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Abstract. This paper deals with two way communication retrial queueing

system with mixed priority services, where during server’s idle time it can
make two types of outgoing calls to the customers. The first type is the

call in the orbit (outgoing retrial call) and the second one is to the calls

outside (outgoing primary call) it. Durations of these calls follow two distinct
exponential distributions. Calls (primary call) arrive at the server according

to compound Poisson distribution. After completion of regular service for

primary call, it is allowed for an immediate feedback with probability p.
Otherwise the call may leave the system permanently. The primary call is

considered as a high priority call and an outgoing call is considered as a low

priority call. The server may takes Bernoulli type vacation. Two kind of
break downs are allowed here while the server is busy. In addition to this

collision, working breakdown, repair and customer’s impatient behaviour are

also discussed. Using the supplementary variable technique, the steady state
distributions of the server state and the number of calls in the orbit are

obtained.

1. Introduction

Retrial queues (orbit) are quite interesting because they have wide range of
applications in various systems such as telephone switching systems, telecommu-
nication, computer networks, call center network, etc. The basic characteristic of
retrial queue (orbit) is the customers whose service cannot start immediately upon
their arrival, they can join a virtual queue. After some time they try to get their
service during the server’s idle time.

Hiroyuki.S et al (2014) described about the two way communication retrial
queues with multiple types of outgoing calls, where the server’s idle time can
make two types of outgoing calls. They are outgoing retrial call towards the orbit
and outgoing primary call to outside the system.
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In most of the queueing systems on retrial queues, the server only serves arriving
calls. After serving a call, the server waits for the next arrival. In various service
systems such as a call center, the server not only serves arriving calls but also
makes outgoing calls during its idle time. While the server is busy, the arriving
calls cannot receive a service and calls join an orbit and try to get the service after
some time independently of other calls. However, there exist many real life situ-
ations where the server can make outgoing calls. This queueing feature is known
as models of two way communication. Artalejo et al.(2012, 2013) described about
Markovian retrial queues with two way communication.

Bhulai et al. (2013) proposed a multiserver queueing model with infinite buffer
for call centers where incoming and outgoing calls follow the same exponential
distribution. Phung-Duc et al. (2014) developed retrial queues with balanced call
blending analysis of single-server and multiserver model. One interesting feature
which has been widely studied in queueing systems is the feedback of customers.
After completing the service, if the customer does not satisfy with the service they
may go to the server immediately to get the service again is known as immediate
feedback (Re-service). Some authors like Rajadurai et al.(2016), have discussed the
concept of immediate feedback. In this paper we use both priorities (pre-emptive
and non-preemptive)which is known as mixed priority services. Dimitriou et al
(2013) studied about the mixed priority queueing system with negative arrival.

The perfectly reliable servers are not possible in real world systems. In our
paper, we have assumed that the server fails only in the operational state. The
breakdown may cause due to normal as well as abnormal breakdown. The ab-
normal breakdown may cause due to negative arrival. It is otherwise known as
G-queue. It was first introduced by Gelenbe (1989) in neural networks. Recently
Bhagat et al (2016) extended the study about G-queues. Kalidass et.al (2012)
introduced the working breakdown policy, in which the server works at a lower
service rate rather than stopping service during the breakdown period. Tao Li
et.al (2017) describes more about working breakdowns.

Dong et al (2017) studied the analysis of a finite capacity queueing system with
working breakdown and customer’s behaviour. The retrial queue with collision are
appropriate for modeling the processes in tele-communication. Krishnakumar et
al (2010) studied about the collision with various parameters.

In this paper, we consider a single server mixed priority retrial queueing sys-
tem with two way communication, collision, working breakdown, negative arrival,
immediate feedback, Bernoulli vacation and reneging. Here we use mixed priority
services i.e. an incoming call may interrupt(pre-emptive) the service of an out-
going call or join in (non pre-emptive)an orbit. We assume a retrial queue with
constant retrial rate for an arriving calls. If the server is idle, it starts making
two types of outgoing calls, namely type 1 and type 2 call respectively, in different
exponentially distributed times. Service times of these calls follow general distri-
butions. An arriving call that finds the server being busy with incoming call it
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may collide with primary arrival or joins the orbit and retries to enter the service
after some generally distributed time. The server takes vacation under Bernoulli
vacation schedule. The server may become inactive when it is in operation due
to normal as well as abnormal breakdown. If the server is inactive because of the
negative arrival the repair process starts immediately. If the server is inactive due
to the normal breakdown, then it will complete the remaining service at a lower
service rate and after that the repair process starts. After service completion,
vacation completion and repair completion the server is in idle state. We consider
the arriving calls may balk and renege the orbit.

Further on, the structure of the paper is as follows. Section 1 is an introduction
to mixed priority retrial queueing discipline with literature review. A detailed
description of the model, notations used, mathematical formulation and governing
equations of the model is given in Section 2. Section 3 gives the steady state
solutions and the stationary joint distribution of the server state and orbit size.
Section 4 demonstrates the performance measures of the model. In Section 5, the
numerical results are computed and graphical studies are shown following which
the conclusion is given.

2. Model description

We consider a single server retrial queue with two way communication and two
types of customers(calls) namely, high priority(incoming call) and low-priority
(outgoing call) calls. The basic operation of the model can be described as:

Two way communication: We consider single server retrial queueing system
with two way communication. As described in previous section, there are two
flows of calls: incoming and outgoing calls. The server make outgoing calls after
some exponentially distributed idle time. Outgoing calls durations follow two dis-
tinct exponential distributions. If the server is idle it makes an outgoing retrial
or primary call in an exponentially distributed time with mean 1/π1 and 1/π2,
respectively.

Arrival process: Incoming calls arrive at the server according to compound
Poisson process with arrival rate λ. Let λci dt (i = 1, 2, 3, ...) be the first order
probability that a batch of ’i’ calls arrives at the system during a short interval of

time (t, t + dt), where for 0 ≤ ci ≤ 1,

∞∑
i=1

ci = 1 and λ > 0. If the server is busy

with an outgoing call then the arriving call may interrupt(pre-emptive) the service
of an outgoing call with probability p2 or join (non pre-emptive) the retrial queue
(orbit) with probability 1− p2. If the server is busy with primary or feedback call
then the arriving call may collide with it and both are shifted to the orbit with
probability p1.

Retrial process: After joining the orbit the calls follow constant retrial policy
that attempts to get the service. The retrial time is generally distributed with
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distribution function I(s) and the density function i(s). Let η(x)dx be the condi-
tional probability of completion of retrial during the interval (x, x + dx] where x
is the elapsed retrial time.

Service process: If the server is idle, then can make an outgoing retrial call
or outgoing primary call which is exponentially distributed with mean 1/π1 and
1/π2. The service times of the arriving call, feedback call, outgoing retrial call and
outgoing primary call are generally distributed with distribution functions Bi(s)
and the density functions bi(s), i = 1,2,3,4 respectively. Let µi(x)dx be the condi-
tional probability of completion of the arriving call, feedback call, outgoing retrial
call and outgoing primary calls service during the interval (x, x + dx], where x is
the elapsed service time.

Immediate feedback: After completing the primary call service, the customer
who want the service again may to go to the server immediately with probability
p or may leave the system with probability 1-p, which is known as immediate
feedback (Re-service).

Bernoulli Vacation: After completing each and every service completion the
server may take a vacation with probability θ. Vacation time is generally dis-
tributed with distribution function V (s) and the density function v(s).
Let β(x)dx be the conditional probability of completion of vacation during the
interval (x, x+ dx] where x is the elapsed vacation time.

Breakdown state: The server may become inactive during busy period due to
normal(with rate α) as well as abnormal breakdown(with rate λ). The abnormal
breakdown causes due to negative arrival. The negative arrival will remove the
call is in service and deactivate the server.

Working breakdown state: At the normal breakdown the call currently in
service will get the remaining service at a lower service rate µ5, which is exponen-
tially distributed.

Repair Process: After completing the working breakdown period the server
is sent for repair. If the server is broken down due to negative arrival then the
repair process starts immediately so as to regain its functionality. Repair time is
exponentially distributed with rate γ.

Reneging: If the server is busy or unavailable in the system, an arriving call
may renege the orbit exponentially with rate ξ.

Balking: If the server is busy or unavailable in the system, an arriving call
may balk the orbit with probability 1− b.

Idle State: After service, vacation and repair completion the server is in idle
state.
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2.1. Definitions and notations. Let N(t) be the orbit size at time t, B0
i (t), i =

1,2,3,4, V 0(t) and I0(t) be the elapsed service time of the primary call, feedback
call, outgoing retrial call, outgoing primary call, vacation time and retrial time
respectively at time t. Let S(t) denote the state of the server,

S(t) =



0, if the server is idle;
1, if the server is providing primary call service;
2, if the server is providing feedback call service;
3, if the server is providing outgoing retrial call service;
4, if the server is providing outgoing primary call service;
5, if the server is in vacation;
6, if the server is in working breakdown with primary call;
7, if the server is in working breakdown with feedback call;
8, if the server is in working breakdown with type1 call;
9, if the server is in working breakdown with type2 call;
10, if the server is in repair state.

We have I(x), Bi(x), V (x) and M(x) is continuous at x = 0, and, η(x)dx =
dI(x)

1− I(x)
, µi(x)dx =

dBi(x)

1−Bi(x)
, i=1,2,3,4 β(x)dx =

dV (x)

1− V (x)
are the first order

differential (hazard rate) functions of I(.), Bi(.) and V(.) respectively.

2.2. Queue size distribution. Since the service time, vacation time and re-
trial time are not exponential, the process {S(t), N(t)} is non Markovian. Here
we introduce supplementary variables corresponding to elapsed times to make it
Markovian [Cox(1955)]. Joint distributions of the server state and orbit size are
defined as,

Im(x, s, t)dx = Pr{Y (t) = 0, x < I0(t) ≤ x+ dx,N(t) = m},m ≥ 1

P
(1)

1,m(x, s, t)dx = Pr{Y (t) = 1, x < B0
1(t) ≤ x+ dx,N(t) = m},m ≥ 0,

P
(1)

2,m(x, s, t)dx = Pr{Y (t) = 2, x < B0
2(t) ≤ x+ dx,N(t) = m},m ≥ 0,

P
(2)

1,m(x, s, t)dx = Pr{Y (t) = 3, x < B0
3(t) ≤ x+ dx,N(t) = m},m ≥ 0,

P
(2)

2,m(x, s, t)dx = Pr{Y (t) = 4, x < B0
4(t) ≤ x+ dx,N(t) = m},m ≥ 0,

V m(x, s, t)dx = Pr{Y (t) = 5, x < V 0(t) ≤ x+ dx,N(t) = m, },m ≥ 0

Q
(1)

1,m(s, t) = Pr{Y (t) = 6, N(t) = m},m ≥ 0

Q
(1)

2,m(s, t) = Pr{Y (t) = 7, N(t) = m},m ≥ 0

Q
(2)

1,m(s, t) = Pr{Y (t) = 8, N(t) = m},m ≥ 0
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Q
(2)

2,m(s, t) = Pr{Y (t) = 9, N(t) = m},m ≥ 0

Rm(x, s, t) = Pr{Y (t) = 10, N(t) = m},m ≥ 0

2.3. Equations Governing the System. The Kolmogorov forward equations
which governs the model:

• The server is providing arriving primary call service:

∂

∂t
P

(1)
1,m(x, t) +

∂

∂x
P

(1)
1,m(x, t) = −(λ+ α+ λ+ ξ + µ1(x))P

(1)
1,m(x, t) + (1− δm0)

× λ(1− p1)b

m∑
i=1

ciP
(1)
1,m−i(x, t) + λ(1− b)P (1)

1,m(x, t) + ξP
(1)
1,m+1(x, t); m ≥ 0,

(2.1)

• The server is providing feedback call service:

∂

∂t
P

(1)
2,m(x, t) +

∂

∂x
P

(1)
2,m(x, t) = −(λ+ α+ λ+ ξ + µ2(x))P

(1)
2,m(x, t) + (1− δm0)

λ(1− p1)× b
m∑
i=1

ciP
(1)
2,m−i(x, t) + λ(1− b)P (1)

2,m(x, t) + ξP
(1)
2,m+1(x, t); m ≥ 0,

(2.2)

• The server is providing outgoing retrial call service:

∂

∂t
P

(2)
1,m(x, t) +

∂

∂x
P

(2)
1,m(x, t) = −(λ+ α+ λ+ ξ + µ3(x))P

(2)
1,m(x, t) + (1− δm0)

× λ(1− p2)b

m∑
i=1

ciP
(2)
1,m−i(x, t) + λ(1− b)P (2)

1,m(x, t) + ξP
(2)
1,m+1(x, t); m ≥ 0,

(2.3)

• The server is providing outgoing primary call service:

∂

∂t
P

(2)
2,m(x, t) +

∂

∂x
P

(2)
2,m(x, t) = −(λ+ α+ λ+ ξ + µ4(x))P

(2)
2,m(x, t) + (1− δm0)

× λ(1− p2)b

m∑
i=1

ciP
(2)
2,m−i(x, t) + λ(1− b)P (2)

2,m(x, t) + ξP
(2)
2,m+1(x, t); m ≥ 0,

(2.4)

• The server is on vacation:

∂

∂t
Vm(x, t) +

∂

∂x
Vm(x, t) = −(λ+ ξ + β(x))Vm(x, t) + (1− δm0)

× λb
m∑
i=1

ciVm−i(x, t) + λ(1− b)Vm(x, t) + ξVm+1(x, t);m ≥ 0, (2.5)
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• The server is in working breakdown with primary call:

d

dt
Q

(1)
1,m(t) = −(λ+ µ5 + ξ)Q

(1)
1,m(t) + (1− δm0)λ

m∑
i=1

ciQ
(1)
1,m−i(t)

+ λ(1− b)Q(1)
1,m(x, t) + α

∫ ∞
0

P
(1)
1,m(x, t)dx+ ξQ

(1)
1,m+1(t);m ≥ 1,

(2.6)

• The server is in working breakdown with feedback call:

d

dt
Q

(1)
2,m(t) = −(λ+ µ5 + ξ)Q

(1)
2,m(t) + (1− δm0)λ

m∑
i=1

ciQ
(1)
2,m−i(t)

+ λ(1− b)Q(1)
2,m(x, t) + α

∫ ∞
0

P
(1)
2,m(x, t)dx+ ξQ

(1)
2,m+1(t);m ≥ 1,

(2.7)

• The server is in working breakdown with outgoing retrial call:

d

dt
Q

(2)
1,m(t) = −(λ+ µ5 + ξ)Q

(2)
1,m(t) + (1− δm0)λ

m∑
i=1

ciQ
(2)
1,m−i(t)

+ λ(1− b)Q(2)
1,m(x, t) + α

∫ ∞
0

P
(2)
1,m(x, t)dx+ ξQ

(2)
1,m+1(t);m ≥ 1,

(2.8)

• The server is in working breakdown with outgoing primary call:

d

dt
Q

(2)
2,m(t) = −(λ+ µ5 + ξ)Q

(2)
2,m(t) + (1− δm0)λ

m∑
i=1

ciQ
(2)
2,m−i(t)

+ λ(1− b)Q(2)
2,m(x, t) + α

∫ ∞
0

P
(2)
2,m(x, t)dx+ ξQ

(2)
2,m+1(t);m ≥ 1,

(2.9)

• The server is in repair process:

d

dt
Rm(t) = −(λ+ γ + ξ)Rm(t) + (1− δm0)λb

m∑
i=1

ciRm−i(t) + µ5

{ 2∑
i=1

Q
(1)
i,m(t)

+

2∑
i=1

Q
(2)
i,m(t)

}
+λ
{ 2∑

i=1

∫ ∞
0

P
(1)
i,m(x, t)dx+

2∑
i=1

∫ ∞
0

P
(2)
i,m(x, t)dx

}
+ ξRm+1(t) + λ(1− b)Rm(x, t); m ≥ 0, (2.10)

• The server is in retrial state

∂

∂t
Im(x, t) +

∂

∂x
Im(x, t) = −(λ+ π1 + π2 + η(x))Im(x, t); m ≥ 1, (2.11)
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• The server is in idle state

d

dt
I0(t) = −(λ+ π1 + π2)I0(t) + (1− θ)

{
(1− p)

∫ ∞
0

P
(1)
1,0 (x, t)µ1(x)dx

+

∫ ∞
0

P
(1)
2,0 (x, t)µ2(x)dx+

∫ ∞
0

P
(2)
1,0 (x, t)µ3(x)dx+

∫ ∞
0

P
(2)
2,0 (x, t)µ4(x)dx

}
+

∫ ∞
0

V0(x, t)β(x)dx+ γR0(t), (2.12)

The above set of equations are to be solved under the following boundary condi-
tions at x=0.

Im(0, t) = (1− θ)
{

(1− p)
∫ ∞
0

P
(1)
1,m(x, t)µ1(x)dx+

∫ ∞
0

P
(1)
2,m(x, t)µ2(x)dx

+

∫ ∞
0

P
(2)
1,m(x, t)µ3(x)dx+

∫ ∞
0

P
(2)
2,m(x, t)µ4(x)dx

}
+

∫ ∞
0

Vm(x, t)β(x)dx

+ λbp1

2∑
j=1

m∑
i=1

ci
{∫ ∞

0

P
(1)
j,m−1−i(x, t)dx

}
+ γRm(t); m ≥ 1, (2.13)

P
(1)
1,m(0, t) =

∫ ∞
0

Im+1(x, t)η(x)dx+ λcm+1I0(t) + λb

m∑
i=1

ci

∫ ∞
0

Im+1−i(x, t)dx

+ λbp2

2∑
j=1

m∑
i=1

ci
{∫ ∞

0

P
(2)
j,m+1−i(x, t)dx

}
; m ≥ 0, (2.14)

P
(1)
2,m(0, t) = p

∫ ∞
0

P
(1)
1,m(x, t)dx; m ≥ 0, (2.15)

P
(2)
1,m(0, t) = π1

∫ ∞
0

Im+1(x, t)dx; m ≥ 0, (2.16)

P
(2)
2,m(0, t) = π2

∫ ∞
0

Im(x, t)dx; m ≥ 0, (2.17)

Vm(0, t) = θ
{

(1− p)
∫ ∞
0

P
(1)
1,m(x, t)µ1(x)dx+

∫ ∞
0

P
(1)
2,m(x, t)µ2(x)dx

+

∫ ∞
0

P
(2)
1,m(x, t)µ3(x)dx+

∫ ∞
0

P
(2)
2,m(x, t)µ4(x)dx

}
m ≥ 0. (2.18)

We assume that initially there are no customers in the system and the server is
idle. Then the initial conditions are,

P
(1)
1,m(0) = P

(1)
2,m(0) = P

(2)
1,m(0) = P

(2)
2,m(0) = Vm(0) = Q

(1)
1,m(0) = Q

(1)
2,m(0)

= Q
(2)
1,m(0) = Q

(2)
2,m(0) = Rm(0) = Im(0) = 0 and I0(0) = 1;m ≥ 0. (2.19)

The Probability Generating Function(PGF) of this model:

A(x, z, t) =

∞∑
m=1

zmAm(x, t),
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where A = I, V, P
(1)
i , P

(2)
i , Q

(1)
i Q

(2)
i , R, I where i=1,2.

By taking Laplace transforms from equation (1) to equation (18) and solving those
equations, we get,

I0(x, s, z) = I0(0, s, z)[1− I(ϕ(a, s))]e−ϕ(a,s)x, (2.20)

P
(1)

i (x, s, z) = P
(1)

i (0, s, z)[1−Bi(ϕ1(s, z))]e−ϕ1(s,z)x, i = 1, 2 (2.21)

P
(2)

1 (x, s, z) = P
(2)

1 (0, s, z)[1−B3(ϕ2(s, z))]e−ϕ2(s,z)x, (2.22)

P
(2)

2 (x, s, z) = P
(2)

2 (0, s, z)[1−B4(ϕ2(s, z))]e−ϕ2(s,z)x, (2.23)

V (x, s, z) = V (0, s, z)[1− V (ϕ3(s, z))]e−ϕ3(s,z)x, (2.24)

Q
(1)

i (s, z) =
αP

(1)

i (0, s, z)[1−Bi(ϕ1(s, z))]e−ϕ1(s,z)x

ϕ4(s, z)
, i = 1, 2 (2.25)

Q
(2)

1 (s, z) =
αP

(2)

1 (0, s, z)[1−B3(ϕ2(s, z))]e−ϕ2(s,z)x

ϕ4(s, z)
, (2.26)

Q
(2)

2 (s, z) =
αP

(2)

2 (0, s, z)[1−B4(ϕ2(s, z))]e−ϕ2(s,z)x

ϕ4(s, z)
, (2.27)

R(s, z) =


λ
{ 2∑

i=1

(P
(1)

i (x, s, z) + P
(2)

i (x, s, z))
}

+ µ5

{ 2∑
i=1

(Q
(1)

i (s, z) +Q
(2)

i (s, z))
}


ϕ5(s, z)
. (2.28)

where,
ϕ(a, s) = s+ λ+ π1 + π2,
ϕ1(s, z) = s+ λb[1− (1− p1)C(z)] + λ+ ξ[1− 1

z ] + α,

ϕ2(s, z) = s+ λb[1− (1− p2)C(z)] + λ+ ξ[1− 1
z ] + α,

ϕ3(s, z) = s+ λb[1− C(z)] + ξ[1− 1
z ],

ϕ4(s, z) = s+ λb[1− C(z)] + µ5 + ξ[1− 1
z ],

ϕ5(s, z) = s+ λb[1− C(z)] + γ + ξ[1− 1
z ].

By solving the above equations, we get,

P
(1)

1 (0, s, z) =

{
(1− (s+ λ+ π1 + π2)ζ4(s, z)I0(s))

+ λbC(z)[1− ζ3(s, z)]I0(s)

}
{
z[1− ζ3(s, z)]− ζ2(s, z)ζ4(s, z)

}

I(0, s, z) =

{
z(1− (s+ λ+ π1 + π2)I0(s)) + λbC(z)ζ2(s, z)I0(s)

}{
z[1− ζ3(s, z)]− ζ2(s, z)ζ4(s, z)

}
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where,

ζ1(s, z) =
γ[λϕ4(s, z) + αµ5]

ϕ5(s, z)

ζ2(s, z) = [1− θ + θV (ϕ3(s, z))](1− p)B1(ϕ1(s, z)) + [
1−B1(ϕ1(s, z))

ϕ1(s, z)
]

× pB2(ϕ1(s, z))[1 + ζ1(s, z)] + [
1−B1(ϕ1(s, z))

ϕ1(s, z)
][λp1bC(z) + ζ1(s, z)]

ζ3(s, z) = [
1− I(ϕ(a, s))

ϕ(a, s)
]
{ π1
z

([1− θ + θV (ϕ3(s, z))]B2(ϕ1(s, z)) + ζ1(s, z)

× [
1−B3(ϕ2(s, z))

ϕ2(s, z)
]) + π2([1− θ + θV (ϕ3(s, z))]B4(ϕ2(s, z))

+ ζ1(s, z)[
1−B4(ϕ2(s, z))

ϕ2(s, z)
])
}
,

ζ4(s, z) = I(ϕ(a, s)) + [
1− I(ϕ(a, s))

ϕ(a, s)
]λC(z)

{
b+ p2

{π1
z

[
1−B3(ϕ2(s, z))

ϕ2(s, z)
]

+ π2[
1−B4(ϕ2(s, z))

ϕ2(s, z)
]
} }

, ,

Theorem 2.1. The inequality

P (1)(1) + P (2)(1) +Q(1) = ρ < 1,

is a necessary and sufficient condition for the system to be stable, under this con-
dition the marginal PGF of the server’s state and orbit size distributions are given
by,

I(s, z) = I(0, s, z)[
1− I(ϕ(a, s))

ϕ(a, s)
],

P
(1)

i (s, z) = P
(1)

i (0, s, z)[
1−Bi(ϕ1(s, z))

ϕ1(s, z)
] i = 1, 2,

P
(2)

1 (s, z) = P
(2)

1 (0, s, z)[
1−B3(ϕ2(s, z))

ϕ2(s, z)
],

P
(2)

2 (s, z) = P
(2)

2 (0, s, z)[
1−B4(ϕ2(s, z))

ϕ2(s, z)
],
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V (s, z) = θ
{

(1− p)P (1)

1 (0, s, z)B1(ϕ1(s, z)) + P
(1)

2 (0, s, z)B2(ϕ1(s, z))

+ P
(2)

1 (0, s, z)B3(ϕ2(s, z)) + P
(2)

2 (0, s, z)B4(ϕ2(s, z))
}

× [
1− V (ϕ3(s, z))

ϕ3(s, z)
],

Q
(1)

i (s, z) =
αP

(1)

i (0, s, z)[1−Bi(ϕ1(s, z))]e−ϕ1(s,z)x

ϕ4(s, z)
, i = 1, 2

Q
(2)

1 (s, z) =
αP

(2)

1 (0, s, z)[1−B3(ϕ2(s, z))]e−ϕ2(s,z)x

ϕ4(s, z)
,

Q
(2)

2 (s, z) =
αP

(2)

2 (0, s, z)[1−B4(ϕ2(s, z))]e−ϕ2(s,z)x

ϕ4(s, z)
,

R(s, z) =


λ
{ 2∑

i=1

(P
(1)

i (x, s, z) + P
(2)

i (x, s, z))
}

+ µ5

{ 2∑
i=1

(Q
(1)

i (s, z) +Q
(2)

i (s, z))
}


ϕ5(s, z)
.

3. Steady state Analysis: Limiting Behaviour

Proper utilization of Tauberian property,

lim
s→0

sf(s) = lim
t→∞

f(t),

helps to obtain the steady- state solutions of this model. The normalizing condition
of this model is:

P
(1)
i (1) + P

(2)
i (1) + V (1) +Q

(1)
i (1) +Q

(2)
i (1) +R(1) + I(1) + I0 = 1

i=1,2. Let, Pq(z) be the probability generating function of the orbit size irre-
spective of the state of the system. And adding all the steady state equations, we
obtain,

Pq(z) = P
(1)
i (z) + P

(2)
i (z) + V (z) +Q1

i (z) +Q2
i (z) +R(z) + I(z), i = 1, 2.

Pq(z) =
ψ1(z) + ψ2(z)

ϕ3(z)
,

77



12 G. AYYAPPAN AND J. UDAYAGEETHA

where,

ψ1(z) = I(0, z)[
1− I(ϕ(a))

ϕ(a)
]
{
ϕ3(z) + (1− V (ϕ3(z)))[

π1
z

+ π2] + ϕ3(z)ζ5(z)

×
{π1
z

[
1−B3(ϕ2(z))

ϕ2(z)
] + π2[

1−B4(ϕ2(z))

ϕ2(z)
]
} }

,

ψ1(z) = P
(1)
1 (0, z)

{
(1− V (ϕ3(z)))[1− p+ pB2(ϕ1(z))] +

{
[
1−B1(ϕ1(z))

ϕ1(z)
]

+ pB1(ϕ1(z))[
1−B2(ϕ1(z))

ϕ1(z)
]
}
ϕ5(z)ζ5(z)

}
, .

The probability of idle time I0, we use the normalizing condition, as

P (1)
q (1) + I0 = 1.

By using this we can have,

I0 =
ϕ′3(1)

ϕ′3(1) + ψ′1(1) + ψ′3(1)
.

4. The Average Orbit Length and Waiting Time:

The Mean number of calls in the orbit under the steady state condition is,

Lq =
d

dz
Pq(z)|z=1.

then,

Lq =
ϕ′3(1)ψ′′1 (1)− ϕ′′3(1)ψ′1(1)

2(ϕ′3(1))2
+
ϕ′3(1)ψ′′2 (1)− ϕ′′3(1)ψ′2(1)

2(ϕ′3(1))2
,

By Little’s law, the average waiting time of a call in the orbit is,

Wq =
Lq

λ
,
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5. Numerical Results

For the purpose of a numerical study, we assume that all distribution functions
like retrial, service for priority and ordinary customers, vacation are exponentially
distributed. All the parameter values are selected to satisfy the stability condition.

Table 1: (λ, µ2, µ3, µ4, µ5, η, θ, α, λ, γ, β, ξ, p, b, π1, π2, p1, p2) =

(0.4, 8, 5, 5, 3, 0.1, 0.1, 10, 10, 5, 0.1, 0.2, 0.5, 0.6, 0.1, 0.1, 0.3, 0.3)

µ1 I0 ρ Lq Wq

5.1 0.0415 0.9585 0.7010 1.7526
5.2 0.0415 0.9585 0.7009 1.7523
5.3 0.0416 0.9584 0.7008 1.7519
5.4 0.0416 0.9584 0.7006 1.7516
5.5 0.0416 0.9584 0.7005 1.7513
5.6 0.0416 0.9584 0.7004 1.7509
5.7 0.0416 0.9584 0.7003 1.7506
5.8 0.0417 0.9583 0.7001 1.7503
5.9 0.0417 0.9583 0.7000 1.7500
6.0 0.0417 0.9583 0.6999 1.7497

Table 2: Let (λ, µ1, µ2, µ3, µ4, µ5, θ, α, λ, γ, β, ξ, p, b, π1, π2, p1, p2) =

(0.8, 15, 5, 5, 5, 0.4, 0.1, 0.5, 0.5, 5, 0.5, 0.1, 0.4, 0.8, 1, 3, 0.5, 0.3)

η I0 ρ Lq Wq

8.2 0.0466 0.9534 1.3780 1.7225
8.4 0.0465 0.9535 1.2445 1.5556
8.6 0.0463 0.9537 1.1181 1.3976
8.8 0.0462 0.9538 0.9981 1.2477
9.0 0.0461 0.9539 0.8843 1.1053
9.2 0.0459 0.9541 0.7760 0.9700
9.4 0.0458 0.9542 0.6730 0.8413
9.6 0.0457 0.9543 0.5749 0.7187
9.8 0.0456 0.9544 0.4814 0.6017
10.0 0.0455 0.9545 0.3921 0.4902
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Table 3: Let (λ, µ1, µ2, µ3, µ4, µ5, η, θ, α, γ, β, ξ, p, b, π1, π2, p1, p2) =

(0.4, 10, 8, 5, 5, 3, 0.1, 0.1, 10, 5, 0.1, 0.2, 0.5, 0.6, 0.1, 0.1, 0.3, 0.3)

λ I0 ρ Lq Wq

3.5 0.0432 0.9568 0.6095 1.5238
4.0 0.0431 0.9569 0.6107 1.5268
4.5 0.0430 0.9570 0.6133 1.5331
5.0 0.0429 0.9571 0.6170 1.5425
5.5 0.0429 0.9571 0.6218 1.5546
6.0 0.0428 0.9572 0.6276 1.5690
6.5 0.0427 0.9573 0.6342 1.5855
7.0 0.0427 0.9573 0.6416 1.6039
7.8 0.0426 0.9574 0.6495 1.6238
8.0 0.0426 0.9574 0.6581 1.6451

Table 4: Let (λ, µ1, µ2, µ3, µ4, µ5, η, θ, λ, γ, β, ξ, p, b, π1, π2, p1, p2) =

(0.4, 10, 8, 5, 5, 3, 0.1, 0.75, 10, 5, 0.1, 0.2, 0.5, 0.6, 0.1, 0.1, 0.3, 0.3)

α I0 ρ Lq Wq

1.5 0.0434 0.9566 0.4215 1.0539
2.0 0.0433 0.9567 0.4272 1.0679
2.5 0.0432 0.9568 0.4352 1.0879
3.0 0.0431 0.9569 0.4452 1.1130
3.5 0.0430 0.9570 0.4570 1.1426
4.0 0.0429 0.9571 0.4704 1.1761
4.5 0.0429 0.9571 0.4851 1.2128
5.0 0.0428 0.9572 0.5010 1.2524
5.5 0.0427 0.9573 0.5178 1.2945
6.0 0.0427 0.9573 0.5354 1.3386

Table 1 reveals that as long as the arriving call service rate increases the server’s
idle time increases, and the average orbit size for incoming call and the utilisation
factor decreases. Table 2 shows that as long as the retrial rate increases the server’s
idle time and orbit size decreases and the utilisation factor increases. Table 3 and
4 explains that as long as the breakdown rate and negative arrival rate increases
the server’s idle time decreases and the utilisation factor, average orbit size are
increases.
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Figure 1. Average orbit size Vs Service rate µ1
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Figure 2. Average orbit size Vs Retrial rate η
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Figure 3. Average orbit size Vs Negative arrival rate λ
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Figure 4. Average orbit size Vs Breakdown rate α

6. Conclusion

In this paper we analyze MX/G/1/1 retrial queue with two way communication
in which the server makes outgoing calls of two types i.e., outgoing retrial call
towards the orbit and outgoing retrial call outside the orbit. The server may
not know the number of calls are present in the orbit. As a result, the server can
have the chance to make an outgoing call even when there are some more incoming
calls present in the orbit. This shows that the arriving calls will nave some priority
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over the outgoing calls. Also we have analysed the mixed priority retrial queueing
system under Bernoulli vacation subject to repair, collision, working breakdown,
immediate feedback and negative arrival. In addition to this, the effect of impatient
behaviour of the customer on a service system is investigated. Numerical examples
have been carried out to observe the mean number of calls in the orbit for varying
parametric values. This paper analyzes a single-server retrial queue with constant
retrial policy. The novelty of this investigation is the discussion of the constant
retrial policy, mixed priority service, two way communication with retrial queueing
system.
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