), Fa(x2)] - fo(xz) - (2.1)
‘3112 [Fa2(22, 23), Fijo(21, 22)] - cos [Fa(w2), F3(x3)] - f(xs)
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where f; is a (marginal) probability density function of X;, i = 1,2, 3,

f(xiv :Cj)

figj (@i, m5) = m
is conditional density function of X; given X;. A copula density c;; couples
X; and X; while c;;;, couples bivariate marginal distributions of X;, X} and
X, Xk, t,j,k € {1,2,3},1 # j # k # 4. Finally,
Fy, = 90 [Fi(x:), Fy(x;)]

v OF;(x;)
is a conditional cumulative distribution function of X; given X ;. The construction
(2.1) represented by Figure 1 is one of the three possible pair—copula decompo-
sitions, which, graphically, are both canonical (C-) and drawable (D-) vine trees.
In more than three dimensions, C—vines and D—vines are just small subsets of a
more general class - regular vines.

@12@23®

FIGURE 1. Vine tree corresponding to construction (2.1) with the
274 yvariable as a root node

3. Methods

Given m observations {X;;},_,  of j-th random variable X;, j = 1,2,3,
the parameters 6 of all copulas under consideration were estimated by maximizing
the likelihood function

L(9) = Zlog [co(U1,i,Ua,i, Us )], (3.1)
i=1
where ¢y denotes density of a parametric copula family Cy, and

1 m )
mzl(Xj,k < Xja), i=1,..m,
k=1

Uji=

are so-called pseudo-observations. Goodness-of-fit was performed by a test pro-
posed by Genest et al. [6] and based on empirical copula process using Cramer-von
Misses test statistic
m
Som =Y [Co(Ui,Uni, Us i) = Con(Uni, Us i, Us ) (3.2)

i=1
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with empirical copula Cy,(x) = L 31" H?Zl 1(X,; < x;) and indicator function
1(A) = 1 whenever A is true, otherwise 1(A) = 0.

The random variable with the strongest association to the others was selected
as a root node 2 in the first vine tree (upper level on Figure 1) and bivariate
copulas as nodes in the vine forest (set of vine trees) were chosen by minimizing
Akaike information criterion.

All calculations were done in R [12] with the help of packages copula [7] and
VineCopula [13]. Besides the usual parametric families of Archimedean class such
as Gumbel, Clayton, Frank and Joe copulas (see e.g. [9, 11]) in bivariate case we
used also their rotations C, by angle o defined

Coo(w1,72) = 22 — C(1 — 71, 72),
Ciso(x1,m2) =21 + 29 — 1+ C(1 — 21,1 — 25) survival copula,
Caoro(x1,x2) = 1 — C(21,1 — T2),

that are implemented in R package VineCopula [13].

4. Results

We can see graphs of the considered two triples of time series in the Figure 2 and
Figure 3. In Figure 2, we can observe that (expectedly for after-crisis period) the
dynamics of growth of the High yield corporate bond index (Hybi) was stronger
than that of the Investment grade bond index (Ighi), but both of them mostly trace
the SP500 Index (SP). In Figure 3 we see that (expectedly) the Merrill Lynch US
Corporate Bond Index (ML) mostly leads the remaining two in the considered
triple (with deeper losses in the crisis period).

US Investment Bond indexes

100

an

01.01.2010 01.01.2011 01.01.2012 01.01.2013 01.01.2014 01.01.2015

— rvestment grade bond NOex s High yield bond iN0dex  s—SP500/10
FIGURE 2. US Investment Bond indexes
All indices are computed in terms of returns (see Figures 4 and 5)
index;

return; = log —————, 1=2,3,...,n.
index;_1
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US Corporate Bond indexes
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FiGure 3. US Corporate Bond indexes

Investment grade bond index High yield bond index

0.010
0.005

—0.005
-0.010
-0.015

F1GURE 4. Returns of High yield corporate

SP500
0.04
0.0z

-0.02

-0.04
-0.08

bond index (left),

Investment grade bond index (middle), Investment grade bond

index SP500 (right)

Merrrill Lynch Barclays
0.0z 0.02
0.01 0.01
—0.01 —0.01
-0.02 _oo2

Dow Jones
0.02

0.01

-0.01
-0.02
-0.03

FIGURE 5. Returns of Bank of America Merrill Lynch US Cor-
porate Bond Index (left), Barclays US Corporate & Investment
Grade Index (middle), Dow Jones Corporate Bond Index (right)

Before further analyses, we filtered all considered time series of returns by

ARMA-GARCH filters
P

Q

Xe—co= aoi(Xe—i—co) +ec+ Y bojerj,

i—1

€t = htﬁt,
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High yield BI

= Investment grade Bl

2 3 6 High yield BI

FIGURE 6. Scatter plots for all couples of the (filtered) returns of
US IBI

q q
2 _ 2 2
hi = wo + E Qpii_; t E Bo,ihi—j,

i1 j=1

where X1, ..., X,, are the observations, ¢o = E[Xy], t =1,...,n,a04, i = 1, ..., P are
the AR coefficients, by ;, j = 1,...,Q are the MA coefficients, (1) is a sequence
of independent and identically distributed (i.i.d.) random variables such that
E[Tlt] = OﬂE[ntz} =1, wo >0, Qo5 >0,1=1,...,q and ﬂO,j >0,5=1..p (fOI
more details see e.g. [5]).

Results of the introductory standard analysis of the residuals for both triples
are presented in Table 1, Figure 6, Table 2 and Figure 7.

In Table 1 we observe that the data high yield (Hybi) and investment grade
(Igbi) bonds are practically uncorrelated, while their Kendall’s correlation coef-
ficient wit SP500 (SP) data exhibit slight correlations of opposite signs. Those
numerical results are graphically illustrated in the Figure 6.

TABLE 1. Values of the Kendall’s correlation coefficient for all
couples of the (filtered) returns of US IBI

| Hybi | Ighi | SP |

Hybi 1 0.0005 | 0.2070
Igbi | 0.0005 1 -0.2620
Sp 0.2070 | -0.2620 1

Very interestingly, Table 2 presents high values of Kendall’s correlation coeffi-
cients for all three couples of the second triple of the residuals of the returns of
the considered indices. They are illustrated in the Figure 7.

TABLE 2. Values of the Kendall’s correlation coefficient for all
couples of the (filtered) returns of US CBI

‘ ‘ Bar ‘ DJ ‘ ML ‘
Bar 1 0.825 | 0.826

DJ | 0.825 1 0.836
ML | 0.826 | 0.836 1
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FIGURE 7. Scatter plots for all couples of the (filtered) returns of
US CBI

We extended our analyses by examining developments of the Kendall’s corre-
lations. In Figure 8, we see the development of Kendall’s correlation coefficients
calculated in semi-annual frequency from data in neighboring annual interval that
overlap by six months with corresponding intervals that provide data for left and
right neighboring values of Kendall’s correlation coefficients. Altogether, we have
calculated a sequence of 9 values of Kendall’s correlation coefficients. The last of
them was calculated from the interval of 16 months. We see that for the couple
Hybi & Ighi the values of these coefficients are largely located within the signifi-
cance limits +0.083 for test of zero value (with two slight exceptions). However
the corresponding values for the couple Hybi & SP are completely out of such
interval and for the couple Ighi & SP only slightly enter that interval.

KENDALL'S TAU

=T =T T =1

ra
[=]

W R e O = M W

[— T — I — L — Ty — |

i b=

——hybi-ighi  —m—hybisp —a—ighisp

FIGURE 8. Evolution of Kendall’s 7 for all couples of the (filtered)
returns of US IBI with 95% insignificance band

For the second triple with longer time period, we have chosen annual frequency
of calculations of Kendall’s correlation coefficients over the intervals of 24 months
overlapping by 12 months with the intervals for calculation of the neighboring val-
ues of Kendall’s correlation coefficient. Altogether, we have calculated a sequence
of 17 such values. The last of them was calculated from the interval of 17 months.
We can see (Figure 9) that all three correlation coefficients exhibit extremely par-
allel development and their values do not approach the significance limits for tests
of their zero value.
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FIGURE 9. Evolution of Kendall’s 7 for all couples of the (filtered)
returns of US CBI

We have calculated global copula models for the first triple (US IBI) of mod-
elled variable. The best copula with respect to CvM test statistic is the trivari-
ate t-copula with test statistic Scy = 0.041 and parameters ppypiigrs = 0.007,
Phybi,sp = 0.400, pigpi,sp = —0.369 and degrees of freedom df = 8, very closely
followed by normal copula with Scps = 0.045 and the best Vine copula (Scay =
0.095) consisting of bivariate t-copulas in tree 1 (SP500 as its root node) and
normal copula in tree 2.

Then we continued in searching models for the 9 time intervals described above
(for which sequence of Kendall’s correlation coefficient was calculated). A Vine
copula was identified (tree structure) for each interval but estimated also for all the
other intervals, thus we got the selection of 8 best fitting Vine copula structures and
their corresponding sequences of estimated Vine copulas. Similarly we estimated
a sequence of 9 Gaussian and a sequence of 9 Student t-copulas.

Their corresponding Cramer-von Misses GOF test statistic (mean squared dis-
tance from empirical copula) is displayed in Figure 10 and it shows slightly superior
performance of elliptical copulas over Vine copulas throughout the whole analyzed
period. We see that in most individual time intervals, the difference between the
best Vine class copulas and the best optimal Student class copulas are almost
negligible. Moreover for most remaining time intervals (except for one centered at
2014), the above differences are far from being remarkably big. This phenomenon
could provide opportunities for finding more optimal local models in the class of
convex combinations of the best local Student class copulas and the best Vine
class copulas. The diversity of Vine copulas reveals us significant changes in the
shape of dependence structure since 2013, accompanied by the changes in the de-
pendence strength between Igbi and the others (Figure 8). The eight Vine copula
structures chosen to represent dependence shape were identified in each period
by applying selection criteria as mentioned in Methods. From Figurel0 (see also
Table3) we may observe that after 2013 no Gaussian pair-copula in vine trees was
chosen while copulas with lower tail dependence in tree 2 and t-copula for Igbi &
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ECP GoF Test
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SP couple were preferred. Interestingly, Vine 6 and 7 look similar in shape (though
Vine 6 add lower tail dependence in tree 2) yet they quite strongly alternate in
ability to describe dependence. Especially interesting is the fact that the couple
Hybi & Igbi appear in the Tree 1 of the Vines 1 — 7 that is signalizing their uni-
formly very low dependence (that is also supported by the fact that in almost all
local time intervals the Gaussian 3-dimensional copula is provided almost equally
strong competitor as the Student copula).

2010 2011 2015

FIGURE 10. Evolution of Cramer-von Mises test statistic for (fil-
tered) returns of US IBI

TABLE 3. Models for (filtered) returns of US IBI from Figure 10

Notation Tree 1 Tree 2
Couple [ Copula Copula

Vine 1 Hybi & SP Gaussian Frank
Igbi & SP Gumbelgg

Vine 2 Hybi & SP Student t Clayton
Igbi & SP Gumbelgg

Vine 3 Hybi & SP | Survival Gumbel Gaussian
Ighi & SP Gaussian

Vine 4 Hybi & SP Gaussian Frank
Igbi & SP Gumbelarg

Vine 5 Hybi & SP Gaussian Gaussian
Igbi & SP Gaussian

Vine 6 Hybi & SP | Survival Gumbel || Survival Gumbel
Igbi & SP Student t

Vine 7 Hybi & SP | Survival Gumbel Student t
Igbi & SP Student t

Vine 8 Hybi & SP Student t Survival Gumbel
Igbi & SP Gumbelgg
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TABLE 4. Models for (filtered) returns of US CBI from Figure 11

Tree 1 Tree 2
\ Copula Couple | Copula
Bar & ML — DJ | Student t

Notation

Couple
Vine 1 Bar & DJ Student t
DJ & ML Student t
Vine 2 Bar & ML Student t
DJ & ML Student t
Vine 3 DJ & Bar Student t
DJ & ML Student t
Vine 4 Bar & ML | Survival Gumbel
DJ & ML Student t

Bar & DJ — ML | Student t

DJ & ML — Bar | Student t

Bar & DJ — ML | Student t

Next we calculated global copula models for the second triple (US CBI) of
the considered series. The best copula with respect to CvM test statistic is the
trivariate t-copula with test statistic Scas = 0.082 and parameters ppqr,qj = 0.967,
Poarmi = 0.977, pgjmi = 0.973 and degrees of freedom df = 2 (normal copula
scored Scpr = 0.766) while the most successful Vine copula with Scps = 0.353
uses bivariate t-copulas in each pair and Merril Lynch as its root node variable.

Similarly, we continued in searching copula models for 17 time intervals of US
CBI (for which sequence of Kendall’s correlation coefficient had been calculated

previously) in the same way as described for US IBI.

ECP GoF Test
= T T P Y 71 Eh YT
= | h 5 1 % i [ T 1 Vine
- 3 _I-'?"_\\_ 3 ! ATAR N 1.| M o2 Vine2
% 2 ,:I % e o U S .'4 i 3! 4 | 3 vine 3
B8 b EPN LB g | 4 Vined
E = [k 2 4 / - \ d-l.'r3 : I'-, ! narmal
3 = ? :.'I '3 al.a- af | 1 | & Sludent
E g | N[5 4 1\\ fLRC T
LA I I b iy N POV ) -3 1.2
1] i g—E—5 H"l’ . & B = B -
3 ] G—m B—f—g & O—-g—6 o
= T T

1997 1999 2001 2003 2005 2007 2009 2011 2013
period

FIGURE 11. Evolution of Cramer-von Mises test statistic for (fil-
tered) returns of US CBI

Figure 11 (with Table 4) shows superior position of t-copula in modelling de-
pendence among US CBI returns and is vastly contained also in vines. This copula
captures both tail dependences in the contrary to normal copula which does not
appear among other copulas. Again, we can observe that for a large part of in-
dividual time intervals, the differences between the best local Vine copulas and
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the best local Student copulas are almost negligible and for a vast majority of
the remaining time intervals, the above differences are far from being remarkably
big. Therefore, we can again hope for finding optimal local models in the class of
convex combinations of the best local Student class and Vine class copulas. What
varies throughout the periods is the selection of a root node variable which is most
of the time Merrill Lynch index replaced by Dow Jones in 2003 and 2005.

Finally, Figure 12 and Figure 13 contain comparable graphs of the parame-
ters development and tail dependence coefficients of the optimal three—parametric
Student 3D models for the triples US CBI and US IBI.

Evolution of Copula parameters Evolution of Tail dependencies coefficients
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FIGURE 12. Evolution of parameters (left) and tail dependence

coefficients (right) of the optimal 3-parametric Student class 3D
copula for US CBI

Evolution of Copula parameters Evolution of Tail dependencies coefficients

e YDHgDl g hybiSp gbrsp —a—lybiighi —gmfybisp

FIGURE 13. Evolution of parameters (left) and tail dependence
coefficients (right) of the optimal 3-parametric Student class 3D
copula for US IBI

5. Conclusion and future work

Analyzing mutual development of bond indices is interesting and important for
investors, risk managers and policy makers. Application of more dimensional cop-
ulas is bringing a new insight and experience for modelling activities. The most
important conclusion for investors is the observation that the dependence between
returns of high-yield and investment grade indices has been very low. With re-
spect to optimal portfolio building (using the class of the US IBI indices), we can
start from the dominant profitability of the SP 500 index. However the other two
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components of the considered triple can enhance hedging effect of possible com-
bined portfolio since they are (even locally) almost uncorrelated and exhibit small
opposite sign correlations with SP 500. We, however, should keep in mind that
the Student class models imply heavy tails (which is a good news for speculators
but not for conservative hedgers). The situation seems to be more simple in case
of the second triple of US CBI indices. Since filtered returns of the components
of this triple exhibit permanent significantly high values of the Kendall’s correla-
tion, any portfolio created by them could be more effectively represented by their
most profitable component ML. We, however, should again keep in mind that the
Student models indicate heavy tails (with the consequences mentioned above).

Although in our concrete case the elliptic Student type copulas globally dom-
inated the description of the considered returns of investment, the applications
of Vine copulas provide useful contributions concerning many interesting detailed
information related to their local development.

More thorough investigations of convex combinations elliptic and Vine copulas
can open new challenges for further research.
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