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Application of the Taylor Series Method for the Flow of non-Newtonian
Fluids between Parallel Plates

A. M. Siddiqui*, A. Ashraf**, A. Zeb** & Q. K. Ghori**

Abstract: This paper applies the Taylor series method to solve the one-dimensional steady laminar flow of a
third grade fluid and an Oldroyd six constant fluid between two parallel plates. The fluid flow is produced by an
external pressure gradient dp/dx. In each case the governing nonlinear boundary value problem is solved and
analytical expressions for the fluid velocity, resistance to flow, volume flow rate and the average fluid velocity
are obtained. Figures and tables are presented to illustrate the variation of these quantities with the relevant
physical parameters. It is shown that in case of a third grade fluid the fluid velocity and other flow variables
increase on decreasing the pressure gradient dp/dx or by increasing the non-Newtonian parameter �. For an
Oldroyd six constant fluid the velocity magnitude increases on decreasing the pressure gradient or on increasing
the constant �

1
 when �

2
(< �

1
) and dp/dx are fixed. Also the fluid velocity increases on increasing the constant �

2

when �
1
(< �

2
) and dp / dx are fixed. Similarly, under the same condition, the resistance to the fluid flow and the

volume flow rate increase on increasing �
1
 or �

2
.
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1. INTRODUCTION

The importance of non-Newtonian fluids is their wide ranging industrial and technological use. Gels, paints,
solid-liquid mixtures, foods such as tomato sauce, biological fluids such as blood and synovial fluid found in
natural healthy joints are some common examples of such fluids. In this paper we consider one-dimensional
steady laminar flow of two non-Newtonian fluid models, namely third grade and Oldroyd six constant fluids,
between two stationary parallel plates. The motion is produced by the presence of a constant pressure gradient
dp/dx.

This problem arises in many practical applications and in particular we quote the underfill flow between
parallel plates and solder bumps in flip-chip interconnect system. The flip-chip technology is attractive in
electronic packaging because of its high electrical performance, high interconnect density and small size. Underfill
is used to improve the reliability of the flip-chip interconnect system and the polymer is filler in the gap between
the chip and substrate around the solder joints by the capillary flow. The underfill flow is driven by the pressure
difference due to the capillary force. Therefore, the flow of the underfill material can be modelled as steady,
laminar flow between parallel plates driven by a pressure gradient. For further details the reader is referred to
[13, 17] and the references therein.

The resulting ordinary differential equations governing such a flow are nonlinear and their closed form
solution is not obtainable. Consequently, one must resort to alternative forms to express the solution. One
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possible way of representing the solution is by infinite series. The methods using this approach have been
receiving great attention over the past few years for studying such non Newtonian fluid flow problems. Amongst
these are the methods based on the concept of homotopy as used in topology [4, 5, 6, 7, 10, 15, 16] and the
Adomian decomposition method [2, 8, 12]. In addition to these techniques there are traditional perturbation
methods [3, 11], which depend upon the existence of a small or large parameter in the problem. These assumptions
of a small or large parameter seriously restrict the validity of the ordinary perturbation solutions.

Here we apply the Taylor series method for solving the nonlinear boundary value problems that arise in the
considered non-Newtonian fluid flow between two parallel plates. This method [1, 9, 14] expands the solution
variable about a point and does not assume the existence of any small or large parameter in the problem. To the
best of our knowledge this method has not been previously used in the study of non-Newtonian fluid flows.
Therefore, the aim of this communication is to demonstrate the applicability of the Taylor series method for
solving the nonlinear boundary value problems that may arise in non-Newtonian fluid mechanics.

With this motivation, we start in section 2 by listing the basic equations, and the constitutive equations for
third grade and Oldroyd six constant fluids. In section 3 we give a mathematical formulation of the boundary
value problem for both the fluid models. In section 4 we solve these problems to find the fluid velocity, resistance
to the flow, volume flow rate and the average fluid velocity. Section 5 contains results and discussion. Finally
section 6 consists of concluding remarks.

2. BASIC EQUATIONS

The basic equations governing the flow of an incompressible fluid are the continuity and the momentum equations:

. u = 0 (1)

. T = � ��
d

dt

u
f (2)

where u is the fluid velocity at time t,  the constant fluid density, f the body force per unit mass, d/dt the
material derivative and T the Cauchy stress tensor given by a constitutive equation.

A number of constitutive equations relating the stress tensor to the rate of strain tensor have been proposed
for explaining the flow behavior of non-Newtonian fluids. In view of the problems to be considered, we mention
the constitutive equations for third grade fluids and Oldroyd 6-constant fluids.

2.1 Third Grade Fluid

If p denotes the fluid pressure, � the coefficient of viscosity and �, �*, �1, �2, �3 the material constants of the
fluid. Then the constitutive equation for a third grade fluid is given by

T = –pI + S, S =
3

1
i

i

S
�
� (3)

where S1 = �A1, S2 = �A2+�
*A2

1, S3 = �1A3+�2(A2A1+A1A2) + �3tr(A2)A1, A1 = Lt + L, A2 = dA1/dt + A1L + LtA1,
A3 = dA2/dt + A2L + LtA2, L = grad u and Lt is transpose of L .

2.2 Oldroyd Six Constant Fluid

If the unit tensor, the indeterminate part of the stress and the extra stress tensor are denoted by I, p and S,
respectively, then the constitutive equation for an Oldroyd six constant fluid is given by
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T = –pI + S (4)

The extra stress tensor S satisfies the equation

� �
� � � � � � � � � � � 23 5 1

1 1 1 1 1 2 4 1( ) [ ( )] ( ),
2 2

DD
tr

Dt Dt

AS
S SA A S S A A A (5)

where D/Dt = d/dt – L – LT , A1 is defined in subsection 2.1 and �1, �2, �3, �4 and �5 are the material constants.

3. STATEMENT OF PROBLEM

3.1 Third Grade Fluid

We consider the steady laminar flow of a third grade fluid between two stationary parallel plates produced by a
constant pressure gradient. The origin of the Cartesian coordinate system is taken to be on the plane of symmetry
with the x-axis being in the direction of motion, see figure 1. If the distance between the plates is assumed to be
2h then the location of the upper and lower plates are y = +h and y = –h, respectively, and the boundary
conditions are given by

Sxy = 0 at  y = 0  (symmetry)

u = 0 at  y = h  (no slip)
(6)

Moreover, we assume that u = [u, 0, 0], u = u(y) and S = S(y). Thus the continuity equation is satisfied identically
and, in the absence of body forces, the momentum equation (2) reduces to a second-order nonlinear ordinary
differential equation, which after integrating and applying the condition of symmetry becomes

3
2

0
du du y dp

dy dy dx

� ��
� � �� �� �� �

(7)

where � = �2 + �3. Therefore, we need to solve equation (7) subject to the (no-slip) condition u(h) = 0. The
problem is non-dimensionlized by introducing the following dimensionless variables

y x u
y x u

h h U
� � �� � � � � � (8)

Figure 1: Pressure Driven Flow Between Parallel Plates
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2( )

p
p

U hh U
� ��

� � � �
� �� �

(9)

Thus, dropping the asterisks for convenience, we obtain the following dimensionless boundary value problem

3

2 0 (1) 0
du du dp

y u
dy dy dx

� � � �� � � � � �� � � �
� �� �

(10)

3.2 Oldroyd Six Constant Fluid

In this problem we consider the steady laminar flow of an Oldroyd six constant fluid between two stationary
parallel plates produced by a constant pressure gradient. All other conditions and assumptions as adopted in the
previous problem remaining unchanged. Therefore, in the absence of body forces, the momentum equations (2)
along with the no-slip and the symmetry conditions (6) generate the following boundary value problem:

3 2

1 2
1

1 0 ( ) 0
du du du dp

y u h
dy dy dy dx

� �� � � �� �� �� � � � � � � �� �� � � � � �� � �� � � �� �� �
(11)

where the constants �1 and �2 are given by the following expressions

�1 = �1�4 – (�4 – �2)(�3 + �5) (12)

�2 = �1�3 – (�3 – �1)(�3 + �5) (13)

We now introduce the non-dimensional variables defined in equations (8) and (9), along with 1
1 2( )h U
� �

� �
�

 and

2
2 2( )h U
� �

� �
�

, into equation (11). Thus the non-dimensional form of the boundary value problem (11), after

dropping the asterisk, is given by

3 2

1 2 1 0 (1) 0
du du du dp

y u
dy dy dy dx

� �� � � �� �� �� � � � � � � �� �� � � � � �
� �� � � �� �� �

(14)

4. SOLUTION BY THE TAYLOR SERIES METHOD

For solving problems (10) and (14) using the Taylor series method we assume a series solution of the form

u(y) = 
0

n
n

n

a y
�

�
� (15)

4.1 Third Grade Fluid

4.1.1 Fluid Velocity

Substituting the expression (15) into the differential equation (10) yields

� �1 1 1 1
0 0 0 0

( 1) 2 ( 1)( 1)( 1)
k jk

k k
k j m k m j

k k j m

dp
k a y j m k m j a a a y y

dx

�� �

� � � � � �
� � � �

� �� � � � � � � � � � �
� �

� � � �
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Now equating the coefficients of y0 and y1 we obtain a1 = 0, a2 = (1/2)(dp/dx) and the following recursive
relationship

ak+1 = 
1

1 1 1
1 0

2
( 1)( 1)( 1)

1

k jk

j m k j m
j m

j m k j m a a a
k

��

� � � � �
� �

�
� � � � � �

� � � (16)

where k = 2, 3, 4, … . The first few coefficients determined from (16) are given by

a3 = a5 = a7 = a9 = … = 0 (17)

a4 = 
3 52

6
2 3(2 )
4 6

dp dp
a

dx dx

� �� � � �� � �� � � �
� � � �

(18)

a8 = 
7 93 4

10
12(2 ) 55(2 )

8 10
dp dp

a
dx dx

� �� � � �� � �� � � �
� � � �

(19)

Substituting the expression (17)-(19) into equation (15) and using u(1) = 0, we obtain

u(y) =
3 52 4 6

21 1 1
2 3(2 )

2 4 6
dp y dp y dp y

dx dx dx

� � � � � �� � �� � � � � �� � � � � �� � � �� � � � � �� � � � � �
� � � � � �� � � � � �� � � � � �

– 12 (2�)3 
7 98 10

41 1
55(2 )

8 10
dp y dp y

dx dx

� � � �� �� � � �� � � �� � �� � � �� � � �
� � � �� � � �� � � �

� (20)

We remark that for � = 0 this solution coincides with the corresponding solution for the flow a Newtonian fluid
[13].

4.1.2 Resistance to the fluid flow

An expression for the resistance to the flow of a third grade fluid can be obtained from the following relationship
between the shear stress Sxy and du/dy:

Sxy = 
3

2
du du

dy dy

� �
� � �� �

� �
(21)

We introduce 
( )

xy
xy

S
S

U h
� �

� �
 and make use of the non-dimensional variables defined in (8) and (9) to obtain the

following non-dimensional form of the equation (21):

Sxy = 
3

2
du du

dy dy

� �
� �� �

� �
(22)

Substituting for u from equation (20), we obtain

Sxy =
2 4 6

2 2 4 3 61 2 3(2 ) 12(2 )
dp dp dp dp

y y y y
dx dx dx dx

��� � � � � � � �� � � � � ��� � � � � � � �
� � � � � � � ���
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8 3 2
4 8 3 255(2 ) 2 1 2 3

dp dp dp
y y y

dx dx dx

� �� �� � � � � �� � � � � � � �� �� � � � � �
� � � � � �� �� �

� (23)

 

34 6 8
2 4 3 6 4 8(2 ) 12(2 ) 55(2 )

dp dp dp
y y y

dx dx dx

��� � � � � �� � � � � � � �� � � � � �
� � � � � � ��

�

The force per unit area on the plate y = 1 is the skin friction � = Sxy at y = 1 and this is given by

� = 
2 4 6 8

2 3 41 2 3(2 ) 12(2 ) 55(2 )
dp dp dp dp dp
dx dx dx dx dx

� �� �� � � � � � � � � �� � � � � � � � ��� �� � � � � � � � � �
� � � � � � � � � �� �� �

3 2 4 6
2 32 1 2 3(2 ) 12(2 )

dp dp dp dp
dx dx dx dx

��� � � � � � � �� � � � � � � ��� � � � � � � �
� � � � � � � ���

(24)

38
455(2 )

dp
dx

��� �� � � �� �
� � ��

�

The corresponding force on the plate y = –1 is –� . This means that there is an equal and opposite drag ±� per
unit area on the plates y = ±1, which resists the fluid motion.

4.1.3 Volume Flow Rate and Average Velocity

The volume flow rate for the flow of a third grade fluid is given by

Q(y) = 2Uh 
3 5

1 2

0

1 1 3
( )d (2 ) (2 )

3 5 7
dp dp dp

u y y Uh
dx dx dx

�� � � � �� � � � � �� � � � �
� � � ���

�

7 9
3 412 55

(2 ) (2 )
9 11

dp dp
dx dx

��� � � �� � � � � �� � � �
� � � � ��

�

(25)

Knowing the volume flow rate from equation (25), the average fluid velocity u– (y) is obtained in the form

3 5
21 1 3

( ) (2 ) (2 )
2 3 5 7
Q dp dp dp

u y U
h dx dx dx

�� � � � �� � � � � � �� � � � �
� � � ���

7 9
3 412 55

(2 ) (2 )
9 11

dp dp
dx dx

��� � � �� � � � � �� � � �
� � � � ��

�

(26)

4.2 Oldroyd Six Constant Fluid

4.2.1 Fluid Velocity

Next, introducing equation (15) into equation (14) yields
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� �

� �

1 1 1 1 1
0 0 0 0

1

12
1 0

( 1) ( 1)( 1)( 1)

( 1)( )

k jk
k k

k j m k m j
k k j m

k
k

j k j
k j

k a y j m k m j a a a y

dp dp
j k j a a y y

dx dx

�� �

� � � � � �
� � � �

� �

� �
� �

� � � � � � � �

� � � ��� � � �� � � �
� � � �

� � � �

��
(27)

As before, equating coefficients of y0 and y1, we obtain a1 = 0 and 1
2 2

dp
dxa �  and the recursive relation

ak+1 = 
1

1
1 1 1

1 0

( 1)( 1)( 1)
1

k jk

j m k j m
j m

j m k j m a a a
k

��

� � � � �
� �

�
� � � � � �

� � �

1
2

1
0

( 1) ( )
1

k

j k j
j

dp
j k j a a

k dx

�

� �
�

�
� � �

� � (28)

where k = 2, 3, … and the first few coefficients determined from this relation are given by

a3 = a5 = a7 = a9 = … = 0 (29)

a4 =
3 5

1 2 1 2 1 2
6

( )(3 2 )
4 6

dp dp
a

dx dx

� � � � �� � � �� � � �� � �� � � �
� � � �

(30)

a8 =
7

1 2 1 2 1 2( )(2 )(6 5 )
8

dp

dx

� � � � � � � � � � �� �� �
� �

(31)

a10 =
9

1 2
1 2 1 2 1 2

( )
{(2 )(3 2 )(6 5 )

10
dp

dx

� � � � � � � � � � � � � �� �
� �

+ (�1 – �2)(3�1 – 2�2)(6�1 – 2�2) + �1(�1 – �2)
2} (32)

Hence, substituting equations (29)-(32) into equation (15) we obtain

u(y) =
� � � �2 43

1 2 1 2 1 2

1 1
( ) ( )(3 2 )

2 4

y ydp dp

dx dx

� �� � � �� � � � � � �� � � �� � � �
� � � �

� � � �6 85 7

1 2 1 2 1 2

1 1
( )(2 )(6 5 )

6 8

y ydp dp

dx dx

� �� � � �� � � � � � � � � � �� � � �
� � � �

+ (�1 – �2){(2�1 – �2)(3�1 – 2�2)(6�1 – 5�2) + (�1 – �2)(3�1 – 2�2) (33)

× (6�1 – 2�2) + �1(�1 – �2)
2}

9 10 1
10

dp y

dx

�� � �� �
� �

�

We notice that for �1 = �2 this solution coincides with the corresponding solution for the flow of a Newtonian
fluid [13].

4.2.2 Resistance to the Flow

In this case the resistance to the flow is found by the dimensionless relationship
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Sxy = 

2

1

2

2

1

1

du
dydu

dy du
dy

� �� �� �� � � �� �� �� �
� �� �

� � � �� �� � � �� �
� �� �

(34)

which in view of equation (33) yields

Sxy =
2

2
1 2 1 2 1 21 ( ) ( )(3 2 )

dp dp
y y

dx dx

� ��� � � �� � � �� � � �� � � ��� � � �
�� � � ����

4 6
4 6

1 2 1 2 1 2( ) (2 )(6 5 )
dp dp

y y
dx dx

� � � �� � � �� � � �� � � �� � � �
� � � �

+ (�1 – �2){(2�1 – �2)(3�1 – 2�2)(6�1 – 5�2) + (�1 – �2)

(3�1 – 2�2) × (6�1 – 2�2) + �1(�1 – �2)
2}

8
8dp

y
dx

���� � �� �� �
�� � ���

�

2 2
2 2

1 1 2 1 2 1 21 1 ( ) ( )(3 2 )
dp dp

y y
dx dx

� ��� � � ��� � � � � �� � � �� � � ��� � � �
� � � � ����

4 6
4 6

1 2 1 2 1 2( ) (2 )(6 5 )
dp dp

y y
dx dx

� � � �� � � �� � � �� � � �� � � �
� � � �

(35)

+ (�1 – �2){(2�1 – �2)(3�1 – 2�2)(6�1 – 5�2) + (�1 – �2)

(3�1 – 2�2) × (6�1 – 2�2) + �1(�1 – �2)
2}

28
8dp

y
dx

���� � �� �� � �� � �� ��

�

2 2
2 2

2 1 2 1 2 1 21 1 ( ) ( )(3 2 )
dp dp

y y
dx dx

� ��� � � ��� � � � � � � � � � � � � ��� � � �
� � � � ����

4 6
4 6

1 2 1 2 1 2( ) (2 )(6 5 )
dp dp

y y
dx dx

� � � �� � � �� � � �� � � �� � � �
� � � �

+ (�1 – �2){(2�1 – �2)(3�1 – 2�2)(6�1 – 5�2) + (�1 – �2)

(3�1 – 2�2) × (6�1 – 2�2) + �1(�1 – �2)
2}

128
8dp

y
dx

�
���� � �� �� � �� � �� ��

�

Thus the drag on the plates y = ± 1, which resists the fluid motion, is ±�� = ± Sxy(y = 1) and is given by

2

1 2 1 2 1 21 ( ) ( )(3 2 )
dp dp

dx dx

� ��� � � ��� � � � �� � � �� � � ��� � � �
�� � � ����
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4 6

1 2 1 2 1 2( ) (2 )(6 5 )
dp dp

dx dx
� � � �� � � �� � � �� � � �� � � �
� � � �

+ (�1 – �2){(2�1 – �2)(3�1 – 2�2)(6�1 – 5�2) + (�1 – �2)

(3�1 – 2�2) × (6�1 – 2�2) + �1(�1 – �2)
2}

8
dp

dx

���� � �� �� �
�� � ���

�

2 2

1 1 2 1 2 1 21 1 ( ) ( )(3 2 )
dp dp

dx dx

� ��� � � ��� � � � � �� � � � � � � ��� � � �
� � � � ����

4 6

1 2 1 2 1 2( ) (2 )(6 5 )
dp dp

dx dx
� � � �� � � �� � � �� � � �� � � �
� � � �

(36)

+ (�1 – �2){(2�1 – �2)(3�1 – 2�2)(6�1 – 5�2) + (�1 – �2)

(3�1 – 2�2) × (6�1 – 2�2) + �1(�1 – �2)
2}

28
dp

dx

���� � �� �� � �� � �� ��

�

2 2

2 1 2 1 2 1 21 1 ( ) ( )(3 2 )
dp dp

dx dx

� ��� � � ��� � � � � �� � � � � � � ��� � � �
� � � � ����

4 6

1 2 1 2 1 2( ) (2 )(6 5 )
dp dp

dx dx
� � � �� � � �� � � �� � � �� � � �
� � � �

+ (�1 – �2){(2�1 – �2)(3�1 – 2�2)(6�1 – 5�2) + (�1 – �2)

(3�1 – 2�2) × (6�1 – 2�2) + �1(�1 – �2)
2

128
dp

dx

�
���� � �� �� � �� � �� ��

�

4.2.3 Volume Flow Rate and Average Velocity

In the case of an Oldroyd six constant fluid, the volume flow rate is given by

Q = 2Uh 
3
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and the average fluid velocity is given by
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5. RESULTS AND DISCUSSION

In this section we study the effect of the variation of the physical parameters on the fluid velocity, the resistance
to the flow and the volume flow rate. For this purpose we present tables and figures of the analytical expressions
derived in sections 4 for various values of the governing parameters.

5.1 Third Grade Fluid

Figures 2(a) and (b) show the fluid velocity field u(y) given in equation (20) for various values of the non-
Newtonian parameter � and of the pressure gradient dp/dx, respectively, when one of these is held fixed. From
these figures we observe that the magnitude of the fluid velocity distribution increases with increasing values of
the non-Newtonian parameter or the pressure drop. Therefore, we may conclude that the larger the value of the
parameters � or �dp/dx� then the larger is the magnitude of the fluid velocity.

Figure 2: Effect of the Variation of (a)  When dp/dx = –1, and (b) dp/dx When  = 1, on the
Fluid Velocity Given by the Expression (20)

Figures 3(a) and (b) show the volume flow rate (25) as a function of � when dp/dx =–1.0, –1.1, –1.2 and as
a function of dp/dx when � = 1.0. 1.4, 1.8, 2.0, respectively. We observe from figure 3(a) that the flow rate
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Finally, we study the variation of the resistance to the flow of a third grade fluid with the variation of the
non-Newtonian parameter � and the pressure gradient. For this purpose we tabulate in table 1 the values of �
given in equation (24) for various values of � � {0.0, 0.5, 1.0, 1.5, 2.0, 2.5} and of the pressure gradient dp/dx
� {–0.3, –0.4, –0.5}. From this table we observe that for a particular value of � the value of � increases with
increasing values of dp/dx. Similarly for any particular value of the parameter dp/dx, the magnitude of � increases
with increasing values of the parameter �. Therefore we may conclude that the resistance to the flow of a third
grade fluid increases for increasing values of the non-Newtonian parameter � or the pressure drop �dp/dx�.

Table 1

Effect of  and 
dp

dx
on the Resistance to the Flow, Equation (24)

�
dp

dx
 = –0.3

dp

dx
 = –0.4

dp

dx
= –0.5

0.0 –0.3000 –0.4000 –0.5000

0.5 –0.3004 –0.4007 –0.5947

1.0 –0.3115 –0.6737 –9.6901

1.5 –0.3836 –5.3531 –1.0985 × 103

2.0 –0.7096 –118.6044 –4.8691 × 104

2.5 –2.3801 –2.0348 × 103 –9.575 × 105

increases with decreasing values of dp/dx and for a particular value of dp/dx the flow rate increases as the value
of � increases. A similar observation may be made from the result presented in figure 3(b). Therefore, we
conclude that the volume flow rate of a third grade fluid increases with increasing values of � or �dp/dx�.

Figure 3: Effect of Variation of  and dp/dx on the Volume Flow Rate Given by Equation (25)

5.2 Oldroyd Six Constant Fluid

Since expression (33) for the fluid velocity involves terms containing factors of the form �1 –�2, 3�1 –2�2, etc.,
we therefore present in figures 4 and 5 results for a wide range of values of �1 and �2.
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Figure 4 shows the fluid velocity (33) for dp/dx = –1, �1 = 1 and for various values of �2 chosen in the
intervals (0, 1), (1, 2), (2, 3) and (3, 4). From this figure we observe that the magnitude of the fluid velocity
decreases with increasing values of �2 � (0, 2) and it increases with increasing values of �2 when this choice is
made in (1, 2), (2, 3) or (3, 4). Therefore we conclude that the magnitude of the fluid velocity decreases with
increasing values of �2 when it is smaller than the fixed value of �1. However, this trend in the variation of the
velocity magnitude becomes exactly the opposite when the value of �2 is larger than the fixed value of �1.

Figure 4: Effect of Variation of 
2
 on the Fluid Velocity, given in Equation (33), when 

1
 and dp/dx are Fixed

Figure 5: Effect of Variation of 
1
 on the Fluid Velocity, given in Equation (33), when 

2
 and dp/dx are Fixed

Figure 5 shows the fluid velocity magnitude given in equation (33) for dp/dx = –1, �2 = 1 and various values
of �1 � (0, 1), (1, 2), (2, 3) and (3, 4). From this figure we see that the magnitude of the fluid velocity decreases
with increasing values of �1 � (0, 1) and increases with increasing values of �1 � (1, 2), (2, 3) or (3, 4). Therefore,
we again conclude that the magnitude of the fluid velocity in equation (33) decreases when the value of �1 is
smaller than the fixed value of �2. Otherwise the velocity magnitude increases with increasing value of �1.
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In view of the conclusion made in case of the fluid velocity variation we present in figures 7(a) the volume
flow rate (37) as a function of the pressure gradient dp/dx for �1 = 1 and �2 � {2.0, 2.2, 2.4, 2.6}. Also we show
in figure 7(b), the case when �2 = 1 and �1 � {2.0, 2.2, 2.4, 2.6}. From figure 7(a) we observe that the flow rate
increases as the value of �1 increases. Moreover, the flow rate increases with decreasing value of dp/dx. A
similar behavior of the flow rate is observed in figure 7(b). Thus we conclude that the volume flow rate of an
Oldroyd six constant fluid increases with increasing value of �1 or �2, one of these being fixed, and decreasing
the value of the pressure gradient dp/dx.

Hence, the overall conclusion remains that the larger the value of �1 or �2, with one of them being fixed along
with dp/dx, then the larger the magnitude of the fluid velocity. The only exception to this conclusion occurs
when �1 < �2 or �2 < �1, in which case the velocity magnitude decreases with increasing values of �1 or �2.

Figure 6 shows the fluid velocity (33) as a function of y for various values of dp/dx � {–0.2,–0.4, –0.6, –0.8},
when �1 and �2 are fixed at 1 and 2, respectively. From this figure we observe that the fluid velocity is smallest for
dp/dx = –0.2 and it increases when the value of dp/dx decreases down to –0.8. Therefore, we conclude that when
�1 and �2 are fixed, the magnitude of the fluid velocity increases with increasing value of the pressure drop.

Figure 7: Effect of Variation of (a) dp/dx and 
2
 when 

1
 is Fixed, and (b) dp/dx and 1 when 

2
 is Fixed,

on the Volume Flow Rate Given by Equation (37).

Figure 6: Effect of the Variation of Pressure Gradient dp/dx on the Fluid Velocity, given in Equation (33),
when 

1
 and 

2
 are Fixed
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6. CONCLUSIONS

The flow of a third grade and an Oldroyd six constant fluid between two stationary parallel plates, generated by
a constant pressure gradient, is studied. The analytical solutions for the fluid velocity, the resistance to the fluid
flow, the volume flow rate and the average fluid velocity are derived by using the Taylor series method. Figures
and tables are presented to illustrate the effect of dp/dx, �, �1 and �2 on these analytical solutions. It is found that
(i) for a third grade fluid the fluid velocity and other flow variables increase with increasing values of
�dp/dx� and of the parameter �. (ii) For the Oldroyd six constant model the fluid velocity increases with increasing
value of �2, when �1(< �2) and dp/dx are fixed. Also the same conclusion holds for the fluid velocity magnitude,
when �2(< �1) and dp/dx are fixed. The resistance to flow and the volume flow rate increases on increasing
�dp/dx� and �1 or �2, one of these being fixed.
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