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Existence of Periodic Solution on a Class of Discrete System
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Abstract: Using trigonometric series theory and the contraction mapping principle, we studied the linear
inhomogeneous difference systems Eq.(1) and the quasi-linear delay difference systems Eq.(10) in this paper.
Some sufficient and necessary conditions on the existence of periodic solutions of Eq.(1) and a new sufficient
condition on the existence of unique periodic solution of Eq.(10) are obtained. An example is provided to illustrate
the theoretical development.
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1. INTRODUCTION

In the last two decades, the existence of periodic solutions of differential and difference equations has been
extensively studied (see, for example, [1-4]). Hatvani and Krisztin in [5] studied the existence of periodic
solution of linear inhomogeneous differential equation

( ) [ ( )] ( ) ( )x t dE s x t s f t
��

��
� � ��� (A)

where E : R � Cn×n is left continuous and of bounded total variation on R, i.e., ( ) TdE s f C
�

��
� � � �� �� � ��  and

x � BC(R; Cn) := {� � C(R; Cn) : � is bounded on R}. They [5] also gave sufficient and necessary conditions on
the existence of periodic solutions for Eq. (A).

Ma et al in [6] studied the uniqueness of periodic solution of quasi-linear functional differential equation

( ) [ ( )] ( ) ( ( ))
R

x t dE s x t s G t x t� � � � � ��� (B)

where x(t) � Rn, E : R � Rn2 is left continuous and of bounded total variation on R, i.e., ( )dE s
�

��
� � � �� ��� G :

R × BC(R; Rn) � Rn is continuous, T > 0, G is T-periodic with respect to its first variable t, and G maps bounded
set to bounded set. Sufficient and necessary conditions on the uniqueness of periodic solutions for Eq. (B) were
given in [6]. Although many papers have studied the uniqueness of periodic solution of quasi-linear functional
differential equation, only a few papers focused on the uniqueness of periodic solution of certain discrete
system. However, in numerical simulations and practical implementations of continuous-time systems,
discretization is necessary. We note that in practice, the dynamics of difference systems may be quite different
from those of differential systems. Therefore, the dynamics of discrete systems are of both theoretical and
practical importance.

In this paper, using trigonometric series theory and the contraction mapping principle, we’ll study the linear
inhomogeneous difference systems and quasi-linear delay difference systems, establish some sufficient and
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necessary conditions on the existence of periodic solutions for the linear inhomogeneous difference systems, at
same time, give a new sufficient condition on the existence of periodic solutions for the quasi-linear delay
difference systems. Furthermore, the main results obtained in [5, 6] are extended and improved to difference
systems.

2. MAIN RESULTS

In this section, at first, we’ll consider the linear inhomogeneous difference periodic systems

( 1) ( ) ( ) ( )
j

x n A j x n j f n
��

���

� � � �� (1)

where A(j) � Cn×n, x(n) � Cn, f � lN = {{�(n)}� �(n + N) = �(n)}, and N � 1 is a positive integer.

Lemma 1: Suppose that f(n) � lN, then f(n) can be uniquely expressed as f(n) = 
1

0

ˆ ( ) k

N
n

k

f k e
�

�

�
� , where �f(k) = 1
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1
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N
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k N
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f n e
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�� �

�

�� �� , and k � � : = {0, 1, 2, … , N – 1}.

Proof: Assume that
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�

�

� �� (2)

multiplying Eq.(2) by ie�� �  and summing from 0 to N – 1 gives
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1
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This implies that f(n) can be uniquely expressed as f(n) = 
1

0

ˆ( ) k

N
n

k

f k e
�

�

�

��

Lemma 2. Assume that f(n) � lN and f(n) can be expressed as f(n) =
1

0

ˆ ( ) k

N
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k

f k e
�

�

�
� , then
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Proof: Since f(n) = 
1

0

ˆ( ) k

N
n

k

f k e
�

�

�
� , we have
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The proof of Lemma 2 is completed.

Theorem 1: Eq.(1) has an unique N-periodic solution if and only if eµk are not roots of the characteristic
equation

det �(µ) = 0

where 2 {0 1 2 1}k
k N

i k N�� � � ��� � � ����� � , and ( ) ( ) j

j

I A j
��

�

���

� � � � � � ��
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Proof: Assume that Eq.(1) has an unique N-periodic solution x(n). Since x(n + N) = x(n), f(n + N) = f(n), by

Lemma 1, x(n) and f(n) can be uniquely expressed as 
1

0
ˆ( ) ( ) k

N
n

k
x n x k e

�
�

�
� � �  and f(n) = 

1

0

ˆ( ) k
N

n

k
f k e

�
�

�
� �  respectively.

Multiplying Eq.(1) by e–µkn and summing from 0 to N – 1, we obtain

1 1 1

0 0 0

( 1) ( ) ( ) ( )k k k

N N N
n n n

n n j n

x n e A j x n j e f n e
� � �� �

�� �� ��

� � ��� �

� � � � �� � � �

i.e.,

1 1
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ˆ( 1) ( ) ( ) ( )k k k k
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n j n

x n e e A j x n j e e Nf k
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Hence

ˆˆ( ) ( ) ( )k k j
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e I A j e Nx k Nf k
��
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� �
� � �� �� �

� �
�

that is

ˆˆ( ) ( ) ( )ke x k f k�� � � (3)

Since the linear equation

�(eµk )y = �f(k) (4)

has solution, and if we assume that Eq.(4) has an unique solution, then

det �(eµk ) � 0. (5)

In fact, if Eq.(4) has another solution �y(k), it is immediate that y(n) = 
1

0
ˆ( ) k

N
n

k
y k e

�
�

�
�  satisfies

y(n + 1) = 
1

0

ˆ( ) ( ) ( ) k

N
n

j k

A j y n j f k e
�� �

�

��� �

� � �� � (6)

In addition, x(n) =
1

0
ˆ( ) k

N
n

k
x k e

�
�

�
�  also satisfies the following equation

1

0

ˆ( 1) ( ) ( ) ( ) k

N
n

j k

x n A j x n j f k e
�� �

�

��� �

� � � � �� � (7)

Subtracting Eq.(6) from Eq.(7) gives

g(n + 1) = ( ) ( )
j

A j g n j
��

���

�� (8)
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where g(n) = x(n) – y(n). Since Eq.(1) has an unique solution, then the corresponding homogeneous linear

equation Eq. (8) only has a null solution. Therefore, det ( ) 0ke�� � , that is, ke� are not roots of the characteristic

equation det �(µ) = 0.

On the other hand, assume that det �(eµk ) � 0 for each k � �, then Eq.(4) has an unique solution for each
k � �. That is, for each k � �, Eq.(4) uniquely defines a c(k) such that

�( ke� )c(k) = �f(k). (9)

It is obvious that z(n) = 
1

0

N

k

�

�
� c(k)eµkn satisfy Eq.(7). Let �(n) =

1

0
( ) k

N
n

k
k e

�
�

�
� �  to be another solution of Eq.(7), then

�(n) – z(n) is a solution of the corresponding homogeneous linear equation Eq.(8). Since det �(eµk ) � 0, then
Eq. (8) has an unique null solution. Therefore, �(n) = z(n), that is, z(n) is the unique N-periodic solution of

Eq. (8). By Lemma 1, it is easy to know that Eq.(7) is equivalent to Eq.(1). Hence, z(n) = 
1

0
( ) k

N
n

k
c k e

�
�

�
�  is the

unique N-periodic solution of Eq.(1). This completes the proof of Theorem 1.

Let Cn* be the space of n-dimension row vector. � = {0, 1, 2, … , N – 1}, A(K) = {a ��Cn* �a�(eµk) = 0, k � �}
and lN(E) = {f � lN�a �f(k) = 0 for all a � A(K), k � �}. We’ll prove a more general result giving a necessary and
sufficient condition for the existence of N-periodic solutions in the general case when det�(eµk ) = 0 for some
integers. That is,

Theorem 2: Eq.(1) has a N-periodic solution if and only if f(n) � lN(E) .

Proof: First, assume that x(n) is a N-periodic solution of Eq.(1). Multiplying Eq.(1) by e–µkn and summing
from 0 to N – 1, we obtain

ˆˆ( ) ( ) ( )ke x k f k�� � �

that is, the linear equation Eq. (4) has solutions.

From elementary linear algebra, Eq.(4) has solutions if and only if ˆ ( ) 0af k �  for all a � A(K) such that

a�(µk) = 0. Thus, the existence of a N-periodic solution of Eq.(1) implies f(n) � lN(E).

On the other hand, assume that f(n) � lN(E), then Eq.(4) has solutions. Choose c(k) such that

ˆ( ) ( ) ( )ke c k f k�� � �

it is obvious that z(n) = 
1

0
( ) k

N
n

k
c k e

�
�

�
�  is the N-periodic solution of

1

0

ˆ( 1) ( ) ( ) ( ) k

N
n

j k

x n A j x n j f k e
�� �

�

��� �

� � � � �� �

By Lemma 1, Eq.(1) and Eq.(7) have same solutions, hence 
1

0
( ) k

N
n

k
c k e

�
�

�
�  is N-periodic solution of Eq.(1).

Therefore, if f(n) � lN(E), then Eq.(1) has at least one N-periodic solution. The proof is completed.
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In the rest of this section, we consider the quasi-linear delay difference equation

( 1) ( ) ( ) ( ( ))
j

x n A j x n j G n x n
��

���

� � � � � � �� (10)

where A(j) � Cn×n, x(n) � Cn, G is N-periodic with respect to its first variable n, and G maps bounded set to
bounded set. Let � � � denote any norm of Cn, for any matrix D � Cn×n, �D � denotes operator norm induced by the
norm in Cn. From Theorem 1, we know that Eq.(1) has an unique N-periodic solution if and only if det�(eµk) � 0
for all k � �. At the same time, x(n) can be given by

x(n) = 
1

1

0

ˆ( ) ( )k k

N
n

k

e f k e
�

� ��

�

� �� (11)

Therefore, we have the following theorem on the existence of unique N-periodic solution of Eq.(10).

Theorem 3: Assume that det �(eµk ) � 0, for each k � �, G(n, �) satisfies Lipschitz condition for � � lN with
Lipschitz constant L satisfying

1 22 1

0

( ) 1k

N

k

L e
�

��

�

� � �� (12)

Then Eq.(10) has an unique N-periodic solution.

Before the proof of the theorem, we have a previous lemma: If we consider the operator E : lN � lN defined
by

Ef(n) = 
1

1

0

ˆ( ) ( )k k

N
n

k

e f k e
�

� ��

�

� �� (13)

Then it is easy to know Ef(n) is the unique N-periodic solution of Eq.(1).

Lemma 3: Assume that E : lN � lN is the operator defined by Eq.(13), then E is a linear operator, and

1
21 21

0

( )k

N

k

E e
�

��

�

� �
� � �� �
� �
�

where �E � is the norm of the operator E.

Proof: It is obvious that the operator E is a linear operator.

By Lemma 2 and Cauchy inequality, we have

1 1 22 1

0 0

1 ˆ( ) ( ) ( )k

N N

n k

Ef n e f k
N

� �
��

� �

� �� �

1 12 21

0 0

ˆ( ) ( )k

N N

k k

e f k
� �� � � �

��� � � �
� � � �
� � � �� �� � � �
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1 1 22 1

0 0

1
( ) ( )k

N N

n k

f n e
N
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��� � � �

� � � �
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Hence

1 1 1 22 2 1

0 0 0

( ) ( ) ( )k

N N N

n n k

Ef n f n e
� � �� � � �

��� � � �
� � � �
� � � �� � �� � � �
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Nf f

n

Ef n
Ef

E
f

f n

�� �
� �
� �
� ��� �

�� �� �
� �
� �
� ��� �

� � �
�

�

then �E�

1
21 21

0

( )k

N

k

e
�� �

��� �
� �
� ��� �

� � ��

Here, �Ef � denotes the norm of the function Ef.

The proof of Theorem 3: Define the operator T : lN � lN by

(Tf)(n) = G(n, Ef(n + �)). (14)

By Theorem 1, f � lN is the fixed point of T if and only if Ef(n) is a N-periodic solution of Eq.(1). So, it
suffices to prove that T has an unique fixed point in lN.

For f1, f2 � lN,

�Tf1(n) – Tf2(n)� = �G(n,Ef1(n + �)) – G(n, Ef2(n + �))�
� L�Ef1 – Ef2�

1
21 21

1 2
0

( )k

N
u

k

L e f f
�� �

�� �
� �
� ��� �

� � � ��

then, by Inequality (12), T : lN � lN is a contraction mapping. By contraction mapping principle, T has an unique
fixed point f* in lN. Hence, Ef* is the unique N-periodic solution of Eq.(10). This concludes the proof of Theorem 3.

3. EXAMPLE

In this section, we provide an example to illustrate the effectiveness of main result in this paper.

Example 1: Consider the discrete system given in Eq. (1) with

1 2 0
( ) ( ) sin

0 1 2

j

j
A j f n n

� �
� �
� �
� �
� �

�
� � � ��

�

Then

( 1) ( ) ( ) ( )
j

x n A j x n j f n
��

���

� � � ��

has at least one 2-periodic solution.
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Proof: Since f(n) = sin n � � lN, N = 2, µ0 = 0, µ1 = �i. So eµ0 = 1, eµ1 = –1. It is straightforward to check that
1 and –1 are not roots of the characteristic equation

det �(µ) = 0

where �(µ) = µI –
j

��

���
� A(j)µ–j . Therefore, by Theorem 1, the difference system given in this example has at least

one 2-periodic solution.
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