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Exponential Stability for a Kind of Delayed Neural Networks with
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Abstract: Without assumption of the boundedness of the activation functions, using Lyapunov-Krasovskii
functional, relationships among the state vectors of the neural networks together with homeomorphism map, a
linear matrix inequality (LMI) approach is developed to derive a new delay-dependent sufficient condition for
(i) existence (ii) uniqueness and (iii) global exponential stability of equilibrium point, of a class of time-varying
delay neural networks. Examples are provided to demonstrate the reduced conservativeness and effectiveness of
the proposed result.
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1. INTRODUCTION

Neural networks have aroused a tremendous surge of investigation in these years[1-6, 8-31]. Due the finite
switching speed of neurons and amplifiers, time delays inevitably exist in biological and artificial neural networks.
A time delay in the response of a neuron can influence the stability of a network and deteriorate the dynamical
performance creating oscillatory and unstable characteristics. One of the most investigated problems for the
time delay neural networks (DNNs) is that of the existence, uniqueness, and global exponential or asymptotic
stability of the equilibrium of DNNs.

To embed and solve many problems in applications of neural networks to parallel computations, signal
processing and other problems involving the optimization, the dynamic neural networks have to be designed to
have only a unique equilibrium point which is global asymptotic stable or global exponential stable to avoid the
risk of spurious responses or the problem of local minima. In fact, earlier applications of neural networks of
optimization problems have suffered from the existence of a complicated set of equilibria [2]. Thus, the global
exponential stability of a unique equilibrium for DNNs is of great importance from a theoretical and an application
point of view in several fields. Thus, the primary purpose in this paper is to establish a new sufficient condition
ensuring that a class of neural networks with time-varying delay has a unique equilibrium which is global
exponentially stable.

Some existing results on existence, uniqueness and global asymptotic stability or global exponential stability
of the equilibrium concern the case where the activation functions are all bounded and strictly increasing. These
assumptions make the results inapplicable to some important engineering problems. When neural networks are
designed for solving optimization problems in the presence of constraints (linear, quadratic, or more general
programming problems), unbounded activations modelled by diode-like exponential-type functions are needed
to impose constraints satisfaction. Different from the bounded case where the existence of an equilibrium point
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is always guaranteed [3], for unbounded activations, it may happen that there are no equilibrium points [4].
When considering the widely employed piecewise linear neural networks [5], infinite intervals with zero slope
are present in activations, making it of interest to drop the assumptions of strict increase and continuous first
derivative for the activation. Forti and Tesi [4] studied the global asymptotic stability for neural networks with
unbounded monotonic activation function. In many electronic circuits, amplifiers, which have neither
monotonically increasing nor continuously differentiable input-output functions, are frequently adopted.
Therefore, it seems that for some purposes, non-monotonic(and not necessarily smooth) functions might be
better candidates for neuron activation in designing and implementing an artificial neural network. Xu and Lam
[6] obtained a new delay-independent exponential stability condition for neural networks with time-varying
delays. But they assumed the activation functions are bounded and globally Lipschtz continuous. The stability
criterion in [6] requires that the derivative of the delay function � (t) is less than 1, which is very restrictive.

In this paper, we develop a new delay-dependent exponential stability condition for a class of neural networks
with time-varying delay by utilizing Lyapunov functional. We only assume that the activation functions are
globally Lipschitz continuous. Under this assumption, both the existence of a unique equilibrium point and the
global exponential stability of a given delayed neural networks are proved. The derived condition is expressed
in term of a linear matrix inequality (LMI), which can be checked numerically very efficiently by resorting to
recently developed standard algorithms such as interior-point methods, and no tuning of parameters will be
involved [7]. Furthermore, our delay-dependent stability criterion removes the unreasonable restriction that the
derivative of the delay function � (t) is less than 1. Examples are provided to demonstrate the reduced conservatism
and effectiveness of the proposed condition.

Notation: Through this paper, for real symmetric matrices X and Y, the notation X ��� Y (or X > Y, respectively)
means that the matrix X – Y is positive semi-definite (or positive definite, respectively). The superscript T represents
the transpose. The notation � � � refers to the Euclidean vector norm. Rn denotes n-dimensional Euclidean space.
Matrices, if their dimensions are not explicitly stated, are assumed to have compatible dimensions. In symmetric
block matrices or long matrix expressions, we use * to represent a term that is induced by symmetry.

2. PRELIMINARIES

The neural networks with time-varying delay can be described by the following delay differential equation

�x (t) = –Ax(t) +Wg(x(t)) +W1g (x(t – � (t))) + u� (1)

x(t) = �(t)� t � [–2h� 0]�

where x(t) = [x1(t)� … � xn(t)]
T is the neuron state vector, g(x(t)) = [g1(x1(t))� … � gn(xn(t))]

T is the activation
function vector, and u = [u1� … � un]

T is a constant external input vector. In the neural networks (1), matrices A
= diag(a1� a2� … � an), where the scalar ai > 0 is the rate with which the ith unit will reset its potential to the
resting state in isolation when disconnected from the network and external inputs at time t. Matrices W and W1

are the connection weighting matrix and the delayed weighting matrix, respectively. � (t) is a continuous function
describing the time-varying transmission delays in the neural networks and satisfies 0 � � (t) � h� �� (t) � µ for all
t � 0, with h and µ being two nonnegative constants. The initial condition function �(t) : [–2h� 0] � Rn is
assumed to be a continuous function. Throughout this paper, it is assumed that each neuron activation function
gj satisfies the following assumption:

Assumption 1:

�gj(s) – gj(t)� � kj �s – t�� �s� t � R� j = 1� … � n. (2)
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Denote K = diag(k1� … � kn), obviously, K � 0.

Definition 1: The vector x* = [x*
1 � … � x*

n]
T is said to be an equilibrium point of the DNN in Eqn (1) if –Ax*

+Wg(x*) +W1g(x*) + u = 0.

Definition 2: DNN in Eqn (1) is said to be exponentially stable if there is scalars � > 0 and � > 0 such that

�x(t)� � �e–�t 
2 0
sup
h� ���

 �x(µ)�.

Definition 3: A map H : Rn � Rn is a homeomorphism of Rn onto itself, if H � C0, H is one-to-one, H is onto
and the inverse map H–1 � C0, where C0 represents the set of all continuous functions from Rn to Rn.

Since each neuron activation function gi may not be bounded, the equilibrium point of the DNN in Eqn (1)
may not exist. In order to analyze the global exponential stability of the DNN in Eqn (1), we will have to first
prove the existence and uniqueness of the equilibrium point using the following lemma.

Lemma 1: If H(x) � C0 and satisfies the following conditions.

1. H(x) is injective on Rn�

2. lim ( )
x

H x
���

� �� �

then H(x) is a homeomorphism of Rn [8].

3. MAIN RESULT

Theorem 1: For given scalars h > 0 and µ � 0, the delayed neural networks in (1) satisfying Assumption 1
has the unique equilibrium point which is globally exponentially stable for any delay 0 < � (t) � h if there exist
matrices D > 0� P > 0� Q > 0� R > 0� Pk� k = 1� 2� … � 6� Ti� i = 1� 2� … � 5 and diagonal matrices Sj > 0 and Yj >
0� j = 1� 2 such that the following LMI holds:

11 12 13 1 1 4 4 1 5 5 6 1

22 23 2 2 1 4 2 5 2

33 3 1 4 3 5 6 3

2 4 1 4 1 5 1 6 4

5 6 5

0
(1 ) 2

2

T T T T T T T T

T T

T T T T T T

T T T T

T

D
h

PW A P T P P A P T A P T

S P W T P T T

P W W P P W P W P T

Q Y P W P W P W P T

hD P P T

� �� � � � � � � � � �
� �� � � � � � � �� �
� �� � � � � � �

� � �� �
� � � � �� � � � � �� �

� �� � � � � � �
� �
� � � � � �� �� �

(3)

where

�11 = R + KY1K + 2KS1 – 2P1A + 2T1�
�12 = –ATPT

2 – T1 + TT
2 �

�13 = S1 + P1W – ATPT
3 + TT

3 �
�22 = –(1 – µ)R + KY2K + 2KS2 – 2T2�
�23 = P2W – TT

3 �

�33 = Q – Y1 + 2P3W.
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Proof: Denote

H(x) = –Ax +Wg(x) +W1g(x) + u. (4)

In the rest of this Section, we prove this new sufficient condition in Theorem 1 which guarantees the existence,
uniqueness and global exponential stability of the equilibrium point of the DNN given in Eqn (1) by three steps.

1. First we prove that H(x) is an injective map on Rn.

2. We then prove that �H(x)� � +� as �x� � +�.

3. Finally we prove that the unique equilibrium point x* obtained from Steps 1 and 2 is globally exponentially
stable.

Denote �(x� y) = [(x–y)T � (x–y)T � (g(x)–g(y))T � (g(x)–g(y))T � (H(x)–H(y))T � 0]T . Then

�(x� y)T��(x� y)

= (x – y)T [R + KY1K + 2KS1 – 2P1A + 2T1 – 2ATPT
2 – 2T1 + 2TT

2

–(1 – µ)R + KY2K + 2KS2 – 2T2](x – y)

+2(x – y)T [S1 + P1W – ATPT
3 + TT

3 + P1W1 – ATPT
4 + TT

4 + P2W – TT
3 + S2

+P2W1 – TT
4 ](g(x) – g(y)) + 2(x – y)T [P – P1 – ATPT

5 + TT
5 – P2 – TT

5 ](H(x) – H(y)

+(g(x) – g(y))T [Q – Y1 + 2P3W + 2P3W1 + 2WTPT
4 – (1 – µ)Q – Y2 + 2P4W1](g(x)

– g(y)) +2(g(x) – g(y))T [–P3 +WTPT
5 – P4 +WT

1 P
T
5 ](H(x) – H(y))

+(H(x) – H(y))T [hD – 2P5](H(x) – H(y))

= (x – y)T [µR + K(Y1 + Y2)K + 2K(S1 + S2) – 2(P1 + P2)A](x – y)

+2(x – y)T [S1 + S2 – AT (PT
3 + PT

4 )](g(x) – g(y))

+2(x – y)T (P1 + P2)[(H(x) – H(y)) + A(x – y)]

+2(x – y)T [P – P1 – P2 – ATPT
5 ](H(x) – H(y))

+(g(x) – g(y))T [µQ – Y1 – Y2](g(x) – g(y))

+2(g(x) – g(y))T (P3 + P4)[(H(x) – H(y)) + A(x – y)]

+2(g(x) – g(y))T [–P3 – P4](H(x) – H(y))

+2((H(x) – H(y)) + A(x – y))TPT
5 (H(x) – H(y))

+(H(x) – H(y))T [hD – 2P5](H(x) – H(y))

= (x – y)T [µR + K(Y1 + Y2)K + 2K(S1 + S2)](x – y)

+2(x – y)T [S1 + S2](g(x) – g(y)) + 2(x – y)TP(H(x) – H(y))

+(g(x) – g(y))T [µQ – Y1
 – Y2](g(x) – g(y)) + h(H(x) – H(y))TD(H(x) – H(y)). (5)

Step 1: We prove that H(x) is an injective map on Rn by showing that assuming otherwise leads to a
contradiction.

We suppose that vectors x, y exist in Rn such that x � y while H(x) = H(y), then x–y = (x1 –y1� … � xn –yn) �
0, A(x–y) = (W +W1)(g(x)–g(y)) and H(x)–H(y) = 0.

From Inequality (3), we have

�(x, y)T��(x, y) < 0. (6)

On the other hand, from Eqn (5), we have

�(x� y)T��(x� y)
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= (x – y)T [µR + K(Y1 + Y2)K + 2K(S1 + S2)](x – y)

+2(x – y)T [S1 + S2](g(x) – g(y)) + 2(x – y)TP(H(x) – H(y))

+(g(x) – g(y))T [µQ – Y1 – Y2](g(x) – g(y)) + h(H(x) – H(y))TD(H(x) – H(y))

= (x – y)T [µR + K(Y1 + Y2)K + 2K(S1 + S2)](x – y)

+2(x – y)T [S1 + S2](g(x) – g(y))

+(g(x) – g(y))T [µQ – Y1 – Y2](g(x) – g(y)). (7)

Since matrices Si � 0 and Yi � 0� i = 1� 2 are diagonal, from Inequality (2), we have

(x – y)TSi(g(x) – g(y)) � (x – y)TKSi(x – y)� (8)

–(x – y)TSi(g(x) – g(y)) � (x – y)TKSi(x – y)� (9)

(g(x) – g(y))T Yi(g(x) – g(y)) � (x – y)TKYiK(x – y). (10)

Noting that µ � 0� R > 0� and Q > 0 and Inequalities (8)-(10), we have

(x – y)T [µR + K(Y1 + Y2)K + 2K(S1 + S2)](x – y)

+2(x – y)T [S1 + S2](g(x) – g(y))

+(g(x) – g(y))T [µQ – Y1 – Y2](g(x) – g(y))

� 0. (11)

So,

�(x� y)T��(x� y) � 0. (12)

which contradicts Inequality (6), and hence implies that H(x) is an injective map on Rn.

Step 2: We prove that

lim ( )
x

H x
���

� �� .

Since H(x) = –Ax + [W +W1]g(x) + u and u a constant external input vector, H(0) = [W +W1]g(0) + u is a constant
vector. It suffices to show that

lim ( )
x

H x
���

� ���

where 
 
H̃ (x) = H(x) – H(0).

Since �(x� 0) = [xT � xT � (g(x) – g(0))T � (g(x) – g(0))T � 
~
H(x)T � 0]T , from Inequality (3), there exist a small

positive real number a > 0 such that

11 12 13 1 1 4 4 1 5 5 6 1

22 23 2 2 1 4 2 5 2

33 3 1 4 3 5 6 3

2 4 1 4 1 5 1 6 4

5 6 5

( 0)
(1 ) 2

2

T T T T T T T T

T T

T T T T T T
T

T T T T

T

D
h

aI PW A P T P P A P T A P T

S P W T P T T

P W W P P W P W P T
x

Q Y P W P W P W P T

hD P P T

� �� � � � � � � � � � �
� �� � � � � � � �� �
� �� � � � � � �

� � �� �
� � � � �� � � � � �� �

� �� � � � � � �
� �

� � � � � �� �� �

( 0) 0x� � � (13)

87



40 Journal of Mathematical Control Science and Applications (JMCSA)

So

�(x� 0)T��(x� 0) � –axT x. (14)

Noting  H̃(x) = H(x) – H(0) in Eqn (5), we get

�(x� 0)T��(x� 0) = xT [µR + K(Y1 + Y2)K + 2K(S1 + S2)]x

+2xT [S1 + S2](g(x) – g(0)) + 2xTP H̃ (x)

+(g(x) – g(0))T [µQ – Y1 – Y2](g(x) – g(0)) + h H̃(x)TD H̃ (x). (15)

Replacing y with 0 in Inequality (11) yields

xT [µR + K(Y1 + Y2)
K + 2K(S1 + S2)]x

+2xT [S1 + S2](g(x) – g(0))

+(g(x) – g(0))T [µQ – Y1 – Y2](g(x) – g(0))

� 0. (16)

Obviously,

h H̃(x)TD H̃ (x) � 0. (17)

Combing Eqn (5)with Inequalities (16) and (17) gives that

2xTP H̃ (x) � –axT x. (18)

Since P is positive definite matrix, we have

axT x � �2 H̃ (x)TPx�
� 2�max(P)� H̃ (x)���x�� (19)

i.e.,

|| H̃(x)|| ��
max2 ( )

a

P�
��x�. (20)

Therefore,

lim ( )
x

H x
���

� ���

From Steps 1 and 2, the map H(x) is a homeomorphism of Rn. Thus the DNN given in Eqn (1) has a unique
equilibrium point. We denote the unique equilibrium point by x*.

In order to simplify our proof of this theorem, we transform the DNN given in Eqn (1) to a new DNN using
translation, and consider the global exponential stability of the transformed DNN. From Steps 1 and 2, existence
and uniqueness of an equilibrium point x* are guaranteed for the DNN given in Eqn (1). We shift the equilibrium
point x* of the DNN given in Eqn (1) to the origin 0, using the transformation z(t) = x(t) – x*.

We can now put the DNN given in Eqn (1) into the following form:

�z(t) = –Az(t) +Wf(z(t)) +W1f(z(t – � (t))) (21)

z(t) = �(t) – x*� t � [–2h� 0]

where z(t) = [z1(t)� … � zn(t)]
T , f(z(t)) = [f1(z1(t))� … � fn(zn(t))]

T , fj(zj(t)) = gj(zj(t) + x*
j) – gj(x

*
j), j = 1� … � n. Note

that the functions fj(zj(t)) satisfy the following conditions:
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� fj(s)� � kj �s �� fj(0) = 0�  �s � R� j = 1� … � n. (22)

If the vector z* = [z*
1� … � z*

n ]
T is an equilibrium point of the DNN in Eqn (21), then –Az*+Wf(z*)+W1f(z

*) = 0.
Since the above transformation is a translation, the existence, uniqueness and stability properties of the DNN
given in Eqn (1) and the transformed DNN are identical. The origin is the unique equilibrium point of the DNN
in Eqn (21). Hence, the globally exponential stability of unique equilibrium point for the DNN given in Eqn (1)
is equivalent to the globally exponential stability of origin of transformed DNN given in Eqn (21).

By construction, the origin is the unique equilibrium points of the DNN given in Eqn (21). Next, we will
prove the origin is exponential stable.

Step 3: We choose a Lyapunov-Krasovskii functional candidate for this DNN with time-varying delay such
that:

V (zt) = zT (t)Pz(t) + 
( )

[ ( ) ( ) ( ( )) ( ( ))]
t T T

t t
z s Rz s f z s Qf z s ds

��
��

+
0

( ) ( )
t T

h t r
y s Dy s ds dr

� �� � (23)

where y(s) = �z(s)�D > 0� P > 0� Q > 0 and R > 0.

Noting �� (t) � µ and

–zT (t)S1f(z(t)) � zT (t)KS1z(t)�
f(z(t))T Y1f(z(t)) � zT (t)KY1Kz(t)�

–zT (t – � (t))S2f(z(t – � (t))) � zT (t – � (t))KS2z(t – � (t))�
f(z(t – � (t)))T Y2f(z(t – � (t))) � zT (t – � (t))KY2Kz(t – � (t))�

calculating the derivative of V (zt) along the solution of Eqn (21) yields

�V(zt) = 2zT (t)P �z(t) + zT (t)Rz(t) – (1 – �� (t))zT (t – � (t))Rz(t – � (t))
+f(z(t))TQf(z(t)) – (1 – �� (t))f(z(t – � (t)))TQf(z(t – � (t)))

+hy(t)TDy(t) – ( ) ( )
t T

t h
y s Dy s ds

��
� 2zT (t)Py(t) + zT (t)Rz(t) – (1 – µ)zT (t – � (t))Rz(t – � (t))

+f(z(t))TQf(z(t)) – (1 – µ)f(z(t – � (t)))TQf(z(t – � (t)))

+hy(t)TDy(t) – 
( )

( ) ( )
t T

t t
y s Dy s ds

���
+2zT (t)S1f(z(t)) + f(z(t))T Y1f(z(t))

–2zT (t)S1f(z(t)) – f(z(t))T Y1f(z(t))

+2zT (t – � (t))S2f(z(t – � (t))) + f(z(t – � (t)))T Y2f(z(t – � (t)))

–2zT (t – � (t))S2f(z(t – � (t))) – f(z(t – � (t)))T Y2f(z(t – � (t)))
� 2zT (t)Py(t) + zT (t)Rz(t) – (1 – µ)zT (t – � (t))Rz(t – � (t))

+f(z(t))TQf(z(t)) – (1 – µ)f(z(t – � (t)))TQf(z(t – � (t)))

+hy(t)TDy(t) – 
( )

( ) ( )
t T

t t
y s Dy s ds

���
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+2zT (t)S1f(z(t)) + z(t)TKY1Kz(t)

+2zT (t)KS1z(t) – f(z(t))T Y1f(z(t))

+2zT (t – � (t))S2f(z(t – � (t))) + z(t – � (t))TKY2Kz(t – � (t))
+2zT (t – � (t))KS2z(t – � (t)) – f(z(t – � (t)))T Y2f(z(t – � (t)))

1 1 1

2 2 2

1

2

2 0 0

(1 ) 2 0 0

( ) ( )0 0

(1 ) 0

T

R KY K KS S P

R KY K KS S

t tQ Y

Q Y

hD

� �� �
� �� � �� � �� �
� �� � �� � �
� �

� � � � � � �� �
� �� � � �� �

( )
( ) ( )

t T

t t
y s Dy s ds

��
��

1 1 1

2 2 2

1

2

2 0 0

(1 ) 2 0 0

( ) ( )0 0

(1 ) 0

T

R KY K KS S P

R KY K KS S

t tQ Y

Q Y

hD

� �� �
� �� � �� � �� �
� �� � �� � �
� �

� � � � �� �� �
� �� � � �� �

( )

1
( ) ( ) ( ) ( )

( )

t T

t t

D
t y s t y s ds

t h��
� � �
� � (24)

where �(t) = [zT (t)� zT (t – � (t))� f(z(t))T � f(z(t – � (t)))T � yT (t)]T .

Since

2[zT (t)P1 + zT (t – � (t))P2 + f(z(t))TP3 + f(z(t – � (t)))TP4 + yT (t)P5

( )

t

t t��
��  y(s)T dsP6][–y(t) – Az(t) +Wf(z(t)) +W1f(z(t – � (t)))] = 0� (25)

1 1 1 1 61

2 2 12 2

3 3 13 3 6 ( )

4 4 14 4 1 6

5 5 15 5 6

0

0 0

02 ( ) ( ) 2 ( ) ( ) 0

0

0

T T

tT T T T
t t

T T

T

P A PW PW P A P

P A P W P W P

P A P W P W Pt t t y s dsW P
P A P W P W P W P
P A P W P W P P

� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� � ��� �
� �� �
� �� �
� �� �
� �� �� � � �� �

� � �
� �
� �� � � � � �
� �
� � �

� (26)

i.e.,

1 1 2 1 3 1 1 4 1 5

2 2 2 1 2

3 1 2 3 3 3 1 4 3 5

4 1 1 1 2 4 1 3 4 1 1 4 4 1 5

5 1 2 5 3 5 1 4 5 5

0

( )

T T T T T T T T T T

T TT T T T T T T T T

T T T T T T T T T T

T T T T T

P A A P A P PW A P PW A P P A P

P A P W P W P

P A W P W P P W W P P W W P P W Pt

P A W P W P P W W P P W W P P W P

P A P P P W P P W P P P

�
�
�
�
�
�
�
�
�
�

�

� � � � � � �
� �

� � � � � ��

� � � � � �

� � � � � � �

( )t

�
�
�
�
�
�
�
�
�
�

� �
� �� ��

�
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6

6 ( )

1 6

6

0

2 ( ) ( ) 0

T T

tT T T

t t
T T

T

A P

t y s dsW P

W P

P

��

� ��
� �
� �
� �� � � �� �
� �
� �
� ��� �

� (27)

Similarly,

2[zT (t)T1 + zT (t – � (t))T2 + f(z(t))T T3 + f(z(t – � (t)))T T4

5 ( )
( ) ][ ( ) ( ( )) ( ) ] 0

tT

t t
y t T z t z t t y s ds

��
� � � � � � �� (28)

so

1 1 1 2 3 4 5

2 1 2 2 3 4 5

3 3

4 4

5 5

( ) ( )0 0 0

0 0 0

0 0 0

T T T T T

T T T T T

T

T T T T T T T

T T T T T T T
t tT T

T T

T T

� �� � �
� �

� � � � � �� �
� �� ��� �
� ��
� �

�� �� �

1

2

3 ( )

4

5

2 ( ) ( ) 0
t

t t

T

T

t y s dsT

T

T

��

�� �
� ��� �
� �� � � ��
� �
�� �
� ��� �

� (29)

Combining Equalities (27) with Equalities (29) gives

1 1 2 1 2 1 3 3 1 1 4 4 1 5 5

2 2 3 2 1 4 2 5

3 3 1 4 3 5

4 1 4 1 5

5

2 2

2

( ) ( )2

2

2

T T T T T T T T T T T T

T T T

T T T T T

T T

P A T A P T T PW A P T PW A P T P A P T

T P W T P W T P T

t tP W P W W P P W P

P W P W P

P

� �� � � � � � � � � � � �
� �� � � � � �� �
� �� �� � � � �� �

� � � � �� �
� �� � � � �� �� �

6 1

2

6 3 ( )

1 6 4

6 5

2 ( ) ( ) 0

T T

tT T T

t t
T T

T

A P T

T

t y s dsW P T

W P T

P T

��

� �� �
� �

�� �
� �� � � ��� �
� ��
� �
� �� �� �

� (30)
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From Inequality (24) and Eqn (30), we have

1 1 1 1 2 1 2 1 1 3 3

2 2 2 2 3

1 3

2 2 2

(1 ) 2 2
( ) ( ) 2

T T T T T T

T

T
t

R KY K KS P A T A P T T S PW A P T

R KY K KS T P W T

V z t Q Y P W

� � � � � � � � � � �
� � � � � � � � ��
�� � � � � �
�

� � ��
� � � ��

6 11 1 4 4 1 5 5

22 2 1 4 2 5

6 3 ( )3 1 4 3 5

1 6 42 4 1 4 1 5

5 6 5

( ) 2 ( ) ( )

(1 ) 2

2

T TT T T T T T

T T
tT T TT T T T
t t

T TT T

T

A P TPW A P T P P A P T
TS P W T P T

t t y s dsW P TP W W P P W P
W P TQ Y P W P W P

hD P P T

�
�
�
�
�
�
� ��
�
�
�
�
��

� �� �� � � � �
� �

�� �� � � �
� �� � � �� � � � �
� ��� �� � � � � � �
� �� � � �� �

�

( )

1
( ) ( ) ( ) ( )

( )

t T

t t

D
t y s t y s ds

t h��
� � � �
� � (31)

Hence,

( )

1
( ) ( ) ( )

( )

t T
t t t

V z t s t s ds
t ��

� � � �� �
� �� (32)

where � is defined by the left side of Inequality (3) and

�(t� s) = [zT (t)� zT (t – � (t))� f(z(t))T � f(z(t – � (t)))T � yT (t)� � (t)y(s)T ]T.

By Inequality (3), it is easy to see that there exist scalars a > 0� c > 0 such that

11 12 13 1 1 4 4 1 5 5 6 1

22 23 2 2 1 4 2 5 2

33 3 1 4 3 5 6 3

2 4 1 4 1 5 1 6 4

5 6 5

0
(1 ) 2

2

T T T T T T T T

T T

T T T T T T

T T T T

T

D
h

aI PW A P T P P A P T A P T

S P W T P T T

P W W P P W P W P T

Q Y P W P W P W P T

hD P cD P T

� �� � � � � � � � � � �
� �� � � � � � � �� �
� �� � � � � � �
� � � �

� � � � �� � � � � �� �
� �� � � � � � � �� �
� �� � � � � �� �

(33)

Inequality (33) together with Inequality (32)implies that

2( ) ( ) ( ) ( )T
tV z a z t cy t Dy t� � � � � ��  (34)
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Now, we choose a scalar b > 0 satisfying

b�max(P) + bhebh(�max(R) + k2�max(Q)) – a � 0 (35)
bh2ebh – c � 0 (36)

where 
1

max i
i n

k k
� ���

� �

Note that

V (zt) � �max(P)zT (t)z(t) + [�max(R) + k2�max(Q)] 
( )

( ) ( )
t T

t t
z s z s ds

���

( ) ( )
t T

t h
h y s Dy s ds

�
� �� (37)

Then, for the above scalar b > 0, we have

( ( ))bt
t

d
e V z

dt
= [ ( ) ( ]bt

t te bV z V z� � (38)

� ebt{[b�max(P) – a]�z(t)�2 + b[�max(R) + k2�max(Q)]
( )

( ) ( )
t T

t t
z s z s ds

���

( ) ( ) ( ) ( )}
t T T

t h
bh y s Dy s ds cy t Dy t

�
� � ��

Now, integrating both sides of Inequality (38) from 0 to t > 0, we obtain

ebtV (zt) – V (z0) � 2
max 0

[ ( ) ] ( )
t bsb P a e z s ds� � � ��

+ b[�max(R) + k2�max(Q)] 2

0 ( )
( )

t sbs

s s
e z r drds

��
� �� �

0 0
( ) ( ) ( ) ( )

t s tbs T bs T

s h
bh e y r Dy r drds c e y s Dy s ds

�
� �� � �

� 2
max 0

[ ( ) ] ( )
t bsb P a e z s ds� � � ��

2 2
max max 0

[ ( ) ( )] ( )
t sbs

s h
b R k Q e z r drds

�
� � � � � �� �

0 0
( ) ( ) ( ) ( )

t s tbs T bs T

s h
bh e y r Dy r drds c e y s Dy s ds

�
� �� � �

� 2
max 0

[ ( ) ] ( )
t bsb P a e z s ds� � � ��

22 ( )
max max[ ( ) ( )] ( )

t b r h

h
b R k Q h e z r dr�

�
� � � � �

2 ( )

0
( ) ( ) ( ) ( )

t tb r h T bs T

h
bh e y r Dy r dr c e y s Dy s ds�

�
� �� �

� 2 2
max max max 0

[ ( ) ( ( ) ( )) ] ( )
tbh brb P bhe R k Q a e z r dr� � � � � � � ��
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0 22
max max[ ( ) ( )] ( )bh

h
bhe R k Q z r dr

�
� � � � �

02 2

0
( ) ( ) ( ) ( ) ( )

tbh T bh br T

h
bh e y r Dy r dr bh e c e y r Dy r dr

�
� � � �� � (39)

Combining Inequality (39) with Inequalities (35) and (36) gives

ebtV (zt) �
0 22

max max[ ( ) ( )] ( )bh

h
bhe R k Q z r dr

�
� � � �

02
0( ) ( ) ( )bh T

h
bh e y r Dy r dr V z

�
� ��

�
0 22

max max[ ( ) ( )] ( )bh

h
bhe R k Q z r dr

�
� � � �

0 22
max( ) ( ) ( ) (0)bh T

h
bh e y r Dy r dr P z

�
� � ��

0 22
max max (0)

[ ( ) ( )] ( )R k Q z s ds
��

� � � � �
0

( ) ( )T

h
h y s Dy s ds

�
� �

� 2 2
max max max

2 0
{( 1) [ ( ) ( )] ( )}( sup ( ) )bh

h
bhe h R k Q P z

� ���
� � � � � � �

02
max( ) ( ) ( ) ( )bh T

h
bh e h D y r y r dr

�
� � � �� (40)

Since r � [–h� 0],

y(r)T y(r) = �y(r)�2

= � – Az(r) +Wf(z(r)) +W1 f(z(r – � (r)))�2

� [� – Az(r)� + �Wf(z(r))� + �W1f(z(r – � (r)))�]2

� 3� – Az(r)�2 + 3�Wf(z(r))�2 + 3�W1f(z(r – � (r)))�2

� 3[�2
max(A) + k2�2

max(W) + k2�2
max(W1)]( 

2 0
sup
h� ���

�z(µ)�)2. (41)

ebtV (zt) � �(bhebh + 1)h[�max(R) + k2�max(Q)] + �max(P)|(
2 0
sup
h� ���

�z(µ)�)2

+3(bh2ebh + h)h�max(D)[�2
max(A) + k2�2

max(W) + k2�2
max(W1)]( 

2 0
sup
h� ���

�z(µ)�)2

� q(
2 0
sup
h� ���

�z(µ)�)2 (42)

where

q = (bhebh + 1)h[�max(R) + k2�max(Q)] + �max(P)

+3(bh2ebh + h)h�max(D)[�2
max(A) + k2�2

max(W) + k2�2
max(W1)].
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Then

ebt�max(P)�z(t)�2 < q( 
2 0
sup
h� ���

 �z(µ)�)2. (43)

Hence

2

2 0max

( ) sup ( )
( )

bt

h

q
z t e z

P
� �

� ���
� � �

�
(44)

It follows from Inequalities (44) that the DNN in (21) is exponentially stable for any delay 0 < � (t) � h. This
completes the proof.

4. EXAMPLES

In this Section, we provide examples to illustrate the reduced conservatism and effectiveness of Theorem 1 by
comparing it with recently reported stability results in literature.

Example 1: Consider the DNN given in Eqn (1) with the following parameters.

4 1989 0 0

0 0 7160 0

0 0 1 9985

A

�� �
� �� � �� �
� ��� �

W = 0�

1

0 1052 0 5069 0 1121

0 0257 0 2808 0 0212

0 1205 0 2153 0 1315

W

� � � � � �� �
� �� � � � � � �� �
� �� � � �� �

0 4219 0 0

0 3 8993 0

0 0 1 0160

K

�� �
� �� � �� �
� ��� �

For this example, both of the delay-dependent asymptotically conditions in [8, 27, 28] cannot be satisfied for
any h > 0. Therefore, they cannot provide any results on the maximum allowed delay h. By methods in [29, 30,
31], Xu and Lam obtained h as 1.7484� 1.7644 and 0.4121, respectively. While by Theorem 1 in our paper, it is
found that LMI (3) is feasible for any arbitrarily large h, i.e, the DNN given in this example is globally
exponentially stable for any large h. Therefore, it can be seen that the condition given in Theorem 1 is less
conservative than those in [8, 27, 28, 29, 30, 31].

Example 2: We consider the DNN given in Eqn (1) with parameters as

1 0674 0 0

0 2 2094 0

0 0 0 8352

A

�� �
� �� � �� �
� ��� �

95



48 Journal of Mathematical Control Science and Applications (JMCSA)

0 4094 0 5719 0 2503

1 0645 0 0410 0 9923

0 7439 0 63443 0 1066

W

� � �� �
� �� � � � � �� �
� �� � � �� �

1

0 3008 0 0

0 0 3070 0

0 0 0 3068

W

�� �
� �� � �� �
� ��� �

0 4911 0 0

0 0 9218 0

0 0 0 6938

K

�� �
� �� � �� �
� ��� �

For this example, when the activation functions are bounded and globally Lipschitz continuous and µ = 0.1, Xu
and Lam [6] proved this delayed neural networks is globally exponentially stable by their delay-independent
exponential stability criterion, i.e., Theorem 2 in [6]. However, by Theorem 1 in this paper, it is found that LMI
(3) is also feasible for any arbitrarily large h. Therefore, it can be seen that the delay-dependent condition for the
global exponential stability of DNN developed in this paper is effective.

If the activation functions are unbounded, Theorem 2 in [6] fails, while, our exponential stability criterion
in Theorem 1 remains applicable.

If the time-varying delay function � (t) is differentiable, but the upper bound of the derivative of the delay
function � (t) is greater than 1, Theorem 2 in [6] fails, while, our exponential stability criterion in Theorem 1
remains applicable. For example, if µ = 1.2, we find the allowable maximum delay h = 3.5336, under which the
DNN in this example is globally exponentially stable.

Remark 1: The stability of DNN given in Eqn (1) has been extensively investigated (see, for example, [27,
28, 32, 33]). Few papers concern the existence and uniqueness of equilibrium point of DNN with unbounded
activation functions [27, 3�, 33, 34, 35]. He et al [36] only proved global asymptotic stability of DNN given in
Eqn (1) with bounded activation functions when A is identity matrix. The criterion for asymptotic stability
derived in [36] can not be applied to analyze the global asymptotic stability and the global exponential stability
of systems given in Example 1 and Example 2 since the activation functions are unbounded. However, without
assuming that activation functions are bounded, the existence, uniqueness and global exponential stability of
equilibrium point of a class of time-varying delayed neural networks are proved in our paper. Although asymptotic
stability criterion for DNN in [36] is derivative-dependent, it is delay-independent. Theorem 1 in our paper
gives a new delay-dependent and derivative-dependent exponential stability criterion for DNN. The global
exponential stability of DNN implies global asymptotic stability. The stability criterion in [36] requires that the
derivative of the delay function � (t) is less than 1 and the activation functions are bounded, whereas our delay-
dependent and derivative-dependent exponential stability criterion removes these unreasonable restrictions.
The asymptotic stability of the DNN is studied in [28, 33]. All stability criteria given in [28, 33] depend on the
absolute values of the connection weights. Since these stability criteria in [28, 33] neglect the signs of the
entries in the connection matrices, differences between neuronal excitatory and inhibitory effects are ignored.
The condition in Theorem 1 in our paper is written in terms of LMIs. So our stability criteria take sign of the
entries in the connection matrices into account, i.e. these conditions take the differences between neuronal
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excitatory and inhibitory effects of neurons in the DNN given in Eqn (1) into account. Furthermore, our criteria
are easy to check and apply in practice by using the LMI toolbox of Matlab.

5. CONCLUSION

Without assuming that activation functions are bounded, a new condition for the global exponential stability of
delayed neural networks has been obtained. This stability criterion is expressed in term of LMI, which make it
computationally efficient and flexible. Numerical examples are also given to show the reduced conservatism
and effectiveness of the proposed result in this paper.
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