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Abstract. In this paper we study initial boundary value problem for mass
transport in 2-dimensional porous media describing by the Buckley – Lev-

erett’s system of differential equations. We propose a method to construct

radial invariant solutions of the initial boundary problem and show how to
overcome possible singularities in solutions and shock waves.

1. The Buckley – Leverett model

We consider the Buckley – Leverett system of differential equations for filtration
in two-phase 2-dimensional system, consisting of two incompressible and immisci-
ble liquids (say, water and oil) in a porous media. The porous media is assumed
to have rigid skeleton media.

The Buckley – Leverett system of differential equations, governing filtration
consist of mass, momentum and energy conservations laws (see, for example, [1,
2, 7, 6]:

• Mass conservation law for each phase, in absence of sources and sinks, has
the form:

(1.1) m
∂(ρisi)

∂t
+ div (ρiUi) = 0,

where ρi, si, Ui are the densities, saturations and volumetric velocities of
the phases and m is porosity, i.e. volume fraction occupied by the pores.
• Momentum conservation law or Darcy’s law for each phase states:

Ui = − k

µi
fi (σ) gradpi ,

where fi (σ) are the phase permeabilities, pi are partial pressures, k is the
hydraulic conductivity, µi are the liquid viscosities and s1 = σ, s2 = 1−σ.

We’ll neglect capillary forces. Then the partial pressures coincide p1 =
p2 = p and the Darcy’s law takes the form:

(1.2) Ui = − k

µi
fi (σ) gradp.
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Taking the sum of equations (1.1), we get

(1.3) divU = 0,

where U = U1 + U2 be the resulting velocity and the rest of (1.1) has the form

(1.4) m
∂σ

∂t
+ div (F (σ)U) = 0,

where

F (σ, µ) =
f1 (σ)

f1 (σ) + µf2 (σ)

is the Buckley – Leverett function.
In terms of this function we get

U1 = F (σ, µ)U, U2 = (1− F (σ, µ))U.

The sum of equations (1.2) gives us Darcy’s law for the resulting velocity:

(1.5) U = −k
(
f1 (σ)

µ1
+
f2 (σ)

µ2

)
gradp.

The resulting system

(1.6)


m
∂σ

∂t
+ U (F (σ)) = 0,

divU = 0,

U = −f (σ) gradp.

2. Integrability of Cauchy problem

We consider the 2-dimensional model, assuming that saturation σ and pressure
p are invariants of the rotation group.

Let

q =
x2 + y2

2
and p = p (t, q), σ = σ (t, q). Then it is easy to check that the two last equations
of (1.6) imply

U = λ (t)
x∂x + y∂y

q
,

for some function λ (t), and the first equation takes the form

m
∂σ

∂t
+ λ (t)Fσ (σ)

∂σ

∂q
= 0.

Let’s change parameter t and put σ = σ (τ (t) , q) , where τ ′ = λ (t), τ (0) = 0.
Finally, the Buckley – Leverett system takes the following form

m
∂σ

∂τ
+ Fσ (σ)

∂σ

∂q
= 0,

pq = − λ (t)

f (σ) q2
.
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Solutions of the first equations could be easily found by the method of charac-
teristics.

In our case the characteristics are solutions of the following system of ordinary
differential equations :

·
τ = 1,

·
q = m−1Fσ (σ) ,

·
σ = 0.

Therefore, the solution of the Cauchy problem

σ (0, q) = σ0 (q)

could be presented in the parametric form:

q = q +m−1Fσ (σ) τ,(2.1)

σ = σ0 (q) ,

where q ≥ 0 is a parameter.
We consider this solution as surface

S =
{

(τ, q, σ)| σ − σ0
(
q −m−1Fσ (σ) τ

)
= 0
}
⊂ R3.

Then intersections

Sτ0 = S ∩ {τ = τ0}
are graphs or profiles of the solution σ (τ, q) , when τ = τ0.

Geometrically, the solution σ (τ, q) could be obtained in the following way.
On the half-plane R2

(q,y), q ≥ 0 consider the graph Γ of the function

φ (q) = m−1F ′ (σ0 (q))

and straight lines

l(τ,q) =
q − q
τ

, τ 6= 0.

Let q (τ, x) be the intersection of Γ and l(τ,q), then the value σ (τ, q) equals to
σ0 (q (τ, q)). It shows that function σ (τ, q) is smooth, at least, for small values of
τ .

In general, let’s consider the restriction of the natural projection

π : R3
(τ,x,a) → R2

(τ,x),

on the surface S, π : S → R2
(τ,x), which is smooth. Then the intersection Sτ is a

graph of a smooth function if and only if the differential d π|S is isomorphism at
points Sτ .

A point (τ, q, σ) ∈ S is said to be singular (or caustic) if det (dπ) = 0 at this
point. Denote by Σ ⊂ S the set of all singular points.

In our case Σ is a smooth curve having the following parametric presentation:

Σ =

{
(τ, q, σ)| τ = − 1

φ′ (q)
, q = q − φ (q)

φ′ (q)
, σ = σ0 (x)

}
,

where (τ, q) are coordinates on the surface S.
Then the front of caustics π (Σ) ⊂ R2

(τ,q) has the following parametric presen-

tation:

τ = − 1

φ′ (q)
, q = q

φ (q)

φ′ (q)
,
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Figure 1. Whitney’s cusp

where q ≥ 0 is a parameter.

Theorem 2.1. Any smooth rotation invariant solution of the Buckley – Leverett
system has the form

σ (t, q) = σ0 (τ (t) , q) ,

where σ (0, q) = σ0 (q) , q is a solution of equation

q = q +m−1Fσ (σ0 (q)) τ (t) ,

and

U = τ ′ (t)
x∂x + y∂y

q
,

p (t, q) = −τ ′ (t)
∫

dq

f (σ (t, q)) q2
.

3. Shock waves and boundary value problem

Non smooth solutions and corresponding shock waves we’ll analyze similar to
[1]. The typical singularity of the projection π : S → R2 is the Whitney cusp (see
Fig. 1).

The intersection Sτ , for singular case, is showed on Fig. 2.
Remark that in the differential 1-form

ω = σdq −m−1F (σ) dτ

is the conservation law for saturation in the sense that the quantity∫
σ (τ, q) dq

is constant in time.
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Figure 2. Maxwell rule

This means (see [4] for more details) that to satisfy this conservation law we
have to use the Maxwell rule to cut the surface S on piecewise smooth components.

On the picture it is realized as the jump from the branch (σ+) to the branch
(σ−) : σ+ → σ− and the jump points are chosen in such a way that shaded areas
are equal.

To find function τ (t) we put boundary condition on saturation. Namely we’ll
assume that in addition to Cauchy problem the function σ (t, 0) = γ (t) is given.

The general formula for the solution of the Cauchy problem shows, that σ (τ, 0) =
q0 (x), where q = q (τ), is a solution of the equation:

q +m−1Fσ (σ0 (q)) τ = 0.

Let

α (τ) = σ0 (q (τ)) ,

where we pick q (τ) in correspondence to the branches in the Maxwell law separa-
tion.

To get solution of the initial boundary problem in both cases, we should find
now a function τ (t) , τ (0) = 0, such that

(3.1) α (τ (t)) = γ (t) .

It was shown in [1] that there is time tl, calling the living time, such that the
following result valid.

Theorem 3.1. The initial boundary value problem for the Buckley – Leverett
system has unique and piecewise smooth solution σ (t, q) , p (t, q) , U up to the living
time.
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