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Abstract. In this paper, we introduce and study the topological space of
ternary semigroups formed by the set of prime ideals. We investigate the

various properties of the topological space of a ternary semigroup. We also

study interesting properties such as compactness, connectedness and sepa-
ration axioms of this topological space. Furthermore, we define irreducible

topological spaces, Noetherian ternary semigroups and prime full ideals in
ternary semigroups and study their properties.

1. Introduction

In the 19th century, D. H. Lehmer [6] studied the literature of a ternary algebraic
system. The ternary semigroup is a particular case of n-ary semigroups. So many
results on ternary semigroups has an analogous version for n-ary semigroups. The
ideal theory in ternary semigroups was introduced by F. M. Sioson [9] in 1965. In
[7], Y. Sarala et al. studied the properties of the ideals of ternary semigroups. M.
Shabir and S. Bashir [8] introduced and studied the notion of prime, semiprime
and irreducible ideals in ternary semigroups.

The notion of the structure space of Γ- semigroups was introduced by S. Kar
and S. Chattopadhyay in [3]. In [5], some special classes of all proper prime k-
ideals, prime ideals and strongly irreducible ideals in Γ- semirings is introduced.
They also obtained the topological spaces of these ideals of Γ- semirings. R. D.
Jagtap and Y. S. Pawar [2] studied the space of prime ideals of a Γ- semiring and
properties of the space of prime ideals of a Γ- semiring.

In this article, we introduce and study the concept of the topological space of
ternary semigroups. We consider the set P of all prime ideals of a ternary semi-
group T and build the topology τ on P using the closure operator defined in terms
of intersection and inclusion relations among these ideals of ternary semigroup
T . We investigate various topological properties of space (P, τ). This topological
space (P, τ) is referred as the structure space of the ternary semigroup T . We also
studied the compactness, connectedness and separation axioms in this topological
space (P, τ).
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2. Preliminaries

Definition 2.1. [6] A non-empty set T with a ternary operation [ ] : T × T × T
−→ T is called a ternary semigroup if [ ] satisfies the associative law, [[a b c] d e] =
[a [b c d] e] = [a b [c d e]], for all a, b, c, d, e ∈ T .

Definition 2.2. [1] An element 0 ∈ T is said to be a zero element of T if 0xy =
x0y = xy0 = 0 for all x, y ∈ T.

Definition 2.3. [1] An element e ∈ T is said to be an identity element of T if
exx = xxe = xex = x for all x ∈ T. It can prove that eea = eae = aee = a

Definition 2.4. [9] A non-empty subset I of a ternary semigroup T is said to be
a left (respectively, right, lateral) ideal of T if TTI ⊆ I (respectively, ITT ⊆ I,
TIT ⊆ I).

A non-empty subset I of T is said to be ideal of T if it is a left ideal, a right
ideal and a lateral ideal of T. An ideal I of T is called a proper ideal of T if I ̸= T .

Definition 2.5. [9] Let X be the non-empty subset of T . The intersection of all
ideals of T containing X is called as ideal of T generated by X and it is denoted
by ⟨X⟩. The ideal generated by {a} for some a ∈ T is denoted by ⟨a⟩.

Definition 2.6. [8] A proper ideal I of T is said to be a prime ideal of T provided
I1, I2, I3 are ideals of T and I1I2I3 ⊆ I implies I1 ⊆ I or I2 ⊆ I or I3 ⊆ I.

Definition 2.7. [8] A proper ideal I of T is said to be a semiprime ideal of T
provided P is ideal of T and P 3 ⊆ I implies P ⊆ I.

In this article, we write T for a ternary semigroup with zero, unless otherwise
specified.

3. Topological Space of Ternary Semigroups

Let P be the family of all prime ideals of T . For any subset A of P, we define

A = {I ∈ P :
⋂

Iα∈A

Iα ⊆ I}.

Theorem 3.1. If A is a subset of P then the function A −→ A is a closure
operator on P.

Proof. (i) Obviously ∅ = ∅.
(ii) By the definition of A, for every α, Iα ∈ A. Therefore

⋂
Iα∈A

Iα ⊆ Iα implies

Iα ∈ A. Hence A ⊆ A.

(iii) By (ii), we have A ⊆ A. Let I ∈ A. Then
⋂

Iα∈A

Iα ⊆ I. Now, Iα ∈ A

implies that
⋂

Iγ∈A

Iγ ⊆ Iα for all α ∈ ∆, where ∆ denotes the indexing set. Thus⋂
Iγ∈A

Iγ ⊆
⋂

Iα∈A

Iα ⊆ I. Therefore
⋂

Iγ∈A

Iγ ⊆ I. So I ∈ A and hence A ⊆ A. Thus
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A = Ā.

(iv) Let B be any subset of P such that A ⊆ B. Let I ∈ A. Then
⋂

Iα∈A

Iα ⊆ I.

Since A ⊆ B, it follows that
⋂

Iα∈B

Iα ⊆
⋂

Iα∈A

Iα ⊆ I. This shows that I ∈ B and

hence A ⊆ B.

(v) Let B be any subset of P. To prove that, A ∪B = A∪B, firstly we prove that
A ∪B ∪ C = A ∪ B ∪ C for any subset C of P. From (iv), A ⊆ A ∪B ∪ C,B ⊆
A ∪B ∪ C and C ⊆ A ∪B ∪ C. This implies that, A ∪ B ∪ C ⊆ A ∪B ∪ C.

Now let I ∈ A ∪B ∪ C. Then
⋂

Iα∈A∪B∪C

Iα ⊆ I. Obviously,
⋂

Iα∈A∪B∪C

Iα =( ⋂
Iα∈A

Iα

)
∩

( ⋂
Iα∈B

Iα

)
∩

( ⋂
Iα∈C

Iα

)
Since

⋂
Iα∈A

Iα,
⋂

Iα∈B

Iα and
⋂

Iα∈C

Iα are ideals

of T ,

also

( ⋂
Iα∈A

Iα

)( ⋂
Iα∈B

Iα

)( ⋂
Iα∈C

Iα

)
⊆

( ⋂
Iα∈A

Iα

)
∩

( ⋂
Iα∈B

Iα

)
∩

( ⋂
Iα∈C

Iα

)
=⋂

Iα∈A∪B∪C

Iα

⊆ I. As I is a prime ideal of T , we get
⋂

Iα∈A

Iα ⊆ I or
⋂

Iα∈B

Iα ⊆ I or
⋂

Iα∈C

Iα ⊆ I,

i.e. either I ∈ A or I ∈ B or I ∈ C. Hence I ∈ A ∪ B ∪ C. This shows that
A ∪B ∪ C ⊆ A ∪B ∪ C and hence A ∪B ∪ C = A ∪B ∪ C. Since ∅ = ∅, putting
C = ∅, we get A ∪B = A ∪B. □

Definition 3.2. The closure operator A −→ A induces a topology τ on P. This
topology τ is called the hull-kernel topology and the topological space (P, τ) is
called structure space of a ternary semigroup T .

Let I be an ideal of T , we define X(I) = {J ∈ P : I ⊆ J} and Y (I) =
P \X(I) = {J ∈ P : I ̸⊆ J}.

Theorem 3.3. Any closed set in P is of the form X(I) where I is an ideal of T .

Proof. Let A be any closed set in P, where A ⊆ P. Let A = {Iα : α ∈ ∆}
where ∆ is an index set and I =

⋂
Iα∈A

Iα. Then I is an ideal of T . Let J ∈ A

then
⋂

Iα∈A

Iα ⊆ J ⇒ I ⊆ J . Therefore J ∈ X(I) and so A ⊆ X(I). Now, let

J ∈ X(I) then I ⊆ J ⇒
⋂

Iα∈A

Iα ⊆ J . Therefore J ∈ A and hence X(I) ⊆ A.

Thus A = X(I). □

Corollary 3.4. Any open set in P is of the form Y (I) where I is an ideal of T .

Let I be an ideal of T , we define for any a ∈ T , X(a) = {I ∈ P : a ∈ I} and
Y (a) = P \X(a) = {I ∈ P : a /∈ I}.
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Theorem 3.5. The set {Y (a) : a ∈ T} forms a base for open sets for the topology
τ on P.

Proof. Let G be any open set in τ i.e. G ∈ τ . Then by Corollary 3.4, we have
G = Y (I) where I is an ideal of T . For any J ∈ G = Y (I) we have I ̸⊆ J . This
implies that there exists a ∈ I such that a /∈ J . Hence J ∈ Y (a). Therefore
G ⊆ Y (a). Now to show that Y (a) ⊆ G. Let K ∈ Y (a). Then a /∈ K. This
gives that, I ̸⊆ K. Therefore K ∈ Y (I) = G. Hence Y (a) ⊆ G. Thus we get

J ∈ Y (a) ⊆ G. Then G =
⋃
a∈T

Y (a). Therefore {Y (a) : a ∈ T} forms an open base

for the hull-kernel topology τ on P. □

Theorem 3.6. The topological space (P, τ) is a T0-space.

Proof. Let I and J be two distinct elements of P. Then there is an element a
either in I \J or in J \ I. Assume that a ∈ I \J . But then J ∈ Y (a) and I /∈ Y (a)
i. e. Y (a) is a neighborhood of J not containing I. Hence (P, τ) is a T0-space. □

Theorem 3.7. The topological space (P, τ) is a T1-space if and only if no element
of P is contained in any other element of P.

Proof. Let (P, τ) is a T1-space. Suppose that I and J be any two distinct elements
of P. Then each of I and J has a neighborhood not containing the other. Since I
and J are arbitrary elements of P, it follows that no element of P is contained in
any other element of P.

Conversely, suppose that no element of P is contained in any other element of
P. Let I and J be any two distinct elements of P. Then by assumption either
I ̸⊂ J and J ̸⊂ I. This shows that there exist a, b ∈ T such that a ∈ I but a /∈ J
and b ∈ J but b /∈ I. Then we have I ∈ Y (b) but I /∈ Y (a) and J ∈ Y (a) but
J /∈ Y (b), it means that, each of I and J has a neighborhood not containing the
other. Hence (P, τ) is a T1-space. □

Corollary 3.8. If (P, τ) is a Hausdorff space, then no prime ideal contains any
other prime ideal. Alternatively, If the space (P, τ) is a Hausdorff space then the
set of all minimal prime ideals and maximal ideals coincide.

Proof. Suppose that (P, τ) is a Hausdorff space. Since every Hausdorff space is
T1-space. Hence by Theorem 3.7, it gives that no prime ideal contains any other
prime ideal. □

Definition 3.9. [8] An proper ideal I of T is said to be a maximal ideal if I is
not properly contained in any other proper ideal of T.

Corollary 3.10. Let M be the set of all proper maximal ideals of a ternary semi-
group T with identity. Then (M, τM) is a T1-space, where τM is the induced topology
on M from (P, τ).

Theorem 3.11. The topological space (P, τ) is a Hausdorff space if and only if
for any two distinct pair of elements I and J of P, there exist a, b ∈ T such that
a /∈ I, b /∈ J and there does not exist any element K of P such that a /∈ K and
b /∈ K.
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Proof. Suppose that the topological space (P, τ) is a Hausdorff space. Then for
any two distinct pair of elements I and J of P there exists two basic open sets Y (a)
and Y (b) such that I ∈ Y (a), J ∈ Y (b) and Y (a) ∩ Y (b) = ∅. Now I ∈ Y (a) and
J ∈ Y (b) imply that a /∈ I and b /∈ J . Let if possible there exist K in P such that
a /∈ K and b /∈ K. Then K ∈ Y (a)∩ Y (b), a contradiction, since Y (a)∩ Y (b) = ∅.
Thus there does not exist any element K of P such that a /∈ K and b /∈ K.

Conversely, Suppose that the given condition holds. To show the space (P, τ) is
a Hausdorff space. Let I and J be two distinct elements of P. Then by assumption
there exists a, b ∈ T such that a /∈ I, b /∈ J and there does not exist any K of P
such that a /∈ K and b /∈ K. Then I ∈ Y (a), J ∈ Y (b) and Y (a)∩Y (b) = ∅. Hence
(P, τ) is a Hausdorff space. □

Theorem 3.12. If (P, τ) is a Hausdorff space containing more than one element
then there exist a, b ∈ T such that P = Y (a) ∪ Y (b) ∪ X(I) where I is the ideal
generated by a, b in T .

Proof. Suppose that (P, τ) is a Hausdorff space containing more than one element.
Let J,K ∈ P such that J ̸= K. Since (P, τ) is a Hausdorff space, there exists two
basic open sets Y (a) and Y (b) such that J ∈ Y (a),K ∈ Y (b) and Y (a)∩Y (b) = ∅.
Let I be the ideal generated by a, b ∈ T . Then I is the smallest ideal containing
a and b. Let L ∈ P. Then either a ∈ L, b /∈ L or a /∈ L, b ∈ L or a, b ∈ L. The
case, a /∈ L, b /∈ L is not possible, since a /∈ L, b /∈ L implies that L ∈ Y (a) and
L ∈ Y (b) that is L ∈ Y (a) ∩ Y (b) which is not possible because Y (a) ∩ Y (b) = ∅.
Now in the first case, L ∈ Y (b) and hence P ⊆ Y (a)∪ Y (b)∪X(I). In the second
case, L ∈ Y (a) and hence P ⊆ Y (a) ∪ Y (b) ∪X(I). In the third case, L ∈ X(I)
and hence P ⊆ Y (a) ∪ Y (b) ∪ X(I). Therefore P ⊆ Y (a) ∪ Y (b) ∪ X(I). But
Y (a) ∪ Y (b) ∪X(I) ⊆ P. Hence P = Y (a) ∪ Y (b) ∪X(I). □

Theorem 3.13. The topological space (P, τ) is a regular space if and only if for
any I ∈ P and a /∈ I for a ∈ T there exist an ideal J of T and b ∈ T such that
I ∈ Y (b) ⊆ X(J) ⊆ Y (a).

Proof. Suppose that (P, τ) is a regular space. Let I ∈ P and a /∈ I for a ∈ T . As
a /∈ I, we have I ∈ Y (a) and Y (a) is an open set of P implies X(a) = P \ Y (a)
is a closed set of P not containing I. As (P, τ) is a regular space, there exist two
disjoints open sets say G and H such that I ∈ G,P \ Y (a) ⊆ H and G ∩H = ∅.
P\Y (a) ⊆ H implies that P\H ⊆ Y (a). Since H is an open set of P implies P\H
is a closed set and hence there exist an ideal J of T such that, P \H = X(J), by
Theorem 3.3. So we find that X(J) ⊆ Y (a). Again G∩H = ∅, we have H ⊆ P\G.
Since G is open set, P \ G is closed and hence there exists an ideal K of T such
that P \ G = X(K) i. e. H ⊆ X(K). Since I ∈ G, I /∈ P \ G = X(K). This
implies that K ̸⊆ I. Thus there exists b ∈ K(⊂ T ) such that b /∈ I. So I ∈ Y (b).
Now we show that H ⊆ X(b). Let M ∈ H ⊆ X(K). Then K ⊆ M . Since b ∈ K,
it gives that b ∈ M and hence M ∈ X(b). Therefore H ⊆ X(b). This implies that
P \X(b) ⊆ P \H = X(J) ⇒ Y (b) ⊆ X(J). Thus we get for any I ∈ P there exist
an ideal J of T and b ∈ T such that I ∈ Y (b) ⊆ X(J) ⊆ Y (a).

Conversely, suppose that for any I ∈ P and a /∈ I, a ∈ T there exist an ideal J
of T and b ∈ T such that I ∈ Y (b) ⊆ X(J) ⊆ Y (a). To show the space (P, τ) is
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a regular space. Let I ∈ P and X(K) be any closed set not containing I. Since
I /∈ X(K), we have K ̸⊆ I. This implies that there exists a ∈ K such that a /∈ I.
Now by the given condition, there exists an ideal J of T and b ∈ T such that
I ∈ Y (b) ⊆ X(J) ⊆ Y (a). Since a ∈ K,Y (a) ∩ X(K) = ∅. This implies that
X(K) ⊆ P \Y (a) ⊆ P \X(J). Since X(J) is a closed set, P \X(J) is an open set
containing the closed set X(K). Therefore Y (b)∩ (P \X(J)) = ∅. So we find that
Y (b) and P \X(J) are two disjoints open sets containing I and X(K) respectively.
Therefore (P, τ) is a regular space. □

Corollary 3.14. The topological space (P, τ) is a T3-space if and only if for any
I ∈ P and a /∈ I for a ∈ T there exist an ideal J of T and b ∈ T such that
I ∈ Y (b) ⊆ X(J) ⊆ Y (a).

Theorem 3.15. The topological space (P, τ) is a compact space if and only if
for any collection {ai}i∈∆ (where ∆ is indexing set) of T there exists a finite
subcollection {a1, a2, . . . , an} in T such that I ∈ P there exist ai such that ai /∈ I.

Proof. Suppose that (P, τ) is a compact space. Then the open cover {Y (ai) : ai ∈
T} of (P, τ) has a finite subcover {Y (ai) : i = 1, 2, . . . , n}. Let I be any element
of P. Then I ∈ {Y (ai) : i = 1, 2, . . . , n}. Therefore I ∈ Y (ai) for some ai ∈ T .
Hence ai /∈ I. Thus {a1, a2, . . . , an} is the required finite subcollection of elements
of T such that for any I ∈ P there exist ai such that ai /∈ I.

Conversely, suppose that the given condition holds. To show the space (P, τ)
is a compact space. Let {Y (ai) : ai ∈ T} be an open cover of (P, τ). Assume that
no finite subcollection of {Y (ai) : ai ∈ T} be forms a cover of P. This means that
for any finite set {a1, a2, . . . , an} of elements of T , Y (a1) ∪ Y (a2) ∪ . . . ∪ Y (an) ̸=
P ⇒ P \ [Y (a1) ∪ Y (a2) ∪ . . . ∪ Y (an)] ̸= ∅ ⇒ X(a1) ∩X(a2) ∩ . . . ∩X(an) ̸= ∅.
This implies there exist I ∈ P such that I ∈ X(a1) ∩ X(a2) ∩ . . . ∩ X(an) gives
that a1, a2, . . . , an ∈ I. Which is a contradiction to our hypothesis. Hence our
assumption {Y (ai) : ai ∈ T} has no finite subcover which covers P is wrong.
Therefore {Y (ai) : ai ∈ T} has finite subcover which covers P. Hence (P, τ) is a
compact space. □

Corollary 3.16. If T is finitely generated, then the space (P, τ) is compact.

Proof. Let {a1, a2, . . . , an} be a finite set of generators of T . Then for any I ∈ P
there exist ai such that ai /∈ I. Hence by Theorem 3.15, (P, τ) is a compact
space. □

The arbitrary intersection of all prime ideals of T is a semiprime ideal of T ,
provided it is non-empty. We give a necessary condition for the intersection of
prime ideals of T to be a prime ideal in the following theorem,

Theorem 3.17. Let {Ii}i∈∆ (where ∆ is any indexing set) be a family of all prime

ideals of T such that {Ii}i∈∆ forms a chain of ideals then
⋂
i∈∆

Ii is a prime ideal

of T.

Proof. Let {Ii}i∈∆ (where ∆ is any indexing set) be a family of all prime ideals

of T. It is clear that
⋂
i∈∆

Ii is an ideal of T. Let I1, I2 and I3 be any three ideals
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of T such that I1I2I3 ⊆
⋂
i∈∆

Ii. If either I1 ⊆ Ii ∀i ∈ ∆ or I2 ⊆ Ii ∀i ∈ ∆ or

I3 ⊆ Ii ∀i ∈ ∆ then either I1 ⊆
⋂
i∈∆

Ii or I2 ⊆
⋂
i∈∆

Ii or I3 ⊆
⋂
i∈∆

Ii . If possible,

let I1, I2, I3 ̸⊆
⋂
i∈∆

Ii then there exist i, j and k such that I1 ̸⊆
⋂
i∈∆

Ii, I2 ̸⊆
⋂
j∈∆

Ij

and I3 ̸⊆
⋂
k∈∆

Ik. Since {Ii}i∈∆ form a chain of ideals, let Ii ⊆ Ij ̸⊆ Ik. This

implies that I2, I3 ̸⊆ Ii. Since I1I2I3 ⊆ Ii and Ii is prime ideal of T , we must have
either I1 ⊆ Ii or I2 ⊆ Ii or I3 ⊆ Ii. Which is a contradiction. Therefore, either

I1 ⊆
⋂
i∈∆

Ii or I2 ⊆
⋂
i∈∆

Ii or I3 ⊆
⋂
i∈∆

Ii . Hence
⋂
i∈∆

Ii is a prime ideal of T. □

Definition 3.18. The topological space (P, τ) of T is called irreducible if for any
decomposition P = U ∪ V ∪ W, where U ,V and W are closed subsets of P then
either P = U or P = V or P = W.

Theorem 3.19. Let U be a closed subset of P. Then U is irreducible if and only

if
⋂

Ii∈ U
Ii is a prime ideal of T .

Proof. Assume that U is irreducible. To prove that
⋂

Ii∈ U
Ii is a prime ideal of

T . Let A,B and C be any three ideals of T such that ABC ⊆
⋂

Ii∈ U
Ii. Then

ABC ⊆ Ii, ∀ i. As Ii is a prime ideal of T , we have A ⊆ Ii or B ⊆ Ii or C ⊆ Ii, ∀ i.
Then Ii ∈ U ∩A or Ii ∈ U ∩B or Ii ∈ U ∩C give Ii ∈ (U ∩A)∪ (U ∩B)∪ (U ∩C).
Therefore U = (U ∩ A) ∪ (U ∩ B) ∪ (U ∩ C) =

[
(U ∩A) ∪ (U ∩B)

]
∪ (U ∩ C).

But (U ∩ A), (U ∩ B) and (U ∩ C) are closed subsets of U and U is irreducible
imply, U = (U ∩ A) ∪ (U ∩ B) or U = (U ∩ C) ⇒ U = (U ∩ A) or U = (U ∩ B) or

U = (U ∩ C). Hence U ⊆ A or U ⊆ B or U ⊆ C. This shows that, A ⊆
⋂

Ii∈ U
Ii or

B ⊆
⋂

Ii∈ U
Ii or C ⊆

⋂
Ii∈ U

Ii. Therefore
⋂

Ii∈ U
Ii is a prime ideal of T .

Conversely, suppose that
⋂

Ii∈ U
Ii is a prime ideal of T . To show that U is

irreducible. Let X ,Y and Z are closed subsets of U such that U = X ∪Y∪Z. Then⋂
Ii∈ U

Ii ⊆
⋂

Ii∈ X
Ii,

⋂
Ii∈ U

Ii ⊆
⋂

Ii∈ Y
Ii and

⋂
Ii∈ U

Ii ⊆
⋂

Ii∈ Z
Ii. We have,

⋂
Ii∈ U

Ii =

⋂
Ii∈ X ∪ Y ∪ Z

Ii =

( ⋂
Ii∈ X

Ii

)
∩

( ⋂
Ii∈ Y

Ii

)
∩

( ⋂
Ii∈ Z

Ii

)

Now,

( ⋂
Ii∈ X

Ii

)( ⋂
Ii∈ Y

Ii

)( ⋂
Ii∈ Z

Ii

)
⊆

( ⋂
Ii∈ X

Ii

)
∩

( ⋂
Ii∈ Y

Ii

)
∩

( ⋂
Ii∈ Z

Ii

)
=⋂

Ii∈ X ∪ Y ∪ Z
Ii =

⋂
Ii∈ U

Ii.
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Since,
⋂

Ii∈ U
Ii is prime ideal of T , then we have

⋂
Ii∈ X

Ii ⊆
⋂

Ii∈ U
Ii or

⋂
Ii∈ Y

Ii ⊆⋂
Ii∈ U

Ii or
⋂

Ii∈ Z
Ii ⊆

⋂
Ii∈ U

Ii. Therefore
⋂

Ii∈ U
Ii =

⋂
Ii∈ X

Ii or
⋂

Ii∈ U
Ii =

⋂
Ii∈ Y

Ii or⋂
Ii∈ U

Ii =
⋂

Ii∈ Z
Ii. Now for any Ik ∈ U . Then we have

⋂
Ii∈ U

Ii =
⋂

Ii∈ X
Ii ⊆ Ik or⋂

Ii∈ U
Ii =

⋂
Ii∈ Y

Ii ⊆ Ik or
⋂

Ii∈ U
Ii =

⋂
Ii∈ Z

Ii ⊆ Ik. Since X ,Y and Z are closed

subsets of U , so either Ii ⊆ Ik for all Ii ∈ X or Ii ⊆ Ik for all Ii ∈ Y or Ii ⊆ Ik for
all Ii ∈ Z. Thus Ik ∈ X = X or Ik ∈ Y = Y or Ik ∈ Z = Z, since X ,Y and Z
are closed subsets of U . Therefore U ⊆ X or U ⊆ Y or U ⊆ Z. Hence U = X or
U = Y or U = Z. Consequently, U is irreducible. □

For any subset U of P we define R(U) =
⋂

Ij∈ U
Ij . Clearly R(P) =

⋂
Ij∈ P

Ij is

P-radical of T . Always R(P) ⊆ R(U). We know that U ⊆ P is dense in P if
U = P.

Theorem 3.20. The subset U of P is dense in P if and only if R(U) = R(P).

Proof. Assume that the subset U of P is dense in P. As U ⊆ P, we have R(P) ⊆
R(U). To show that R(U) ⊆ R(P). As U = P gives U = {I ∈ P :

⋂
Iα∈ U

Iα ⊆ I} =

P. A ∈ P implies A ∈ U . Then R(U) ⊆ A. As this is true for each A ∈ P, we get

R(U) =
⋂

Iα∈ U
Iα ⊆

⋂
Iα∈ P

Iα = R(P). Hence R(U) = R(P).

Conversely, suppose that R(U) = R(P). To show that U = P. Assume that
P \ U ≠ ∅. Then there is a prime ideal say A of T such that A ∈ P \ U that is
A ∈ P and A /∈ U . A /∈ U implies there exists any open set say Y (I) containing
A such that Y (I) ∩

(
U \ {A}

)
= ∅. That is open set of P containing A does

not contains any other element of U other than A. Therefore R(P) =
⋂

Iα∈ P
Iα ⊂

R(U) =
⋂

Iα∈ U
Iα. Then R(U) ̸= R(P), which contradicts our hypothesis. Thus

P \ U = ∅. Hence U = P i.e. U is dense in P. □

Definition 3.21. A ternary semigroup T is called a Noetherian ternary semigroup
if it satisfies the ascending chain condition for ideals of T , for any sequence I1 ⊆
I2 ⊆ I3 ⊆ . . . of ideals of T , then there exists a positive integer m such that
Im = Im+1 = . . .

Theorem 3.22. [4] A topological space is compact if and only if each family of
closed sets which has the finite intersection property has a non-void intersection.

Theorem 3.23. If T is a Noetherian ternary semigroup then the structure space
(P, τ) is countably compact.

Proof. Let {X(In)}∞n = 1 be a countable collection of closed sets in P with finite
intersection property. Let us consider the following ascending chain of prime ideals
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of T ,

⟨I1⟩ ⊆ ⟨I1 ∪ I2⟩ ⊆ ⟨I1 ∪ I2 ∪ I3⟩ ⊆ . . .

Since T is a Noetherian ternary semigroup there exist a positive integer m such
that,

⟨I1 ∪ I2 ∪ . . . ∪ Im⟩ = ⟨I1 ∪ I2 ∪ . . . ∪ Im+1⟩ = . . .

Thus it follows that ⟨I1 ∪ I2 ∪ . . . ∪ Im⟩ ∈
∞⋂

n = 1

X(In). Hence

∞⋂
n = 1

X(In) ̸= ∅ and

hence (P, τ) is countably compact. □

Corollary 3.24. If T is a Noetherian ternary semigroup and (P, τ) is second
countable then (P, τ) is compact.

Proof. Proof follows from Theorem 3.23 and the fact that a second countable space
is compact if it is countably compact. □

Remark 3.25. The set of all idempotent elements of T is denoted by E(T ), i.e.
E(T ) = {a ∈ T : aaa = a}.

Definition 3.26. An ideal I of T is said to be full ideal if E(T ) ⊆ I.

Definition 3.27. An ideal I of T is said to be a prime full ideal if it is both prime
and full ideal.

Let F be the family of all prime full ideals of T . Then we see that F is a subset
of P and (F , τF ) is a topological space where τF is the subspace topology.

Theorem 3.28. The space (F , τF ) is a compact space if E(T ) ̸= {0}.

Proof. Let {X(Ii)}i∈∆ (where ∆ is any indexing set) be any collection of closed
sets in F with finite intersection property. Let I be the prime full ideal generated
by E(T ). Since any prime full ideal J of T contains E(T ), then J contains I.

Hence I ∈
⋂
i∈∆

X(Ii) ̸= ∅. Consequently, the space (F , τF ) is a compact space. □

Theorem 3.29. The space (F , τF ) is a connected space if E(T ) ̸= {0}.

Proof. Let I be the prime ideal generated by E(T ). Since any prime full ideal J
contains E(T ), J contains I. Hence I belongs to any closed set X(K) of F . Con-
sequently, any two closed sets of F are not disjoint. Hence (F , τF ) is a connected
space. □
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