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Abstract. In this paper, we define admitted Lie symmetry of jump-diffusion

stochastic differential equations. Determining equations are derived in an
Itô calculus context and were found to be non-stochastic even though they

represent a stochastic process. Applications to some stochastic differential

equations are presented and later showed the Lie bracket relations between
the infinitesimals generators.

1. Introduction

Lie symmetry theory of ordinary differential equations is well understood in
literature [1, 2, 3, 4] and can used for many important applications in the context
of differential equations. Lie’s classical approach is based on finding a symmetry
group associated with the differential equation, it is a local Lie group of point
transformations on the space of independent and dependent variables of differential
equation that maps solutions to solutions.

In contrast to the deterministic differential equations, only a few attempts have
been made to extend Lie group theory to the stochastic differential equation. It is
worth noting that the theory is still developing. Lie symmetries of Wiener process
stochastic differential equation were discussed in [5, 6, 9, 7, 12, 8] which is based on
the standard method of the random time change of Brownian motion [10]. That
is, the Wiener process is transformed as

dW (t) =

√
dt(t)

dt
dW (t). (1.1)

In [13], we derived a similar random time change formula for Poisson processes in
the context of Lie point symmetries by ensuring the instantaneous mean and vari-
ance of the Poisson process remained invariant under Lie group transformations.
i.e.,

dN(t) = dN(t) +
ε

2

dτ

dt

(
λdt+ dN(t)

)
+O(ε). (1.2)

In this paper, we extended the Lie symmetry methods to the class of Itô sto-
chastic differential equations (SDE) driven by both Wiener and Poisson processes
[15];

dXi(t) = fi(t,X(t))dt+Gil(t,X(t))dWl(t) + Ji(t,X(t))dN(t) (1.3)
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2 AMINU M. NASS AND E. FREDERICKS

i.e., jump-diffusion stochastic differential equation. fi(t,X(t)) and Ji(t,X(t)) are
n × 1 dimensional drift vector coefficients and jump diffusion coefficients respec-
tively. Gil(t,X(t)) is the Wiener diffusion matrix coefficient of n×M dimensions,
dW (t) is called the infinitesimal increment of the Wiener process, while dN(t) is
called the infinitesimal increment of the Poisson process.

To ensure the existence and uniqueness of the solution of (1.3), the instanta-
neous drift coefficient fi(t,X(t)), Wiener diffusion coefficient Gik(t,X(t)) and the
jump diffusion coefficient Ji(t,X(t)) are assumed to comply with Ikeda-Watanabe
conditions [14].

The Lie point symmetries of (1.3) are discussed by considering infinitesimals
involving the spatial variable x and time variable t, using the generating operator

H = τ(t, x)
∂

∂t
+ ξi(t, x)

∂

∂xi
. (1.4)

For an arbitrary function F (t,X(t)) which is twice contentiously differential
with respect to spatial coordinates x, and differentiable once with respect to time
t, then by the Itô lemma for jump diffusion process, the Itô process F (t,X(t)) of
(1.3) exists as

dFj(t,X(t)) =

(
∂Fj
∂t

+ fi
∂Fj
∂xi

+
1

2

M∑
k=1

Gik(t,X(t))Gmk(t,X(t))
∂2Fj

∂xi∂xm

)
dt

+Gil(t,X(t))
∂Fj
∂xi

dW (t) +
(
Fj

(
t,Xi(t) + J(t,Xi(t))

)
− Fj(t,Xi(t))

)
dN(t).

(1.5)

The Einstein summation convention is assumed through out. For the matter of
convenience let introduce the following operators;

Γ(F )j =
∂Fj
∂t

dt+ fi
∂Fj
∂xi

+
1

2

M∑
k=1

Gik(t,X(t))Gmk(t,X(t))
∂2Fj

∂xi∂xm
, (1.6)

Γ∗
(F )j

= Gil(t,X(t))
∂Fj
∂xi

(1.7)

and

Γ∗∗
(F )j

= Fj(t,Xi(t) + J(t,Xi(t)))− Fj(t,Xi(t)). (1.8)

Therefore, the Itô process (1.5) can be rewritten as

dFj(t,X(t)) = Γ(F )jdt+ Γ∗
(F )j

dW (t) + Γ∗∗
(F )j

dN(t). (1.9)

2. Lie Group Transformations

Consider a one parameter group of transformations of time index t and the
spatial variable x respectively,

t = θ1(x, t, ε), x = θ2(x, t, ε)

with the infinitesimals

∂θ1
∂ε

= τ(t, x),
∂θ2
∂ε

= ξ(t, x).
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SYMMETRY OF JUMP-DIFFUSION 3

Satisfying the initial conditions below, where ε is the parameter of the group

t
∣∣∣
ε=0

= t, X(t)
∣∣∣
ε=0

= X(t).

The one parameter Lie group of infinitesimal transformations is therefore

t = t+ ετ(t, x), (2.1)

Xj(t) = Xj(t) + εξj(t, x), (2.2)

with the corresponding infinitesimal generator of the Lie algebra

H = τ(t,X(t))
∂

∂t
+ ξi(t,Xi(t))

∂

∂xi
.

The differential group transformation of the temporal, spatial, Wiener process and
the jump process variables are

dt = dt+ εdτ +O(ε), (2.3)

dXj(t) = dXj(t) + εdξj +O(ε), (2.4)

dWj(t) = dWj(t) +
ε

2

dτ

dt
dWj(t) +O(ε), (2.5)

and

dN(t) = dN(t) +
ε

2

dτ

dt

(
λdt+ dN(t)

)
+O(ε). (2.6)

While using the Itô formula (1.9), the spatial and temporal infinitesimals in Itô
forms can be written respectively as

dξj = Γ(ξ)j (t,X(t))dt+ Γ∗
(ξ)j

(t,X(t))dW (t) + Γ∗∗
(ξ)j

(t,X(t))dN(t) (2.7)

and

dτ = Γ(τ)(t,X(t))dt+ Γ∗
(τ)(t,X(t))dW (t) + Γ∗∗

(τ)(t,X(t))dN(t). (2.8)

Substituting the Itô forms of the spatial infinitesimal (2.7) and the temporal infin-
itesimal (2.8) into equations (2.3), (2.4) and (2.5), the point group transformation
of the spatial, temporal and Wiener processes respectively can be rewrite as

dt = dt+ε
(

Γ(τ)(t,X(t))dt+Γ∗
(τ)(t,X(t))dW (t)+Γ∗∗

(τ)(t,X(t))dN(t)
)

+O(ε), (2.9)

dXj(t) = dXj(t) + ε
(

Γ(ξ)jdt+ Γ∗
(ξ)j

dWj(t) + Γ∗∗
(ξ)j

dN(t)
)

(t,X(t)) +O(ε) (2.10)

and

dWj(t) = dWj(t) +
ε

2

(
Γ(τ)(t,X(t))dWj(t) + Γ∗

(τ)(t,X(t))
)

+O(ε). (2.11)

Similarly, substituting the Itô temporal infinitesimal of the (2.8) into (2.6), the
jump process variables group transformation can be rewritten in Itô form as

dN(t) = dN(t)+
ε

2

Γ(τ)dt+ Γ∗
(τ)dWj(t) + Γ∗∗

(τ)dN(t)

dt

(
λdt+dN(t)

)
+O(ε). (2.12)

After transforming the temporal, spatial, Wiener process and Poisson process in-
finitesimals using one parameter group of transformation in Itô context, we are
now going to proceed next to find the transformed drift vector, Wiener diffusion
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4 AMINU M. NASS AND E. FREDERICKS

and Poisson process coefficients using our infinitesimal generator in the subsequent
section.

2.1. Invariance Form Of The Spatial Process. To ensure the recovery of the
finite transformations from the infinitesimal transformation, we need to transform
(1.3) into

dXj(t) = fj(t,X(t))dt+Gjk(t,X(t))dW (t) + Jj(t,X(t))dN(t). (2.13)

In order to accomplish this, we need to transform the drift vector coefficient
fj(t,X(t)), the Wiener diffusion coefficient Gjk(t,X(t)) as well as the jump diffu-
sion coefficient Jj(t,X(t)) using the infinitesimal generator (1.4) i.e.,

H = τ(t, x)
∂

∂t
+ ξi(t, x)

∂

∂xi
.

The drift vector coefficient, the Wiener diffusion coefficient, and the jump diffusion
coefficient can be transformed respectively as follows

fj(t,X(t)) = (fj + εH(fj)) (t,X(t))

= fj(t,X(t)) + ε

(
τ
∂fj
∂t

+ ξi
∂fj
∂xi

)
(t,X(t)),

(2.14)

Glj(t,X(t)) = (Gjk + εH(Gjk)) (t,X(t))

= Gjk(t,X(t)) + ε

(
τ
∂Gjk
∂t

+ ξi
∂Gjk
∂xi

)
(t,X(t)).

(2.15)

and

Jj(t,X(t)) = (Jj + εH(Jj)) (t,X(t))

= Jj(t,X(t)) + ε

(
τ
∂Jj
∂t

+ ξi
∂Jj
∂xi

)
(t,X(t)).

(2.16)

In the next sections, we ensure the properties of both Wiener and Poisson process
moments remains invariant under Lie group transformation. This will help us to
obtain extra conditions for the determining equations of jump-diffusion stochastic
differential equation (1.3) [11], and ensure (1.3) remains unchanged under the Lie
group of transformations.

2.2. Wiener Invariance Properties. We apply the invariance to the moments
of the Wiener process to make sure it remains invariant under the group trans-
formations, viz the instantaneous mean and variance of the Wiener process which
are:

EQ [dW (t)|W = w] = 0 (2.17)

and
EQ [dWl(t)dWm(t)|W = w] = δlmdt. (2.18)

The invariance of the instantaneous mean of the transformed Wiener process under
new measure Q is

EQ
[
dW (t)|W = w

]
= 0. (2.19)

Expanding (2.19) using (2.11) gives

EQ

[
dW (t) +

ε

2

(
Γ(τ)(t,X(t))dW (t) + Γ∗

(τ)(t,X(t))
)

+O(ε)
]

= 0, (2.20)
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SYMMETRY OF JUMP-DIFFUSION 5

simplifying (2.20) and the use of instantaneous mean property (2.17) yields

Γ∗
(τ)(t,X(t)) = 0. (2.21)

Next, we apply the invariance form to instantaneous variance of the transformed
Wiener process measure i.e., using (2.11) and (2.21) we get

EQ
[
dW l(t)dWm(t)|W = w

]
= EQ [dWl(t)dWm(t)|W = w]

+εEQ

[(
Γ(τ)dt+ Γ∗

(τ)dW (t) + Γ∗∗
(τ)dN

dt

)
dW l(t)dWm(t)|W = w

]
.

(2.22)

Expanding (2.22) gives

EQ
[
dW l(t, w)dWm(t, w)|W = w

]
= δlmdt. (2.23)

Equation (2.22) implies that instantaneous variance remain invariant under the
Lie group of transformations.

Remark 2.1. We have seen that applying the invariance transformation to the
mean and variance of the Wiener process lead to additional conditions for the
determining equations. This is the same extra condition obtained by [11, 5, 8] when
investigating the symmetry of stochastic equations driven by Wiener processes.

2.3. Poisson Invariance Properties. Similarly, we apply the invariance to mo-
ments of the Poisson process to make sure it remains invariant under the Lie group
transformations, viz the instantaneous mean and variance of the Poisson process
which are;

EQ [dN(t)] = λdt (2.24)

and
EQ [dN(t)dN(t)] = λdt. (2.25)

The invariance of the instantaneous mean of the transformed Poisson process under
new measure Q is

EQ
[
dN(t)

]
= λdt. (2.26)

Expanding (2.26) using (2.12) and (2.9) gives

Γ∗∗
(τ)(t,X(t)) = 0. (2.27)

Next, we apply the invariant form to instantaneous variance of the transformed
Poisson process measure (2.25) from which using (2.12) and (2.27) yields

EQ
[
dN(t)dN(t)

]
= λdt. (2.28)

Thus using (2.21) and (2.27) we have derived the following generalised random
time change formula

t =

∫ t

Γ(τ)(s)ds. (2.29)

With
Γ(τ) = constant = c1 (2.30)

obtained using the probabilistic invariance property of the transformed time index
differential i.e.

EQ
[
dt(t, w)|W = w

]
= dt. (2.31)
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6 AMINU M. NASS AND E. FREDERICKS

Remark 2.2. In [6, 9, 7] while discussing symmetries of stochastic differential equa-
tions driven by the Brownian motion, they restrict their work such that the tem-
poral infinitesimal τ(t, x) depends only on t not x in the beginning i.e., fiber-
preserving transformations

H = τ(t)
∂

∂t
+ ξi(t, x)

∂

∂xi
. (2.32)

Invariance of the instantaneous mean of the Poisson process under the group trans-
formation yields the same result in this case. Hence, we can conclude that the
temporal infinitesimal τ(t, x) does not depend on x, therefore τ(x, t) = τ(t).

Definition 2.3. A symmetry of jump-diffusion stochastic differential equation
(1.3) i.e.,

dXi(t) = fi(t,X(t))dt+Gik(t,X(t))dWk(t) + Ji(t,X(t))dN(t) (2.33)

is a one parameter group of transformations that leaves (2.33) and infinitesimal
moments of the Wiener and the Poisson processes invariant.

3. Determining Equations

In this section, we concentrate on finding determining equations for the admit-
ted Lie group symmetries of (1.3).

The intention is to transform (1.3) into

dXj(t) = fj(t,X(t))dt+Gjk(t,X(t))dW (t) + Jj(t,X(t))dN(t). (3.1)

Substituting (2.9), (2.11), (2.12), (2.14), (2.15) and (2.16) into (3.1) by considering
equations (2.21) and (2.27), gives

dXj(t) = dXj + ε

(
fjΓ(τ)(t,X(t)) +

λJj
2

Γ(τ)(t,X(t)) +H(fj)

)
dt

+

(
Gjk

2
Γ(τ)(t,X(t)) +H(Gjk)

)
dW (t) +

(
Jj
2

Γ(τ)(t,X(t)) +H(Jj)

)
dN(t).

(3.2)

Therefore, by comparing (2.10) and (3.2) we successfully obtain the following
determining equations(

fjΓ(τ) +
λJj
2

Γ(τ) +H(fj)− Γ(ξ)j

)
(t,X(t)) = 0, (3.3)(

Gjk
2

Γ(τ) +H(Gjk)− Γ∗
(ξ)j

)
(t,X(t)) = 0 (3.4)

and (
Jj
2

Γ(τ) +H(Jj)− Γ∗∗
(ξ)j

)
(t,X(t)) = 0. (3.5)

With additional conditions obtained from the invariance of both Wiener (2.21)
and Poisson momenta (2.27) respectively as;

Γ∗
(τ)(t,X(t)) = 0 (3.6)

and
Γ∗∗
(τ)(t,X(t)) = 0. (3.7)

16



SYMMETRY OF JUMP-DIFFUSION 7

Using (2.30) and (3.7) we get the temporal infinitesimal as

τ(t) = c1t+ c2. (3.8)

Where the operators Γ(t, x), Γ∗(t, x) and Γ∗∗(t, x) are defined as in (1.6), (1.7)
and (1.8), while λ > 0 is called the intensity of the jump process, then the spatial
and temporal infinitesimals ξ(t, x) and τ(t, x) are called the admitted symmetries
of (1.3), if and only if they satisfied the determining equations (3.3) - (3.7).

Remark 3.1. Note that by removing the jump diffusion term i.e., substituting
J(t, x) = 0 in (1.3), the determining equations was partially covered in [5, 6] when
considering stochastic differential equations driven by Wiener processes using the
so called fiber preserving transformation and the ignoring extra condition found
in (3.6). Similarly, for jump diffusion term J(t, x) = 0, the determining equa-
tions (3.3), (3.4) and (3.6) are derived in [5, 11] while studying Wiener stochastic
differential equations.

4. Applications

In this section, we apply the determining equations obtained for some jump-
diffusion models to find their respective infinitesimals.

Example 4.1. Consider a stochastic model driven by both Wiener and Poisson
processes

dX(t) = −kt2dt+
√
DdW + bdN(t) (4.1)

with initial condition X(0) = x0, where D is non-negative constant and b 6= 0
From the jump-diffusion model (4.1), we have the drift vector, Wiener diffusion

and jump coefficients respectively as

f(t, x) = −kt2, G(x, t) =
√
D, D > 0 and J(t, x) = b b 6= 0. (4.2)

Using the determining equations (3.3), (3.4) and (3.5) respectively, we get

−kt2
(
∂τ

dt
− kt2 ∂τ

∂x
+
D

2

∂2τ

∂x2

)
+
bλ

2

(
∂τ

∂t
− kt2 ∂τ

∂x
+
D

2

∂2τ

∂x2

)
− 2ktτ

=
∂ξ

∂t
− kt2 ∂ξ

∂x
+
D

2

∂2ξ

∂x2
,

(4.3)

√
D

2

(
∂τ

dt
− kt2 ∂τ

∂x
+
D

2

∂2τ

∂x2

)
=
√
D
∂ξ

∂x
, (4.4)

and
b

2

(
∂τ

∂t
− kt2 ∂τ

∂x
+
D

2

∂2τ

∂x2

)
= ξ(t, x+ b)− ξ(t, x). (4.5)

Substituting the temporal infinitesimal (3.8) into (4.3), (4.4) and (4.5) we respec-
tively get (

−kt2 +
bλ

2
− 2kt2

)
c1 − 2ktc2 =

∂ξ

∂t
− kt2 ∂ξ

∂x
+
D

2

∂2ξ

∂x2
, (4.6)

∂ξ

∂x
=
c1
2

(4.7)
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8 AMINU M. NASS AND E. FREDERICKS

and

ξ(t, x+ b)− ξ(t, x) =
bc1
2
. (4.8)

Solving the differential equation in (4.7) yields the spatial infinitesimal

ξ(t, x) =
c1x

2
+ f(t). (4.9)

Substituting the spatial infinitesimal (4.9) in (4.6) gives(
−kt2 +

bλ

2
− 2kt2

)
c1 − 2ktc2 =

df(t)

dt
− kt2c1

2
. (4.10)

Solving (4.10) for f(t) yields

f(t) =

(
tbλ

2
− 5kt3

6

)
c1 − kt2c2 + c3. (4.11)

Substituting (4.11) into (4.9) and by using (4.8) the spatial infinitesimal becomes

ξ(t, x) =

(
x

2
+
tbλ

2
− 5kt3

6

)
c1 − kt2c2 + c3. (4.12)

Therefore, jump-diffusion stochastic differential equation (4.1) has admit three
dimensional Lie symmetry infinitesimal generators

H1 = t
∂

∂t
+

(
x

2
+
tbλ

2
− 5kt3

6

)
∂

∂x
, (4.13)

H2 =
∂

∂t
− kt2 ∂

∂x
, H3 =

∂

∂x
(4.14)

with corresponding Lie bracket relations given by

Table 1. Commutator table for the Lie algebra generators (4.13)
and (4.14)

[Hi, Hj ] H1 H2 H3

H1 0 −H4 −H3

2
H2 H4 0 0
H3

H3

2 0 0

where H4 is a linear combination of H2 and H3, which is given as H4 = H2+ bλ0H3

2 .
The commutative table shows that the infinitesimals generators (4.13) and (4.14)
are closed under Lie bracket relations and hence form a Lie algebra.

Example 4.2. Consider the system of stochastic differential equations studied by
Giuseppe Gaeta [12] with additional jump term

dX1(t) = X2dt

dX2(t) = −k2X2dt+
√

2k2dW + αtdN(t)
(4.15)

with k2 a positive constant and X(0) = x0.
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Therefore, the drift, jump vector and Wiener diffusion matrix are respectively

fj(t, x) =

(
X2

−k2X2

)
, Jj(t, x) =

(
0
αt

)
, Gij(t, x) =

(
0 0

0
√

2k2

)
. (4.16)

Using determining equation (3.3) for j = 1 and j = 2 gives

x2

(
∂τ

dt
+ x2

∂τ

∂x1
− k2x2

∂τ

∂x2

)
+ ξ2(t, x1, x2) =

∂ξ1
∂t

+x2
∂ξ1
∂x1
− k2x2

∂ξ1
∂x2

+ k2
∂2ξ1
∂x22

(4.17)
and

−k2x2
(
∂τ

∂t
+ x2

∂τ

∂x1
− k2x2

∂τ

∂x2

)
− k2ξ2(t, x1, x2)

+
αλt

2

(
∂τ

∂t
+ x2

∂τ

∂x1
− k2x2

∂τ

∂x2

)
=
∂ξ2
∂t

+ x2
∂ξ2
∂x1
− k2x2

∂ξ2
∂x2

+ k2
∂2ξ2
∂x22

.

(4.18)

While equation (3.4) for j = 1 and j = 2 gives

∂ξ1
∂x2

=
1

2

(
∂τ

∂t
+ x2

∂τ

∂x1
− k2x2

∂τ

∂x2

)
(4.19)

and
∂ξ2
∂x2

=
1

2

(
∂τ

∂t
+ x2

∂τ

∂x1
− k2x2

∂τ

∂x2

)
. (4.20)

Substituting temporal infinitesimal (3.8) into (4.17) and (4.18) respectively gives

x2c1 + ξ2 =
∂ξ1
∂t

+ x2
∂ξ1
∂x1
− k2x2

∂ξ1
∂x2

+ k2
∂2ξ1
∂x22

, (4.21)(
αλ0t

2
− k2x2

)
c1 − k2ξ2 =

∂ξ2
∂t

+ x2
∂ξ2
∂x1
− k2x2

∂ξ2
∂x2

+ k2
∂2ξ2
∂x22

. (4.22)

Similarly, substituting (3.8) into (4.19) and (4.20) yields

∂ξ1
∂x2

=
c1
2

(4.23)

and
∂ξ2
∂x2

=
c1
2
. (4.24)

Solving (4.23) and (4.24) respectively gives

ξ1 =
c1x2

2
+ f(t, x1) (4.25)

and

ξ2 =
c1x2

2
+ g(t, x1). (4.26)

Substituting (4.25) and (4.26) into (4.21) and (4.22) respectively gives

x2c1 +
c1x2

2
+ g(t, x1) =

∂f(t, x1)

∂t
+ x2

∂f(t, x1)

∂x1
(4.27)

and(
αλ0t

2
− k2x2

)
c1 −

c1k
2x2
2

− k2g(t, x1) =
∂g(t, x1)

∂t
+ x2

∂g(t, x1)

∂x1
. (4.28)
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It is clear to see that, since f(t, x1) and g(t, x1) does not depend on x2 we have
from (4.27) and (4.28)

c1 = 0,
∂f(t, x1)

∂x1
= 0 and

∂g(t, x1)

∂x1
= 0. (4.29)

Substituting from (4.29) into (4.27) and (4.28) we respectively obtained

∂f(t, x1)

∂t
− g(t, x1) = 0 (4.30)

and
∂g(t, x1)

∂t
+ k2g(t, x1) = 0. (4.31)

Solving (4.31) gives

g(t, x1) = c3e
−k2t. (4.32)

Substituting (4.32) into (4.30) leads to

f(t, x1) = −c3e
−k2t

k2
+ c4. (4.33)

Therefore, by using (4.29) in (3.8), (4.25) and (4.26) respectively gives the following
infinitesimals

τ(t) = c2, ξ1 =
−c3e−k

2t

k2
+ c4 and ξ2 = c3e

−k2t. (4.34)

We can clearly see that ξ1 satisfied (3.5) automatically for j = 1. For j = 2,

substituting ξ2 = c3e
−k2t and τ(t) = c2 into (3.5) we get

c2α = 0. (4.35)

Which implies c2 = 0, since α 6= 0.
Therefore, by substituting c2 = 0 into (4.34) we have the infinitesimals reduced

to

τ(t) = 0, ξ1 =
−c3e−k

2t

k2
+ c4 and ξ2 = c3e

−k2t. (4.36)

Hence the symmetries of the infinitesimal generators are two dimensional given as:

H1 =
−e−k2t

k2
∂

∂x1
+ e−k

2t ∂

∂x2
, H2 =

∂

∂x1
(4.37)

with corresponding Lie bracket relations [H1, H2] = [H2, H1] = 0. Which shows
that the symmetries generator (4.37) forms an abelian group.

Remark 4.3. After considering the model that involves both Wiener and Poisson
diffusion, we recover two of the three symmetries obtained by Giuseppe Gaeta [12].
This is to be expected since the jump term adds uncertainty to the model.

Example 4.4. Consider the jump SDE, linear in the state process X(t), with
constant coefficients;

dX(t) = X(t)
(
u0(t)dt+ α0(t)dW + v0(t)dN(t)

)
(4.38)
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with initial condition X(t0) = x0 > 0. The coefficient u0(t) is called the drift or
deterministic coefficient, v0(t) is called the jump amplitude coefficient of the jump
term and α0(t) is called Wiener diffusion coefficient, with jump intensity λ = λ0.

Therefore, we have the drift, Brownian motion diffusion and jump coefficients
as

f(t, x) = u0x, g(t, x) = α0x and J(t, x) = v0x. (4.39)

with u0, α0 v0 non-zero.
Using the determining equations (3.3), (3.4) and (3.5) we respectively get

u0x

(
∂τ

dt
+ u0x

∂τ

∂x
+
α2
0x

2

2

∂2τ

∂x2

)
+
v0xλ0

2

(
∂τ

∂t
+ u0x

∂τ

∂x
+
α2
0x

2

2

∂2τ

∂x2

)
+u0ξ(t, x) =

∂ξ

∂t
+ u0x

∂ξ

∂x
+
α2
0x

2

2

∂2ξ

∂x2
,

(4.40)

α0x

2

(
∂τ

∂t
+ u0x

∂τ

∂x
+
α2
0x

2

2

∂2τ

∂x2

)
+ α0ξ(t, x) = α0x

∂ξ

∂x
(4.41)

and

v0x

2

(
∂τ

∂t
+ u0x

∂τ

∂x
+
α2
0x

2

2

∂2τ

∂x2

)
+ v0ξ = ξ(t, x+ v0x)− ξ(t, x). (4.42)

Substituting temporal infinitesimal (3.8) into (4.40), (4.41) and (4.42) we respec-
tively have(

u0x+
v0xλ0

2

)
c1 + u0ξ(t, x) =

∂ξ

∂t
+ u0x

∂ξ

∂x
+
α2
0x

2

2

∂2ξ

∂x2
, (4.43)

c1x

2
+ ξ(t, x) = x

∂ξ

∂x
, (4.44)

and
v0c1x

2
+ v0ξ = ξ(t, x+ v0x)− ξ(t, x). (4.45)

By solving (4.44), we get the spatial infinitesimal as

ξ(t, x) =
xc1 ln |x|

2
+ f(t)x, for x > 0. (4.46)

By substituting spatial infinitesimal (4.46) into (4.45), we finally obtain

c1 = 0. (4.47)

Therefore, substituting (4.47) into (4.46) and (3.8), the temporal and spatial in-
finitesimals respectively reduce to

τ(t) = c2 (4.48)

and
ξ(t, x) = f(t)x. (4.49)

Substituting (4.49) in (4.43) gives

df(t)

dt
= 0. (4.50)

Which implies
ξ(t, x) = c3x. (4.51)
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Therefore, the symmetries algebra is two dimensional given as

H1 =
∂

∂t
, H2 = x

∂

∂x
. (4.52)

The Lie bracket relation of the generator (4.52) is [H1, H2] = [H2, H1] = 0, which
shows that the symmetries algebra is also an abelian group .

Remark 4.5. Symmetry algebra of geometric Brownian motion driven stochastic
differential equation was discussed by Ebrahim and Mahomed F. M. [5] and the
generators are found to be generated by three-dimensional algebra. In this ex-
ample, we see that adding Poisson diffusion to the model reduces the symmetry
by one dimension. Interestingly, the two generators found are the only ones that
leave a stochastic differential invariant [5].

5. Conclusion

Lie symmetry of jump-diffusion stochastic differential equations was discussed,
by considering infinitesimals of the spatial and temporal variables. This was
achieved by utilising the random time formula for standard Brownian motion used
in [9, 7, 8] to study symmetry of Wiener process stochastic differential equations
i.e.,

dW (t) =

√
dt(t)

dt
dW (t) (5.1)

and the random time formula for Poisson processes [13] i.e.,

dN(t) = dN(t) +
ε

2

dτ

dt

(
λdt+ dN(t)

)
+O(ε). (5.2)

The determining equations of the jump-diffusion stochastic differential equation

dXi(t) = fi(t,X(t))dt+Gil(t,X(t))dWk(t) + Ji(t,X(t))dN(t) (5.3)

were derived and are found to be deterministic after applying the invariance
methodology to the moments of both Wiener and Poisson processes. The de-
termining equations found are similar to the one used in [5, 11, 9, 8] if the Poisson
terms are removed. We apply the determining equations to several jump-diffusion
models to show how they can be used to find the admitted Lie infinitesimals trans-
formation of the respective models. Finally, a Lie bracket relation was found to
show the relationship between the infinitesimals generators, which show that the
infinitesimals generators are closed under Lie relations and hence form a Lie alge-
bra. The Lie group classification of the given examples is given in Table 2 below.
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Table 2. Lie Group Classification

Group Dimension Basis Operators Equations

3
H1 = t ∂∂t +

(
x
2 + tbλ0

2 −
5kt3

6

)
∂
∂x ,

H2 = ∂
∂t − kt

2 ∂
∂x , H3 = ∂

∂x .
dX = −kt2dt+

√
DdW + bdN(t)

2 H1 = −e−k2t

k2
∂
∂x1

+ e−k
2t ∂
∂x2

, H2 = ∂
∂x1

.
dX1 = X2dt
dX2 = −k2X2dt+

√
2k2dW + αtdN(t)

2 H1 = ∂
∂t , H2 = x ∂

∂x . dX(t) = X(t)(u0(t)dt+ α0(t)dW + v0(t)dN(t))
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