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Abstract. In this paper, following [W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points
for mappings satisfying cyclical contractive conditions, Fixed Point Theory. 4 (2003) 79-89], we
give a fixed point result for cyclic weak ϕ-contractions on partial metric space. A Maia type
fixed point theorem for cyclic weak ϕ-contractions is also given.
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1 Introduction

Matthews [5] introduced the notion of a partial metric space as a part of the study of denota-
tional semantics of data for networks, showing that the contraction mapping principle can be
generalized to the partial metric context for applications in program verification. In [1, 3, 7, 9, 10]
we have some generalizations of the result of Matthews. In this paper, we give a fixed point
result for cyclic weak ϕ-contractions on partial metric space. A Maia type fixed point theorem
for cyclic weak ϕ-contractions is also given. Our results generalize some interesting results of
[4].

2 Preliminaries

First, we recall some definitions and some properties of partial metric spaces that can be found
in [5, 7, 9, 10]. A partial metric on a nonempty set X is a function p : X ×X → [0,+∞[ such
that for all x, y, z ∈ X:

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric
on X. It is clear that, if p(x, y) = 0, then from (p1) and (p2) it follows that x = y. But if x = y,
p(x, y) may not be 0. A basic example of a partial metric space is the pair ([0,+∞[, p), where
p(x, y) = max{x, y} for all x, y ∈ [0,+∞[.
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Each partial metric p on X generates a T0 topology τp on X which has as a base the family
of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}

for all x ∈ X and ε > 0.

Definition 2.1. Let (X, p) be a partial metric space.
(i) A sequence {xn} in (X, p) converges to a point x ∈ X if and only if p(x, x) = lim

n→+∞
p(x, xn).

(ii) A sequence {xn} in (X, p) is called a Cauchy sequence if there exists (and is finite) lim
n,m→+∞

p(xn, xm).

(iii) A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn} in X
converges, with respect to τp, to a point x ∈ X such that p(x, x) = lim

n,m→+∞
p(xn, xm).

(iv) A sequence {xn} in (X, p) is called 0-Cauchy if lim
n,m→+∞

p(xn, xm) = 0. We say that (X, p)

is 0-complete if every 0-Cauchy sequence in X converges, with respect to τp, to a point x ∈ X
such that p(x, x) = 0.

On the other hand, the partial metric space (Q ∩ [0,+∞[, p), where Q denotes the set of
rational numbers and the partial metric p is given by p(x, y) = max{x, y}, provides an example
of a 0-complete partial metric space which is not complete.

It is easy to see that every closed subset of a complete partial metric space is complete.

Lemma 2.2. Let (X, p) be a partial metric space and {xn} ⊂ X. If xn → x ∈ X and p(x, x) = 0,
then lim

n→+∞
p(xn, z) = p(x, z) for all z ∈ X.

Proof. By the triangle inequality

p(x, z)− p(xn, x) ≤ p(xn, z) ≤ p(x, z) + p(xn, x).

Letting n→ +∞, we obtain that p(xn, z)→ p(x, z).

Define p(x,A) = inf{p(x, a) : a ∈ A}. Then a ∈ A⇔ p(a,A) = p(a, a), where A denotes the
closure of A.

3 Fixed point results for cyclic mappings

Let X be a nonempty set, m a positive integer and T : X → X a mapping. By definition a finite
family A1, . . . , Am of nonempty subsets of X is a cyclic representation of X with respect to T if

(i)
⋃m
j=1Aj = X;

(ii) T (A1) ⊂ A2, T (A2) ⊂ A3, . . . , T (Am) ⊂ A1.

Let (X, p) be a partial metric space, m a positive integer, A1, . . . , Am closed nonempty
subsets of X and Y =

⋃m
j=1Aj . A mapping T : Y → Y is a cyclic weak ϕ-contraction if

(i) A1, . . . , Am is a cyclic representation of Y with respect to T ;

(ii) there exists a nondecreasing function ϕ : [0,+∞[→ [0,+∞[, with ϕ(t) > 0 for t > 0 and
ϕ(0) = 0, such that

p(Tx, Ty) ≤ p(x, y)− ϕ(p(x, y)) (3.1)

for all x ∈ Aj and y ∈ Aj+1, j = 1, . . . ,m, where Am+1 = A1.
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6 Fixed points for weak ϕ-contractions on partial metric spaces

Example 3.1. Let X = [0,+∞[ and p : X × X → R defined by p(x, y) = max{x, y}, then
(X, p) is a partial metric space. Let A1 = A2 = · · · = Am = [0, 2] and Y =

⋃m
j=1Aj . Define

T : Y → Y by Tx = x
1+x for all x ∈ Y and ϕ : [0,+∞[→ [0,+∞[ such that ϕ(t) = t2

1+t . It is
easy to show that T is a cyclic weak ϕ-contraction.

Denote with Φ the family of nondecreasing function ϕ : [0,+∞[→ [0,+∞[ continuous at
0, such that ϕ(0) = 0 and ϕ(t) > 0 for each t > 0. Let T : X → X a mapping and set
Fix(T ) = {x ∈ X : x = Tx}.

Lemma 3.2. Let (X, p) be a partial metric space, m a positive integer, A1, . . . , Am closed
nonempty subsets of X and Y =

⋃m
j=1Aj. If T : Y → Y is a cyclic weak ϕ-contraction, then

(i) p(Tx, Ty) ≤ p(x, y) for all x ∈ Aj and y ∈ Aj+1, j = 1, . . . ,m;

(ii) p(Tnx, Tn+1y)→ 0 for all x, y ∈ Aj, j = 1, . . . ,m;

(iii) p(Tm(n+1)x, Tmnx)→ 0 for all x ∈ Aj, j = 1, . . . ,m;

(iv) If z ∈ Fix(T ), then p(z, z) = 0.

Proof. Only properties (ii) and (iv) are nontrivial. First, we prove (ii). Let x, y ∈ Aj and define
tn = p(Tnx, Tn+1y), since T is a cyclic weak ϕ-contraction, we have

tn+1 ≤ tn − ϕ(tn) ≤ tn, for all n ∈ N. (3.2)

Thus the sequence {tn} is nonincreasing and hence there exists α ≥ 0 such that tn → α. We
show that α = 0. Assume α > 0, then there exists n0 such that t1 < nϕ(α) for all n ≥ n0. Now,
by the monotonicity of ϕ for all n ≥ n0, we have

tn+1 ≤ tn − ϕ(α) ≤ tn−1 − 2ϕ(α) ≤ · · · ≤ t1 − nϕ(α)

which is a contradiction and so α = 0.
Property (iv) follows from

p(z, z) = p(Tz, Tz) ≤ p(z, z)− ϕ(p(z, z))

which is possible only if p(z, z) = 0.

Lemma 3.3. Let (X, p) be a partial metric space, m a positive integer, A1, . . . , Am closed
nonempty subsets of X and Y =

⋃m
j=1Aj. If T : Y → Y is a cyclic weak ϕ-contraction, given

x0 ∈ Aj (j = 1, . . . ,m), then for every ε > 0 there exists nε such that p(Tmsx0, T
mn+1x0) < ε

for all s > n ≥ nε.

Proof. Suppose the contrary. Then there exists ε > 0 such that for each k ≥ 1, there exist
sk > nk ≥ k so that

p(Tmskx0, T
mnk+1x0) ≥ ε and p(Tm(sk−1)x0, T

mnk+1x0) < ε.

From

ε ≤ p(Tmskx0, Tmnk+1x0)

≤ p(Tmskx0, Tm(sk−1)x0) + p(Tm(sk−1)x0, T
mnk+1x0)

≤ p(Tmskx0, Tm(sk−1)x0) + ε,

by Lemma 3.2, it follows that limk→+∞ p(T
mskx0, T

mnk+1x0) = ε.
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Since, by Lemma 3.2, p(Tm(sk+1)x0, T
m(nk+1)+1x0) ≤ p(Tmsk+1x0, T

mnk+2x0), we have

p(Tmskx0, T
mnk+1x0)

≤ p(Tmskx0, Tm(sk+1)x0) + p(Tm(sk+1)x0, T
m(nk+1)+1x0) + p(Tm(nk+1)+1x0, T

mnk+1x0)

≤ p(Tmskx0, Tm(sk+1)x0) + p(Tmsk+1x0, T
mnk+2x0) + p(Tm(nk+1)+1x0, T

mnk+1x0)

≤ p(Tmskx0, Tm(sk+1)x0) + p(Tmskx0, T
mnk+1x0)− ϕ(ε) + p(Tm(nk+1)+1x0, T

mnk+1x0).

Letting k → +∞, by Lemma 3.2, we obtain

ε ≤ ε− ϕ(ε),

which is a contradiction. Consequently, for every ε > 0 there exists nε such that

p(Tmsx0, T
mn+1x0) < ε

for all s > n ≥ nε.

Lemma 3.4. Let (X, p) be a partial metric space, m a positive integer, A1, . . . , Am closed
nonempty subsets of X, Y =

⋃m
j=1Aj and T : Y → Y a cyclic weak ϕ-contraction. Assuming

that there exist a sequence {yn} ⊂ Y such that p(yn, T yn) → 0 as n → +∞ and z ∈ Fix(T ),
then yn → z, as n→ +∞. Moreover, T has at most one fixed point.

Proof. Assume that the sequence {yn} doesn’t converge to z, then lim supn→+∞ p(yn, z) = α > 0.
Let N = {n : p(yn, Tyn) < ϕ(α2 ) and p(yn, z) >

α
2 }. For all n ∈ N , we have

p(yn, z) ≤ p(yn, T yn) + p(Tyn, T z)− p(Tyn, Tyn)

≤ p(yn, T yn) + p(yn, z)− ϕ(
α

2
)

< p(yn, z),

which is a contradiction and so the sequence {yn} converges to z. Lemma 3.2 ensures that there
exist sequences {yn} ⊂ Y such that p(yn, T yn) → 0 as n → +∞. We show that T has at most
one fixed point. Assume the contrary and let w ∈ Fix(T ). From

p(z, w) ≤ p(z, yn) + p(yn, w)− p(yn, yn)

≤ p(z, yn) + p(yn, w),

letting n→ +∞, since p(z, yn), p(yn, w)→ 0, we get p(z, w) ≤ 0 and so z = w.

The following theorem of fixed point in a partial metric space is our main results.

Theorem 3.5. Let (X, p) be a partial metric space, m a positive integer, A1, . . . , Am 0-complete
nonempty subsets of X and Y =

⋃m
j=1Aj. If T : Y → Y is a cyclic weak ϕ-contraction with

ϕ ∈ Φ, then T has a unique fixed point z ∈
⋂m
j=1Aj.

Proof. Let x0 ∈ Y =
⋃m
j=1Aj and ε > 0. Let {xn} be the Picard iteration defined by xn = Txn−1

for all n. By Lemmas 3.2 and 3.3, there exists nε such that

p(xmn+1, xmn) <
ε

2
and p(xms, xmn+1) <

ε

2

for all s > n ≥ nε. This implies

p(xms, xmn) ≤ p(xms, xmn+1) + p(xmn+1, xmn)− p(xmn+1, xmn+1)

≤ p(xms, xmn+1) + p(xmn+1, xmn) < ε
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for all s > n ≥ nε. Consequently, lims,n→+∞ p(xms, xmn) = 0 and hence {xmn} is a 0-Cauchy
sequence. Now, also, {xn} is a 0-Cauchy sequence, by Lemma 3.2. Since Y is 0-complete there
exists z ∈ Y such that p(xn, z) → p(z, z) = 0. Also, xmn+j → z for j = 0, 1, . . . , j − 1. This
implies that z ∈

⋂m
j=1Aj , since each Aj is 0-complete. We show that z = Tz. From

p(z, Tz) ≤ p(z, xn+1) + p(Txn, T z)− p(xn+1, xn+1)

≤ p(z, xn+1) + p(xn, z)− ϕ(p(xn, z))

and limn→+∞ ϕ(p(xn, z)) = 0, letting n → +∞, we get p(z, Tz) ≤ 0. This implies that z = Tz
and hence z is a fixed point of T . The uniqueness of the fixed point is obvious.

Theorem 3.6. Let (X, p) be a partial metric space, m a positive integer, A1, . . . , Am 0-complete
nonempty subsets of X, Y =

⋃m
j=1Aj and T : Y → Y a cyclic weak ϕ-contraction, with

ϕ ∈ Φ. Assuming that there exists a sequence {yn} ⊂ Y such that p(yn, y) → p(y, y) = 0 and
p(yn+1, Tyn)→ 0 as n→ +∞, then for all x ∈ Y we have that limn→+∞ p(yn, T

nx) = 0.

Proof. By Theorem 3.5, T has a unique fixed point z such that p(z, z) = 0. Now, by Lemma
2.2, limn→+∞ p(yn, z) = p(y, z). If y 6= z, then p(y, z) > 0 and thus there is n such that
p(yn, z) ≥ p(y, z)/2 for all n ≥ n.

From

p(yn+1, z) ≤ p(yn+1, Tyn) + p(Tyn, T z)− p(Tyn, T yn)

≤ p(yn+1, Tyn) + p(yn, z)− ϕ(
p(y, z)

2
),

for all n ≥ n, letting n→ +∞ we deduce that

p(y, z) ≤ p(y, z)− ϕ(
p(y, z)

2
),

which is possible only if p(y, z) = 0, that is if y = z. For all x ∈ Y , by Lemmas 3.2 and 3.4, we
have

p(yn+1, T
nx) ≤ p(yn+1, z) + p(z, Tnx)→ 0, as n→ +∞.

Now, if we choose the function ϕ : [0,+∞[→ [0,+∞[ such that ϕ(t) = (1 − k)t for all t,
where k ∈]0, 1[, from Theorem 3.5, we obtain the following corollary.

Corollary 3.7. ([4], Theorem 1.3). Let A1, . . . , Am be a finite family of nonempty closed subsets
of a complete metric space (X, d), and suppose T :

⋃m
i=1Ai →

⋃m
i=1Ai satisfies the following

conditions:

(i) T (A1) ⊂ A2, T (A2) ⊂ A3, . . . , T (Am) ⊂ A1

(ii) there exists k ∈]0, 1[ such that d(Tx, Ty) ≤ kd(x, y) for all x ∈ Ai, y ∈ Ai+1 for 1 ≤ i ≤ m,
where Am+1 = A1.

Then T has a unique fixed point.

Denote with Ψ the family of functions ψ : [0,+∞[→ [0,+∞[ such that the function
ϕ : [0,+∞[→ [0,+∞[ defined by ϕ(t) = t − ψ(t) belongs to Φ. From Theorem 3.5, we obtain
the following result of Boyd-Wong type [2].

Corollary 3.8. Let A1, . . . , Am be a finite family of nonempty closed subsets of a complete
metric space (X, d), and suppose T :

⋃m
i=1Ai →

⋃m
i=1Ai satisfies the following conditions:
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(i) T (A1) ⊂ A2, T (A2) ⊂ A3, . . . , T (Am) ⊂ A1

(ii) there exists ψ ∈ Ψ such that d(Tx, Ty) ≤ ψ(d(x, y)) for all x ∈ Ai, y ∈ Ai+1 for 1 ≤ i ≤ m,
where Am+1 = A1.

Then T has a unique fixed point.

Maia type result regarding cyclic weak ϕ-contractions with ϕ ∈ Φ is given in the following
theorem.

Theorem 3.9. Let X be a nonempty set, p and ρ two partial metrics on X, m a positive integer,
A1, . . . , Am closed nonempty subsets of (X, p), Y =

⋃m
j=1Aj and T : Y → Y . Assuming that

(i) A1, . . . , Am is a cyclic representation of Y with respect to T ;

(ii) p(x, y) ≤ ρ(x, y), for any x, y ∈ Y ;

(iii) (Y, p) is a 0-complete partial metric space;

(iv) T : (Y, p)→ (Y, p) is continuous;

(v) T : (Y, ρ)→ (Y, ρ) is a cyclic weak ϕ-contraction with ϕ ∈ Φ.

Then T has a unique fixed point.
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[3] D. Ilić, V. Pavlović and V. Rakočević, Some new extensions of Banach’s contraction prin-
ciple to partial metric space, Appl. Math. Lett. 24 (2011) 1326-1330.

[4] W.A. Kirk, P.S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical
contractive conditions, Fixed Point Theory. 4 (2003) 79–89.

[5] S.G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General
Topology and Applications, Ann. New York Acad. Sci. 728 (1994) 183–197.

[6] S.B. Nadler Jr, Multi-valued contraction mappings, Pacific J. Math. 30 (1969) 475–487.

[7] S. Oltra and O. Valero, Banach’s fixed point theorem for partial metric spaces, Rend. Istit.
Mat. Univ. Trieste. 36 (2004) 17-26.

[8] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971)
121-124.

[9] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed
Point Theory Appl. (2010), Article ID 493298.

[10] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol. 6
(2005) 229-240.

9


	1 Introduction
	2 Preliminaries
	3 Fixed point results for cyclic mappings

