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Abstract. In this paper we present some results concerning probabilistic ap-

proaches to construction of classical and generalized solutions to the Cauchy
problem for systems of parabolic equations from two different classes and

show key points where there arises a crucial difference between them.

Introduction

Among systems of parabolic equations that arise as mathematical models de-
scribing various physical, chemical and biological phenomena we consider two large
classes, namely, systems with diagonal second order terms and nondiagonal terms
of the first and zero order providing that all second order coefficients are equal and
systems with nondiagonal second order terms. We are interested in probabilistic
representations of solutions to the Cauchy problem for these systems. To be more
precise we are interested in either classical or generalized solutions of the Cauchy
problem. In addition it should be mentioned as well that we consider here both
forward and backward Cauchy problem for systems of these types.

The investigation of systems of nonlinear parabolic equations of the first class
via probabilistic approaches was started by Yu.Dalecky and Ya. Belopolskaya
in [1], [2]. The fundamental results concerning the Cauchy problem solution for
systems of this type one can find in a famous monograph by O. Ladyzenskaya,
V.Solonnikov, N.Uraltzeva [3], where both classical and generalized solutions of
such systems were investigated. The probabilistic approach developed in [1], [2]
allows to reveal some peculiarities of this class of systems and in particular a possi-
bility to treat a system from this class as a scalar equation of a special form defined
on a new phase space. In addition it shows the way to reduce the Cauchy prob-
lem solution to solution of a certain stochastic system. A probabilistic approach
to construction of generalized solutions of the Cauchy problem for systems of the
first class was developed in [4] based on the Kunita results concerning probabilistic
representation of generalized solutions for linear scalar equations [5], [6].

A construction of stochastic processes associated with parabolic systems of the
second class appears to be the most tricky. This class of systems was studied by
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people working in the PDE theory started from seminal papers by Amann [7], see
as well more recent review [8] and references therein. The probabilistic approach
to the Cauchy problem for systems of the second class was developed in papers
[9], [10].

In this paper we present some results concerning probabilistic approaches to
construction of classical and generalized solutions to the Cauchy problem for sys-
tems of the first class and generalized solutions of the Cauchy problem for systems
of the second class and show key points where there arises a crucial difference
between them.

1. Stochastic approach to the first class systems

Consider a general system of the first class having the form

∂um
∂s

+ L0um +

d1∑
l=1

Gmlul = 0, um(T, x) = u0m(x), m = 1, . . . , d1, (1.1)

where L0um = 1
2

∑d
i,j,k=1A

u
ik(x)∇2

jiumA
u
jk(x)+

∑d
i=1 a

u
i (x)∇ium〉 and

∑d1
l=1 Gmlul

=
∑d1
l=1

[∑d
j=1B

ml
j (x, u)∇jul + cuml(x)ul

]
. We assume first that all coefficients

depend on x, u, i.e. au(x) = a(x, u). A stochastic system associated with (1.1) has
the form

dξ(τ) = au(ξ(τ))dτ +Au(ξ(τ))dw(τ), ξ(s) = x ∈ Rd, (1.2)

dη(τ) = cu(ξ(τ))η(τ)dτ + Cu(ξ(τ))(η(τ), dw(τ)), η(s) = h ∈ Rd1 , (1.3)

〈h, u(s, x)〉 = Es,x,h〈η(T ), u0(ξ(T ))〉 (1.4)

where B = C∗A, 〈h, u〉 =
∑d1
m=1 hmum and 〈Ch, u〉 = 〈h,C∗u〉.

Assume that condition C.1 holds that is all coefficients and u0 are Ck+α-
smooth functions, k = 1, 2, α ∈ (0, 1) and have polynomial growth in u. Besides
a(x, u), A(x, u) have a sublinear growth in x uniformly in u while u0, c(x, u) and
C(x, u) are bounded in x.

The following assertions have been proved in [1]-[2].

Theorem 1.1. Assume that C.1 with k = 2 holds. Then there exists an interval
[T1, T ] such that for all s ∈ [T1, T ] there exists a solution of the system (1.2)-(1.4).
The length of the interval depends on coefficients a,A, c, C and u0.

Theorem 1.2. Under assumptions of theorem 1 the function u(s, x) defined by
the system (1.2)-(1.4) is C2-smooth and bounded on a possibly smaller interval
[T2, T ] ⊂ [T1, T ] and is a unique classical solution of the Cauchy problem (1.1).

Detailed proofs of the above assertions can be found in [1], [2]. As a final
remark concerning classical solutions of nonlinear parabolic systems from the first
class let us mention that the above considerations can be extended to the case of
quasilinear and fully nonlinear parabolic systems. Notice that in this case one has
to construct a certain differential prolongation of the original system and consider
a new semilinear system including the original one.
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2. Stochastic approach to generalized solutions of the Cauchy problem
for systems of parabolic equations

To construct a probabilistic approach to a generalized solution of a PDE or
a system of PDEs we need a number of standard functional spaces, namely, the
space Ck(Y );Rd1) of k- times differentiable functions defined on a linear space Y
and valued in Rd1 , the Schwartz space C∞0 (Y ; )Rd1 and Sobolev spaces W k,q ≡
W k,q([0, T ]×Rd;Rd1).

A stochastic representation of a generalized solution to the forward Cauchy
problem for a system from the first class was constructed in [4]. There we used a
definition of a generalized solution from [3] and the generalized Ito formula was a
crucial part in the construction.

Unfortunately it does not work when one considers a system from the second
class. To obtain the required results we need a different though equivalent [11]
definition of a generalized solution of the Cauchy problem for a system of parabolic
equations and a notion of stochastic test function.

To illustrate the suggested approach we consider the Cauchy problem

∂um

∂t
= ∆(um[u1 + u2]) + cmu u

m, um(0, x) = um0 (x), m = 1, 2, (2.1)

where cmu = cm − cm1u
1 − cm2u

2 and cm, cmk,m, k = 1, 2 are positive constants.
We say that a pair of functions u1, u2 is a generalized solution of (2.1) if it has the
following properties:

i) u1, u2 ∈ L∞loc([0,∞);L∞(Rd)) ∩W and u1, u2 ≥ 0 a.e. in (0,∞)×Rd;
ii) ∇um ∈ L2

loc((0,∞)×Rd),
iii) for any test function h ∈ C∞0 ([0,∞)×Rd) with compact support∫ ∞

0

〈〈um(θ), [
∂h(θ)

∂θ
+ [u1(θ) + u2(θ)]∆h(θ)]dθ (2.2)

+

∫ ∞
0

〈〈um(θ), [cm − cm1u
1(θ)− cm2u

2(θ)]h(θ)〉〉dθ = −〈〈um0 , h(0)〉〉.

This version of definition allows to reveal a structure of a Markov process generator
associated with (2.1).

Set
1

2
M2
u(x) = u1(t, x) + u2(t, x), cmu (x) = cm − cm1u

1(t, x)− cm2u
2(t, x) (2.3)

and consider the Cauchy problem for parabolic equations

∂hm(s, y)

∂s
+

1

2
M2
u(y)∆hm(s, y) + cmu h

m(s, y) = 0, hm(t, y) = h(y), 0 ≤ s ≤ t,
(2.4)

Assume that um(θ, y) is a given bounded function twice differentiable in y ∈ Rd.
Then from the previous section results we know that a probabilistic representation
of a classical solution to (2.4) can be presented in the form

hm(θ, y) = E[ηm(t)h(ξθ,y(t))], 0 ≤ θ ≤ t,m = 1, 2, (2.5)

where ξ(t), ηm(t) are governed by SDEs

dξ(θ) = Mu(ξ(θ))dw(θ), ξ(0) = y, 0 ≤ θ ≤ t, (2.6)
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dηm(θ) = cmu (ξ(θ))ηm(θ)dθ, ηm(0) = 1. (2.7)

correspondingly.
We construct a probabilistic representation of a regular generalized solution

um(t, x),m = 1, 2 of (2.1) assuming that um(t, x) exists and unique. Under this
assumption we can prove that there exists a unique solution ξ(t) to (2.6) and its

time reversal ξ̂(θ) satisfies the stochastic integral equation

ξ̂0,x(θ) = x−
∫ t

θ

[Mu∇Mu](ξ̂0,x(τ))dτ −
∫ t

θ

Mu(ξ̂0,x(τ))dw̃(τ), (2.8)

where 0 ≤ θ ≤ τ ≤ t.
To derive the stochastic representation of um(t, x) we have to modify (2.7)

and apply some results from the Kunita stochastic flow theory [5]. Since now
we cannot apply the generalized Ito formula immediately to the function u we
introduce instead a notion of a stochastic test function.

Consider a stochastic process γm(θ) = ηm(θ)h(ξ(θ))J(θ), where ξ(θ) satisfies
(2.6) and the process ηm(θ) satisfies a linear SDE

dηm(θ) = c̃mu (ξ(θ))ηm(θ)dθ + ηm(θ)〈Cmu (ξ(θ)), dw(θ)〉, ηm(0) = 1 (2.9)

with coefficients c̃mu and Cmu to be specified below. In addition under the above
assumptions on functions um there exists J(θ) = det∇ξ0,x(θ). To obtain an explicit
expression for dγm(θ) we apply the Ito formula and note that as it is not difficult
to verify that dJ(θ) has the form

dJ(θ) = J(θ)〈∇Mu, dw(t)〉, J(0) = 1. (2.10)

As a result we get the following lemma.

Lemma 2.1. Let coefficients c̃mu and C̃mu have the form

c̃mu (ξ(θ)) = cmu (ξ(θ))− 〈∇Mu(ξ(θ)),∇Mu(ξ(θ))〉, Cmu (ξ(θ)) = −∇Mu(ξ(θ)).
(2.11)

Then the processes γm(θ) = ηm(θ)h(ξ0,y(θ))J(θ),m = 1, 2, have stochastic differ-
entials of the form

dγm(θ) =

[
1

2
M2
u∆h+ cmu h

]
(ξ(θ))ηm(θ)J(θ)dθ + 〈Mu∇h(ξ(θ)), ηm(θ)J(θ)dw(θ)〉.

(2.12)

By direct computation we can verify that the processes ξ̂(θ), η̂m(θ) which are
time reversal with respect to processes ξ(θ), ηm(θ) satisfying correspondingly to
(2.6) and (2.9) allow to construct a probabilistic representation of a generalized
solution to (2.1) in the form

um(t, x) = E[η̂m(t)um0 (ξ̂0,x(t))], m = 1, 2. (2.13)

Note that system describing ξ̂(θ), η̂m(θ), um(t, x) is not closed, hence though it
gives a probabilistic representation of a generalized solution to (2.1) under a priori
assumption of the existence of this solution but it still does not allow to reduce
(2.1) to a closed stochastic problem. To reach this goal we have to add to the
above stochastic system (2.6), (2.9) (2.13) some relations which allow to derive a
stochastic representation to both um and ∇um.
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PROBABILISTIC REPRESENTATION 5

To this end we apply some results of the previous section. Namely, by formal
differentiation of (2.1) we get a PDE for vmi = ∇ium with vmi (0, x) = ∇ium0 (x)
and

∂vmi
∂t

= ∆{vmi (u1 + u2) + um(v1 + v2)}+ um∇icm(u) + cm(u)vmi . (2.14)

In a similar way from

∂h

∂θ
+ (u1 + u2)∆h+ cm(u)h = 0, h(t, y) = h(y), (2.15)

we get a PDE for gi = ∇ih
∂gi
∂θ

+(u1 +u2)∆gi+(v1i +v2i )divg+∇icm(u)h+cm(u)gi = 0, gi(0, y) = ∇ih(y).

(2.16)
In addition note that we can construct a stochastic representation of the solu-
tion to (2.15)-(2.16) in the form Γm(θ, y) = E[ηm(t)Γ0(ξθ,y(t))], where Γ(t, y) =(
h(t, y)
∇h(t, y)

)
and stochastic processes ξ(τ) and ηmik(τ) satisfy SDEs

dξ(τ) =
√

2[u1(t, ξ(τ)) + u2(t, ξ(τ))]dw(τ), ξ(θ) = y, 0 ≤ θ ≤ τ ≤ t,

dβm(τ) = nmu (ξ(t))β(τ)dτ + 〈Nm
u (ξ(τ)), βm(τ)dw(τ)〉.

Here for the Kronecker symbol δ with δg =
∑
k

∑
j δjk∇jgk = div g we denote

βm(τ) =

(
ηm(τ)
∇ηm(τ)

)
, nmu =

(
cmu 0
∇cmu cmu

)
, Nm

u =

(
0 0

0 [v1+v2]δ√
2(u1+u2)

)

and thus for Γ0(y) = Γm(0, y) =

(
h(y)
∇h(y)

)
we set Γm(θ, y) =

= E

[(
ηm(t) 0
∇ηm(t) ηm(t)

)(
h(ξ(t))
∇h(ξ(t))

)]
=

(
E[ηm(t)h(ξ(t))]

E[∇ηm(t)h(ξ(t)) + ηm(t)∇h(ξ(t))]

)
.

To deduce the stochastic representation for the function vmj = ∇jum given the
PDE system (2.1),(2.14) we proceed as follows. We rewrite this system in the form

∂

∂t

(
um

vm

)
= Zm

(
um

vm

)
, m = 1, 2, where (2.17)

Zm
(
um

vm

)
=

= ∆

[(
u1 + u2 0

0 u1 + u2

)(
um

vm

)]
+

(
0 0
0 [v1 + v2]

)(
um

vm

)
+

(
cm11 0
cm21 cm22

)(
um

vm

)
then we consider a dual system derived from (2.17) as follows. Integrate over Rd a
product of (2.17) and a vector test function (h, g)∗, where gj = ∇jh, j = 1, . . . , d.
As a result we obtain a system of the form〈〈(

um

vm

)[
∂

∂t

(
h
g

)
+Qm

(
h
g

)]〉〉
= 0, where (2.18)

Qm
(
h
g

)
=

(
u1 + u2 0

0 u1 + u2

)
∆

(
h
g

)
+

(
0 0
0 [v1 + v2]δ

)
∇
(
h
g

)
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+

(
cm11 0
cm21 cm22

)(
h
g

)
.

Here and below we denote by〈〈(
um

vmi

)(
h
gi

)〉〉
=

(∫
Rd u

m(x)h(x)dx∫
Rd v

m
i (x)gi(x)dx

)
.

Consider a stochastic equation of the form

dηm(θ) = [c̃m]∗(ξ(θ))ηm(θ)dθ+ [C̃m]∗(ξ(θ))(ηm(θ), dw(θ)), ηm(s) = γm (2.19)

with respect to the two component process ηm(θ) =

(
ηm1 (θ)
ηm2 (θ)

)
with coefficients c̃m

and C̃m to be chosen below. Let ζm(t) maps γm to ηm(θ), that is

ζm(θ) =

(
ζm11(θ) 0
ζm21(θ) ζm22(θ)

)
.

To simplify notation we omit index m and define a stochastic test function

κ(θ) =

(
κ1(θ)
κ2(θ)

)
=

(
ζ11(θ) 0
ζ12(θ) ζ22(θ)

)(
h(ξ(θ))
g(ξ(θ))

)
J(θ). (2.20)

The stochastic differential of the process κ(θ) has the form dκ(θ) =

(
dκ1(θ)
dκ2(θ)

)
with

dκ1(θ) = [c̃11h+Mu∆h+ 〈C11, [Mu∇h+∇Muh](ξ(θ))〉ζ11(θ)J(θ)]dθ

+〈Mu∇h(ξ(θ)),∇Mu〉ζ11(θ)J(θ)dθ + 〈N1(ξ(θ)), dw(θ)〉,
dκi2(θ) =

[
[c̃21h+Mudivg](ξ(θ))ζi21(θ) + ζ22(θ)[c̃22gi +Mu∆gi](ξ(θ))

]
J(θ)dθ

+{C21ζ
i
21(θ)[Mu∇h+∇Muh](ξ(θ)) + C22ζ22(θ)[Mu∇gi + gi∇Mu](ξ(θ))

+ζi21(θ)Mu〈∇h,∇Mu〉(ξ(θ)) + ζ22(θ)Mu〈∇gi,∇Mu〉(ξ(θ))}J(θ)dθ

+〈[N21(ξ(θ))ζi21(θ) +N i
22(ξ(θ))ζ22(θ)], dw(θ)〉J(θ).

Let us specify coefficients c̃m and C̃m. As it was done above we choose

C̃m11 = −∇Mu, c̃m11 = cmu + ‖∇Mu‖2, (2.21)

where I is the identity matrix. Next we choose

C̃m21 = −∇Mu, C̃
m
22 =

(v1 + v2)δ

Mu
−∇Mu,

[c̃m21]i = ∇icmu + ‖∇Mu‖2, c̃m22 = cmu + ‖∇Mu‖2 . (2.22)

We do not specify for the moment Nm
1 and Nm

2 since they do not take part in the
probabilistic representation of um and vm. Next we proceed as in the previous
section.

To get a closed counterpart of the system (2.1) we state the following assertion.

Theorem 2.2. Under assumptions of theorem 1.1 with k = 1 both the functions
um(t, x) admit stochastic representations (2.13) and functions vmj = ∇jum admit
stochastic representations(

um(t, x)
∇ium(t, x)

)
= E

[(
ζ̂m11(t) 0

ζ̂m21(t) ζ̂m22(θ)

)(
um0 (ξ̂0,x(t))

vmi (ξ̂0,x(t))

)]
. (2.23)
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Proof. To verify the last assertion of the theorem we note that we have the fol-
lowing matrix relations〈〈∫ t

0

(
um0
vmi0

)(
dκm1 (θ)
dκm2 (θ)

)〉〉
=

〈〈(
um0
vmi0

)(
dκm1 (t)
dκm2 (t)

)〉〉
−
〈〈(

um0
vmi0

)(
dκm1 (0)
dκm2 (0)

)〉〉
.

(2.24)
At the other hand from (2.20) we deduce

E

[〈〈∫ t

0

(
um0
vmi0

)(
dκ1(θ)
dκ2(θ)

)〉〉]

= E

[∫ t

0

〈〈(
um0
vmi0

)
d

[(
ζm11(θ) 0
ζm21(θ) ζm22(θ)

)(
h(ξ0,y(θ))
g(ξ0,y(θ))

)
J(θ)

]〉〉]
= E

[∫ t

0

〈〈(
um0
vmi0

)(
ζm11(θ) 0
ζm21(θ) ζm22(θ)

)
Qm

(
h(ξ0,·(θ)
g(ξ0,·(θ))

)
J(θ)

〉〉
dθ

]
. (2.25)

By the change of variables ξ0,y(θ) = x applying stochastic Fubini theorem we get

E

[〈〈∫ t

0

(
um0
vmi0

)(
dκ1(θ)
dκ2(θ)

)〉〉]
(2.26)

= E

[∫ t

0

〈〈(
ζ̂m11(θ) 0

ζ̂m21(θ) η̂m22(θ)

)(
um0 (ξ̂0,·(θ))

vmi0(ξ̂0,·(θ))

)
Qm

(
h
g

)〉〉
dθ

]
=

∫ t

0

〈〈
E

[(
ζ̂m11(θ) 0

ζ̂m21(θ) ζ̂m22(θ)

)(
um0 (ξ̂0,x(θ))

vmi0(ξ̂0,·(θ))

)]
Qm

(
h
g

)〉〉
dθ

=

∫ t

0

〈〈
ZmE

[(
ζ̂m11(θ) 0

η̂m21(θ) ζ̂m22(θ)

)(
um0 (ξ̂0,·(θ))

vmi0(ξ̂0,·(θ))

)](
h
g

)〉〉
dθ.

Hence we derive that the functions(
λm(t, x)
∇λm(t, x)

)
= E

[(
ζ̂m11(θ) 0

ζ̂m21(θ) η̂m22(θ)

)(
um0 (ξ̂0,x(θ))

vmi0(ξ̂0,x(θ))

)]
satisfy integral identities〈〈(

λm(t)
∇λm(t)

)(
h
g

)〉〉
−
〈〈(

λm(0)
∇λm(0)

h
g

)〉〉
=

〈〈
Qm

(
λm(t)
∇λm(t)

)(
h(x)
g(x)

)〉〉
which results due to the assumed uniqueness of a solution to (1.2) that(

λm(t, x)
∇λm(t, x)

)
=

(
um(t, x)
∇um(t, x)

)
and hence (

um(t, x)
∇um(t, x)

)
= E

[(
ζ̂m11(t) 0

η̂m21(t) ζ̂m22(t)

)(
um0 (ξ̂0,x(t))

vmi0(ξ̂0,x(t))

)]
.

Finally we deduce from the last equality that (2.19) holds and in addition

∇umi (t, x) = E[ζ̂21(t)um0 (ξ̂0,x(t)) + ζ̂m22(t)vmi0(ξ̂0,x(t))].

�
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