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Global Dynamics of an SEIS Epidemic Model with Transport-related
Infection and Exposed

Tailei Zhang*, Junli Liu** & Zhidong Teng*

Abstract: Some analytical results are given for an SEIS model that describes the propagation of a disease in a
population of individuals who travel between two cities. This model is to understand the effect of the exposed
and infective individuals’ transport on disease spread. Transportation among regions is one of the main factors
which affect the outbreak of disease. The basic reproduction number R

0� is given. If R
0��� 1, there only exists the

disease-free equilibrium and it is globally asymptotically stable which implies the disease will go to extinction.
If R

0��> 1, the disease-free equilibrium is unstable, the endemic equilibrium appears and is locally asymptotically
stable, the system is permanent. It is shown that the disease is endemic in the sense of permanence if and only if
R

0� > 1. Sufficient conditions are established for global asymptotic stability of the endemic equilibrium. Computer
observation shows that the endemic equilibrium is globally asymptotically stable if R

0��> 1 even if the additional
condition is invalid. This will be left in our future work. Our results discover the effect of the transport of the
exposed and infective people on disease spread.
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1. INTRODUCTION

Epidemiology is the study of the spread of disease, in space and time, with the objective to trace factors that are
responsible for, or contribute to their occurrence. A theory of epidemics was derived by W.O.Kermack, a
chemist, and A.G. Mckendrick, a physician, who worked at the Royal College of Surgeons in Edinburgh between
1900 and 1930. They introduced and used many novel mathematical ideas in studies of populations [1]. One
important result of theirs is that an infection determines a threshold size for the susceptible population, above
which an epidemic will propagate. Their theoretical epidemic threshold is observed in practice, and it measures
to what extent a real population is vulnerable to spread of an epidemic. The propagation of infection is modelled
to determine what aspects of a population might be controlled to reduce the risk of an epidemic [2,3,4].

There are many factors that lead to the dynamics of an infectious disease of humans. They include such a
human behavior as population dislocations, living style, sexual practices, rising international travel. Population
dispersal, as a common phenomenon in human society, may cause many diseases such as influenza, foot-and
mouth disease, HIV and SARS etc. Since the first AIDS cases were reported in the United States in June 1981,
the number of cases and deaths among persons with AIDS increased rapidly during the 1980s followed by
substantial declines in new cases and deaths in the late 1990s. In 2003, SARS began in Guangdong province of
China, however, it broke out at last in almost all parts of China and some other cities in the world due to
dispersal (Wang and Ruan, 2004, [5]). Recently, some epidemic models have been proposed to understand the
spread dynamics of infectious disease.

Rvachev and Longini used a discrete time difference equations in a continuous state space to study the global
spread of influenza [6,7]. Sattenspiel and Dietz (1995) introduced a model with travel between populations [8].
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They proceeded to an identification of the parameters in the case of the transmission of measles in the Caribbean
island of Dominica, and numerically studied the behavior of the model. Sattenspiel and Herring (1998) considered
the same type of model but applied to travel between populations in the Canadian subartic, which can be thought
of as a closed population where travel is easily quantified [9]. Recently, the same authors (Sattenspiel and Herring
2003) formulated a model that includes quarantine, and applied it to data of the 1918-1919 influenza epidemic in
central Canada [10]. Wang and Mulone (2003) and Wang and Zhao (Wang and Zhao 2004) have also recently
formulated and discussed other models for the spread of a disease among two patches and n patches [11-13]. In
2003, Arino and Van den Driessche have also formulated a mobility model for residents of n cities (or discrete
geographical regions) who may travel between them to study the spatial spread of infectious [14].

All these investigations ignore the possibility for the individuals to become infective during travel. In paper
[15], Cui, Takeuchi and Saito have proposed the following SIS epidemic to understand the effect of transport-
related infection on disease spread for the first time.
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(1.1)

Considering entry screening and exit screening to detect infected individuals, Liu and Takeuchi [16] proposed
an SIQS model to studied the effect of transport-related infection and entry screening.Mathematically, Cui,
Takeuchi and Saito mainly stuied local asymptotical stability of model (1.1) and the endemic equilibrium was
proved to be asymptotically stable with an additional condition besides the condition its existence. Subsequently,
Takeuchi et al [17]. studied further the global dynamics of model (1.1). They prove the endemic equilibrium is
locally asymptotically stable if it exists, but the global stabilities of equilibria, include disease-free equilibrium
and endemic equilibrium, still required additional condition besides the condition its existence. Liu and Takeuchi
[16], the global stability of equilibria remains unsolved.

Many diseases (e.g. Tuberculosis, Measles, AIDS, SARS etc.) have incubation period. The disease will
incubate inside the host for a period of time before the host becomes infectious. A susceptible individual first
goes through a latent period (often called the exposed or in the class E) after infection before becoming infectious.
The models obtained by the compartmental approach are said to be SEI models or SEIS models, respectively,
depending on whether the patient is cured or not. In fact, the spread of disease is profoundly influenced by the
exposed individuals’ movement. Because the exposed individuals has no any symptoms, they have more chances
on contact with others. In this paper, we will study the effect of transport-related infection and exposed individuals’
movement via mathematical analysis. Our results show that the disease will develop to become endemic as the
travel of exposed or infective individuals.

The paper is organized as follows. In Section 2, we will construct an SEIS epidemic model with transport-
related infection and give explicit fomulas of basic reproductive number, equilibria. Section 3 deals with the
global stability of the disease-free equilibrium. In section 4, we will discuss the local stability of endemic
equilibrium by using Routh-Hurwitz Criterion. Permanence of the SEIS model in section 2 is settled in Section
5. We will give some sufficient conditions for global stability of endemic equilibrium in section 6. In the final
section, we will discuss our results and give some numerical simulations.
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2. MODEL FORMULATION

We consider a model with state variables Si, Ei, Ii and Ni that represent the number of susceptible, exposed,
infected individuals and total population in city i, respectively (i = 1,  2). The basic assumptions underlying the
dynamics of the system are as follows:

� We assume that both cites are identical.

� All newborns, denoted by a, join into the susceptible class per unit time.

� Natural death rate for susceptible individuals is a constant per capita rate b.

� Disease is transmitted with the standard form incidence rate �SiIi/Ni, i = 1, 2, within city i. � is the
probability per unit time of transmitting the infection of between two individuals taking part in a
contact.

� We may assume that a susceptible individual first goes through a latent period (and is said to become
exposed or in the class E) after infection, before becoming infectious.

� � is the rate constant at which the exposed individuals become infective, so that 1
�  is the mean latent

period.

� Susceptible, exposed and infected individuals of every city i leave for city j (i � j, i, j = 1, 2) at a per
capita rate �. We assume that two cities are connected by the direct transport such as airplanes or trains
etc.

� When the individuals in city i travel to city j, disease is transmitted with the incidence rate �1(�Si)(�Ii)/
(�Si +�Ii) = �1�SiIi/Ni with a transmission rate �1�.

� When the exposed individuals in city i travel to city j, there is �2�Ei becoming infectious per unit time.

� The rate constant for recovery is denoted by d, so that 1
d

 is the mean infective period. We omit the
mortality induced disease (For this model with the mortality induced disease, this issue would be left as
our future consideration).

� We suppose that individuals who are travelling do not give birth and do not take death. Further we
assume that infected individuals do not recover during travel.

These assumptions lead to a model of the form:
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By biological point of view, since the term �Si and �Ei represent the susceptible and exposed individuals
leaving city i and �1�SiIi/Ni and �2�Ei denote individuals in �Si and �Ei becoming infected and infectious during
travel from city i to j, respectively. Hence, �Si – �1�SiIi/Ni and �Ei – �2�Ei should be nonnegative. Therefore, we
always suppose that 0 � �i � 1 (i = 1, 2)  in the following discussion.

The point P0 = ( 0 0 0 0)a a
b b
� � � � �  is the disease-free equilibrium of (2.1), and it exists for all nonnegative

values of the parameters. According to the concept of next generation matrix (Diekmann et al., 1990, [18]) and
reproduction number presented in van den Driessche and Watmough (2002, [19]), we define

1

1

0 0

0 0

0 0 0 0

0 0 0 0

F

� � �� �
� �� � �� ��
� �
� �� �
� �

and

2

2

2

2

(1 ) 0 0

(1 ) 0 0

b

b
V

b d

b d

� � � � �� � �� �
� ��� � � � � � �� ��
� ��� �� � � � � ��
� �� ��� � �� �� � � �� �

Hence the reproduction number for (2.1) is
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When R0� > 1, (2.1) has the unique positive equilibrium P+ (S*, E*, I*, S*, E*, I*), where
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(2.2)

Obviously, S* + E* + I* = a
b

. It is easy to prove the following theorem.

Theorem 2.1: When R0� � 1, then system (2.1) only has the disease-free equilibrium P0 and when R0� > 1,
then system (2.1) has the unique endemic equilibrium P+ except for P0

3. GLOBAL STABILITY OF P0

In this section, we show that the disease-free equilibrium is globally stable as long as R0��� 1, and is unstable if
R0������ We process this as two steps. We first prove its local stability and instability then global stability.
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Theorem 3.1: If R0����1, then P0 is global asymptotically stable. If R0��> 1, then P0 is unstable

Proof: The Jacobian matrix at P0 for the right hand side of (2.1) is given by
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The eigenvalues of J(P0) are identical to those of A + B and A – B, where
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Because there is only one non-zero element in the first column for �A B  and �A B , which are both negative,

we may reduce the question of whether the eigenvalues of the following two 2 2�  matrixes have negative real

part.
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It is easy to verify that tr (Ji) < 0 and det (Ji ) > 0 when R0� < 1. When R0� > 1, det (J1) < 0 implies J1 has at lease
one eigenvalue with positive real part. Hence, P0 is locally asymptotically stable if R0� < 1 and P0 is unstable if
R0� > 1. Next, we will discuss the global stability of P0 under the condition R0� � 1. We next prove global stability
of the disease-free equilibrium.

53



6 Journal of Mathematical Control Science and Applications (JMCSA)

Consider the following Liapunov function
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Restricting system (2.1) on the set L, we easily obtain that limt�� Ei(t) = 0 and limt�� Si(t) = a
b

. Therefore,
M = {P0} is the largest positively invariant subset of L. By Liapunov-LaSalle theorem, P0 is global asymptotically
stable provided R0� � 1. This completes the proof of this theorem.

Remark 3.1: Theorem 3.1 completely determines the global dynamics of (2.1) when R0� � 1. Its
epidemiological implication is that the sum of the exposed and the infectious subclasses in the population
vanishes over time so the disease dies out in both two cities . In Section 5, we show that the disease is permanent
when R0� > 1.

4. LOCAL STABILITY  OF P+

We have shown that there exists a positive endemic equilibrium if and only if R0� > 1 in Section 2. In this
section, we prove that if the endemic equilibrium exits, it is always locally asymptotically stable.

Consider matrix

11 12 13

21 22 23

32 330

a a a

Q a a a

a a

� �
� �
� �
� �
� �
� �
� �

� � (4.1)

Denote Q1 = a11a22–a12a21, Q2 = a22a33¡a23a32 and Q3 = a11a33. For convenience, we state Routh-Hurwitz criterion
for this kind of matrix.
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Lemma 4.1: Let A1 = –tr(Q), A2 = Q1 + Q2 + Q3 and A3 = –det(Q), then each eigenvalue of Q has negative
real part if and only if

1. A1 > 0,

2. A3 > 0,

3. A1A2 – A3 > 0.

The characteristic polynomial of matrix Q is

�3 + A1�
2 + A2� + A3 = 0.

Calculating A1 A2 – A3 directly, we get

A1A2 – A3 = –(a11 + a22 + a33)(Q1 + Q2 + Q3) + det(Q)

= –a11(Q1 + Q3) – a22(Q1 + Q2 + Q3) – a33(Q2 + Q3)

+a13a21a32 ¡ a11a22a33.

Remark 4.1: aii < 0, Qi > 0(i = 1; 2; 3) and a13a21a32 – a11a22a33 > 0 imply that A1A2 – A3 > 0.

Theorem 4.1: If R0� > 1, the endemic equilibrium P+ of the system (2.1) is locally asymptotically stable.
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b22 =
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Firstly, using Lemma 4.1, we prove that each eigenvalue of A + B has negative real part. The process is as
follows.

(I) Obviously, A1 = –tr (A + B) = –(a11 + a22 + a33) > 0 by R0� > 1.

(II) Calculating the determinant of A + B, i.e

A3 = – det (A + B) =
0 00

1 11
21 11 2

2

0 0

( )(1 ) ( ) ( )( (1 ) )

0 ( )

R RR

b

a k b k

b d

� ��

�
� � ��� � � � ���� � � � � � � �

� � � � � �

= b[(b + d)(� + �1�)(1 – 
0

1
R �

)k + (b + d)(b + � + �2�)

– (� + �2�)(� + �1�)( 
0

1
R �

 – (1 – 
0

1
R �

)k)]

> b[(b + d)(b + � + �2�) – (� + �2�)(� + �1�) 
0

1
R �

] = 0

(III) In the following, we will prove that A1 A2 – A3 > 0. By Remark 4.1, we only need show that

Q1 > 0, Q2 > 0, Q3 > 0, –a11a22a33 + a13a21a32 > 0. (4.3)

It is clear that Q3 = a11 a33 > 0. Hence, we divided into the following parts for proving (4.3).

(i) Claim Q1 > 0.

Q1 =
0 0

2

21 1
1 1 2

( )

( )(1 ) ( )(1 ) ( )
R R

b

k k b
� �

� � � � � �

� � � � � � � � � � � � � � � � �

=
0 0

21 1
1 2 1 2[( )(1 ) ( )] ( )( )(1 ) 0R Rb k b k

� �
� � � � � � � � � � � � �� � � � � � � � � �

(ii) Claim Q2 > 0.

Q2 = a22a33– a23a32

= (b + d)(� + �1�)
0

1
R �

(1 – 
0

1
R �

)k + (b + d)(b + � + �2�)

– (� + �1 �)(� + �2�)
0

1
R �

+(� – �2�����+��2�) 
0

1
R �

(1– 
0

1
R �

)k > 0

(iii) Claim J = – a11a22a33+ a13a21a32 > 0
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J = [(� + �1�)(1 – 
0

1
R �

)2k + b][(� + �1�) 
0

1
R �

(1 – 
0

1
R �

)k + (b + � + �2�)][b + d]

+(� + �2�)(� + �1�)(1 – 
0

1
R �

)2k[–(� + �1�)( 
0

1
R �

 – 
0

1
R �

(1 – 
0

1
R �

)k) + d]

> (� + �1�)(1 – 
0

1
R �

)2k(b + � + �2�)(b + d)

–(� + �1�)(1 – 
0

1
R �

)2k(� + �2�)(� + �1�) 
0

1
R �

= 0.

By(i)-(iii), we know that (4.3) is valid which implies A1 A2 – A3 > 0. From parts (I) – (III), we can conclude
that the real parts of all eigenvalues of A + B are negative.

Next we check A – B as follows. It is obvious that bii < 0 as R0� > 1 and 0 ���i � 1(i = 1, 2). Similarly, we
separate into three parts as follows.

(I') Obviously, A1 = –tr(A – B) = –(b11 + b22 + b33) > 0.

(II') Validate A3 = – det (A – B) > 0. Adding the second and third rows to the first row then the first column
multiplied by –1 to the second and third column respectively, we obtain

A3 = 1
0 0 0

1 1
21 11 2

2

( 2 ) 0 0

( )(1 ) ( 2 ) ( )( (1 ) )

0 ( 2 )

R R R

b

b k b k

b d

� � �

� � �
� � ��� � � � ��� ��� � � � � � � �

� � � � � � � �

= b[(b + 2�)(� + d + 2�)((� – �1�)(1 – 
0

1
R �

)k + (b + � + 2� – �2�)

– (� – �2�)(� – �1�)( 
0

1
R �

 – (1 – 
0

1
R �

)k)]

A3 > 0 is equivalent to

� = (b + d + 2�)((� – �1�)(1 – 
0

1
R �

)k + (b + � + 2� – �2�))

–(� – �2�)(� – �1�)(
0

1
R �

– (1 – 
0

1
R �

)k) > 0

� > 0 can be shown as the following four cases.

Case 1: � – �1� � 0, � – �2� � 0

�> (b + � + 2� – �2�)(b + d + 2�) – (� – �2�)(� – �1�) 
0

1
R �

� (b + � + �2�)(b + d) – (� + �2�)(� + �1�) 
0

1
R �

= 0.

Case 2: � – �1� � 0, � – �2� < 0

�> (� – �1�)(1 – 
0

1
R �

)k(b + d + 2�) + (� – �2�)(� – �1�)(1 – 
0

1
R �

)k

= (� – �1�)(1 – 
0

1
R �

)k(b + d + 2� + � – �2�) > 0.

Case 3: � – �1� < 0, � – �2� � 0

� � (� – �1�)(1 – 
0

1
R �

)k(b + d + 2� + � – �2�)

+ (b + d + 2�)(b + � + 2� – �2�)

� –�(b + d + 2� + � – �2�) + (b + d + 2�)(b + � + 2� – �2�)

= (b + d + 2�)(b + � + 2� – �2�) – �d > 0.

Case 4: � – �1� < 0, � – �2� < 0
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� = (� – �1�)(1 – 
0

1
R �

)k(b + d + 2� + � – �2�)

+ (b + d + 2�)(b + � + 2� – �2�) – (� – �2�)(� – �1�) 
0

1
R �

� –�1�(b + d + 2� + � – �2�) + (b + d + 2�)(b + � + 2� – �2�) – �1�2�2

� –�(b + d + 2� + �) + (b + d + 2�)(b + � + 2� – �2�)

= (b + d + 2�)(b + � + � – �2�) – �� > 0

By Case 1-Case 4, it is clear that A3 > 0.

(III')In the following, we will prove that A1A2 – A3 > 0. By Remark 4.1, we only need show that

Q1 > 0, Q2 > 0, Q3 > 0, –b11b22b33 + b13b21b32 > 0 (4.4)

It is clear that Q3 = b11b33 > 0. Hence, we divided into the following three parts for proving (4.4).

(i') Claim Q1 > 0.

Q1 = b11b22 – b12b21

=
0 0

2

21 1
1 1 2

( 2 ) ( )

( )(1 ) ( )(1 ) ( 2 )
R R

b

k k b
� �

� � � � � � � �

� � � � � � � � � � � � � � � � � � �

= (b – 2�)((� – �1�)(1 – 
0

1
R �

)k(b + � + 2��– �2�))

+ (� – �1�)(� – �2�)(1 – 
0

1
R �

)2 k.

Q1 > 0 can be shown as the following three cases.

Case 1: (� – �1�)(� – �2�) � 0, it is obvious that Q1 > 0.

Case 2: � – �1� > 0, � – �2� � 0

Q1 > (� – �1�) (1 – 
0

1
R �

)k(b + 2�) + (� – �1�) (� – �2�)(1 – 
0

1
R �

)2k

 � (� – �1�) (1 – 
0

1
R �

)k(b + � + 2� – �2�) � 0.

Case 3: � – �1� < 0, � – �2� � 0

Q1 � (b + 2�)(b + � + 2� – �1� – �2�)

+(� – �1�)(� – �2�)(1 – 
0

1
R �

)2k

> (b + 2�)(b + �) – �1�(� – �2�)(1 – 
0

1
R �

)2k > 0.

Therefore, we can obtain Q1 > 0 from Case 1-Case 3.

(ii') Claim Q2 > 0.

Q2 = b22b33 – b23b32

= (b + d + 2�)(� – �1�) 
0

1
R �

 (1– 
0

1
R �

) k + (����� + 2� – �2�))

–(� – �1�)(� – �2�)(
0

1
R �

 – 
0

1
R �

(1 – 
0

1
R �

)k).

Q2 > 0 can be shown as the following three cases.

Case 1: (� – �1�)(� – �2�) � 0, it is obvious that Q2 > 0.
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Case 2: � – �1� > 0,  � – �2� > 0

Q2 > (b + d + 2�)(b + � + 2� – �2�) – (� – �1�)(� – �2�) 
0

1
R �

> (b + d)(b + � + �2�) – (� + �1�)(� + �2�) 
0

1
R �

= 0

Case 3: � – �1� < 0, � – �2� < 0

Q2 = (� – �1�)
0

1
R �

(1 – 
0

1
R �

)k(b + d + 2� + � – �2�)

+ (b + d + 2�)(b + � + 2� – �2�) – (� – �1�)(� – �2�) 
0

1
R �

> –�1�(b + d + 2� + � – �2�) + (b + d + 2�)(b + � + 2� – �2�) – �1�2�
2

� –�(b + d + 2� + �) + (b + d + 2�)(b + � + �) > 0.

Therefore, we can obtain Q2 > 0 from Case 1-Case 3.

(iii’) Claim f = –b11b22b33 + b13b21b32 > 0, i.e.

f = [(� – �1�)(1 – 
0

1
R �

)2k + (b + 2�)][(� – �1�) 
0

1
R �

(1 – 
0

1
R �

)k

+ (b + � + 2� – �2�)](b + d + 2�)

–(� – �2�)(� – �1�)(1 – 
0

1
R �

)2k[(� – �1�)( 
0

1
R �

– 
0

1
R �

(1 – 
0

1
R �

)k) – d] > 0

f > 0 can be shown as the following four cases.

Case 1: � – �1� � 0, � – �2� � 0

f > (� – �1�)(1 – 
0

1
R �

)2k(b + � + 2� – �2�)(b + d)

–(� – �2�)(� – �1�)(1 – 
0

1
R �

)2k(� – �1�) 
0

1
R �

� (� – �1�)(1 – 
0

1
R �

)2k[(b + � + �2�)(b + d) – (� + �2�)(� + �1�) 
0

1
R �

] = 0

Case 2: � – �1� � 0, � – �2� < 0

f > (� – �1�)(1 – 
0

1
R �

)2k(b + � + 2� – �2�)d + d(� – �2�)(� – �1�)(1 – 
0

1
R �

)2k

= d(� – �1�)(1 – 
0

1
R �

)2k(b + 2� + 2� – 2�2�) � 0

Case 3: � – �1� < 0, � – �2� � 0

f > ��(d + �) – (� – �2�)(� – �1�)(1 – 
0

1
R �

)2k[(� – �1�) 
0

1
R �

 – d]

> ��(d + �) – (� – �2�)(� – �1�)(1 – 
0

1
R �

)2k[–d – �]

> ��(d + �) – �1�(� – �2�)(1 – 
0

1
R �

)2k[d + �] > 0

Case 4: � – �1� < 0, � – �2� < 0

Since

–(� – �2�)(� – �1�)(1 –
0

1
R �

)2k[(� – �1�)(
0

1
R �

 –
0

1
R �

(1 –
0

1
R �

)k) – d] > 0,

it is clear that f > 0.

By (i')-(iii'), we know that (4.4) is valid which implies A1A2 – A3 > 0. From parts (I') – (III'), we can conclude
that the real parts of all eigenvalues of A – B are negative. Generally speaking, each eigenvalue of J(P+) has
negative real part. Hence, P+ is locally asymptotically stable. This completes the proof.
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5. PERMANENCE

In this section, we investigate the permanence of system (2.1). We will prove that the system (2.1) is permanent
if R0� > 1.

Theorem 5.1: There exists an M > 0 such that for any solution (S1(t), E1(t), I1(t), S2(t), E2(t), I2(t)) of (2.1)
with initial values Si(0) � 0, Ei(0) � 0, Ii(0) � 0 for i = 1, 2 satisfies Si(t) � M, Ei(t) � M and Ii(t) � M (i = 1, 2) for
large enough t.

Proof: Let L(t) = S1(t) + E1(t) + I1(t) + S2(t) + E2(t) + I2(t). Since

L��(2.1)(t) = 2a – bL(t),

it is easy to verify that there exists t1 > 0 such that L(t) � 2a
b

 + � � M for any � > 0 as t � t1. Then Si(t) � L(t) �

M, Ei(t) � L(t) � M, and Ii(t) � L(t) � M for t � t1. The proof is complete.

Theorem 5.2: If R0� > 1, then there exists an � > 0 such that every solution (S1(t), E1(t), I1(t), S2(t), E2(t),
I2(t))  of (2.1) with initial values  Si (0) � 0, Ei (0) � 0, Ii (0) > 0 for i = 1, 2 satisfies

lim inf ( ) lim inf ( ) lim inf ( ) 1 2i i i
t t t

S t E t I t i
�� �� ��

� �� � �� � �� � � �

Proof: We will use the result of Thieme in [Theorem 4.6, 18 ] to prove it. Define

X = {(S1, E1, I1, S2, E2, I2) : Si � 0, Ei � 0, Ii � 0, i = 1, 2}

X0 = {(S1, E1, I1, S2, E2, I2) 2 X : Ii > 0, i = 1, 2}.

�X0 = Xn \X0

In the following, we will show that (2.1) is uniformly persistent with respect to 0 0( )��X X .

Obviously, X is positively invariant with respect to system (2.1). If Si (0) � 0, Ei (0) � 0 and Ii (0) � 0 for i =
1, 2, then Si (t) > 0, Ei (t) > 0 and Ii (t) > 0 for all t > 0. Since I�i (t) � – (b + d + �) Ii (t) and Ii (0) > 0, we have Ii(t)
� Ii(0) e–(b+d+�)t

 > 0. Thus, X0 is also positively invariant. Furthermore, by Theorem 5.1, there exists a compact set
B in which all solutions of (2.1) initiated in X will enter and remain forever after. The compactness condition
(C4.2) in Thieme (1993 [20]) is easily verified for this set B. Denote

M� = {(S1(0), E1(0), I1(0), S2(0), E2(0), I2(0)) :

(S1(t), E1(t), I1(t), S2(t), E2(t), I2(t)) � �X0, t � 0}.

We now show that

M� = {(S1, E1, 0, S2, E2, 0) : Si � 0, Ei � 0}. (5.1)

Suppose that (S1(0), E1(0), I1(0), S2(0), E2(0), I2(0)) � M�. It suffices to show Ii(t) = 0 for any t � 0 and i = 1, 2.
If it is not true, then there exists a t0 � 0 such that I1(t0) > 0 or I2(t0) > 0. Without loss of generality, we may
assume I1(t0) > 0 then I2(t0) = 0. Otherwise, (S1(t0), E1(t0), I1(t0), S2(t0), E2(t0), I2(t0)) � X0 contradicts to (S1(0),
E1(0), I1(0), S2(0), E2(0), I2(0)) � M�. By the sixth equation of (2.1), we have

I�2(t0) = ��E2(t0) + �I1(t0) + �2�E1(t0) > 0

Combining with I1(t0), it follows that there exists a � > 0 small enough such that I1(t) > 0 and I2(t) > 0 for all t
� (t0, t0 + �). Hence,

(S1(t), E1(t), I1(t), S2(t), E2(t), I2(t)) � X0
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in (t0, t0 + �). This is a contradiction with

(S1(0), E1(0), I1(0), S2(0), E2(0), I2(0)) � M�.

This proves (5.1).

Denote

� = �{�(S1(0), E1(0), I1(0), S2(0), E2(0), I2(0)) :

(S1(0), E1(0), I1(0), S2(0), E2(0), I2(0)) � X}

where �(S1(0), E1(0), I1(0), S2(0), E2(0), I2(0)) is the omega limit set of the solutions of system (2.1) starting in
(S1(0), E1(0), I1(0), S2(0), E2(0), I2(0)). Restricting system (2.1) on M� gives

1
1 2

1
1 2 2

2
2 1

2
2 2 1

( )

( ) (1 )

( )

( ) (1 )

dS
a b S S

dt
dE

b E E
dt

dS
a b S S

dt
dE

b E E
dt

� � � � � � � ��
�
� � � � � � � �� � � ���
�
� � � � � � � �
�
�
� � � � � � � � � � � �
��

(5.2)

It is easy to verify that system (5.2) has an unique equilibrium ( 0 0)a a
b b
� � � . Thus ( 0 0 0 0)a a

b b
� � � � � is the unique

equilibrium of system (2.1) in M�. It is easy to check that ( 0 0)a a
b b
� � �  is locally asymptotically stable. This

implies that ( 0 0)a a
b b
� � �  is globally asymptotically stable for (5.2) is a linear system. Therefore � = {P0}. And P0

is a covering of �, which is isolated and is acyclic (since there exists no solution in M� which links P0 to itself).
Finally, the proof will be done if we show P0 is a weak repeller for X0, i.e.

1 1 1 2 2 2 0limsup (( ( ) ( ) ( ) ( ) ( ) ( )) ) 0
t

dist S t E t I t S t E t I t P
��

� � � � � � � �

where (S1(t), E1(t), I1(t), S2(t), E2(t), I2(t)) is an arbitrarily solution with initial value in X0. By Leenheer and
Smith (2003, Proof of Lemma 3.5, [21]), we need only prove Ws(P0) ��X0 = ��where Ws(P0) is the stable
manifold of P0. Suppose it is not true, then there exists a solution (S1 (t), E1(t), I1 (t), S2(t), E2 (t), I2(t)) in X0, such
that

( ) ( ) 0 ( ) 0 asi i i
a

S t E t I t t
b

� � � � � ��� (5.3)

Since 1 2

2

( )( )
0 ( )( )

1
b b d

R ��� � ��� �
� ���� � �� �  which is equivalent to 1 2

2

b
b d

��� � ���� �
� ��� �� . Thus, we can choose � > 0,��1 > 0 and

�2 > 0 such that

1 2 2

1 2

ba b

b d a b

� � � � � � � � � �� �
� � � �

� � � � � � � �
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For � > 0, by (5.3) there exists T > 0 such that

( ) 0 ( ) 0 ( )i i i
a a

S t E t I t
b b

� � � � � �� � � �� � � �

for t � T and i = 1, 2. Let

V(t) = �1 (E1 (t) + E2 (t)) + �2 (I1(t)+ I2(t)).

The derivative of V along the solution (S1(t), E1(t), I1(t), S2(t), E2(t), I2(t)) is given by

V �(t) = �1(� + �1�) 1 1 2 2

1 1 1 2 2 2

S I S I
S E I S E I� � � �

� ��� � – �1(b + � + �2�)(E1 + E2)

+�2(� + �2�)(E1 + E2) – �2(b + d)(I1 + I2)

� �1(� + �1�) a b
a b
� �
� �  (I1 + I2) – �1(b + � + �2�)(E1 + E2)

+�2(� + �2�)(E1 + E2) – �2(b + d)(I1 + I2)

= [�1(� + �1�) a b
a b
� �
� �  – �2(b + d)](I1 + I2) + [�2(� + �2�)

–�1(b + � + �2�)](E1 + E2) � �V (t)

for all t � T, where

1 1 2 2 2 1 2

2 1

( ) ( ) ( ) ( )
min 0

a b
a b b d b� �
� �� �� � � � � � � � � � � � � �� � � � � �

� � � � �� �� �� �� �

Hence V(t) ��� as t ���, which contradicts to the boundedness of V(t). This completes the proof.

Remark 5.1: From Theorem 5.1 together with Theorem 3.1, we can claim that the basic reproduction
number R0��is a sharp threshold parameter which determines the outcome of disease. In other words, if R0� � 1,
the disease-free equilibrium P0 is globally asymptotically stable so that the disease dies out, while if R0��> 1, the
disease is permanent so that the disease remains endemic in the sense of permanence.

6. GLOBAL STABILITY OF P+

Firstly, we give the following results which may be found in [22] for studying the global stability of P+. Consider
the following two systems

x�(t)  = f(t, x) (6.1)

x�(t)  = g(y), (6.2)

where f and g are continuous and locally Lipschitz on x � Rn and solutions exist for all time t. If limt��f(t, x) =
g(x) uniformly for x � Rn, then we called system (6.2) is asymptotically autonomous limit system of system
(6.1).

Lemma 6.1: Let M be a locally asymptotically stable equilibrium of system (6.2) and � be the �–limit set
of a forward bounded solution x(t) of system (6.1). If � contains a point y0 such that the solution of system (6.2)
y(t) � M (t ���) with y(0) = y0, then � = {M} i.e. x(t) � M (t ���).

Corollary 6.1: If solutions of the system (6.1) are bounded and the equilibrium M of the limit system (6.2)
is globally asymptotically stable, then any solution x(y) of the system (6.1) satisfies x(t) � M (t ���).
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By (2.1), N1 and N2 satisfies the following equation

1 1 2

2 2 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

N t a b N t N t

N t a b N t N t

� � � � � � � �
� � � � � � � �

(6.3)

It easy to check that system (6.3) has an unique equilibrium ( )a a
b b
�  which is globally stable. Hence, the

differential system (2.1) is asymptotically autonomous to the following system:

� � � � � � � � � � � � � � � � � � � ��
�
� � � � � � � � � � � � ���
�
� � � � � � � � � � � � � � � � � � � �
�
�
� � � � � � � � � � � � �
��

1
1 1 1 1 2 2 2 1 2 2

1
1 1 2 2 2

2
2 2 2 1 1 1 1 2 2 1

2
2 2 1 2 1

( ) ( ) ( ) (1 )

( )

( ) ( ) ( ) (1 )

( )

b a b a
a b a b

b a b a
a b a b

dE
E I I E I I b E E

dt
dI

E b d I I E
dt
dE

E I I E I I b E E
dt

dI
E b d I I E

dt

(6.4)

Furthermore, we easily know that the set

1 1 2 2( ) 0 0 1 2i i
a a

E I E I E I i
b b

� �� � � � � � � � � � � � � � �� �
� �

is positively invariant.

Theorem 6.1: Suppose that

� �1 1 1 2

2
2 1 2

9 4( 2 ) 6

4( 2 )( 2 ) ( )

b d

b d b

� � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � �
(6.5)

The endemic equilibrium point P+ (S
*, E*, I*, S*, E*, I*) is globally asymptotically stable on X0  for R0� > 1.

Proof. By Theorem 5.1 and Corollary 6.1, we only need show that the equilibrium (E*, I*, E*, I*) of system
(6.4) is globally asymptotically stable in � for global stability of P+. Let us consider the function:

� �2 2
1 2 1 2

1
( ) ( ( ) ( )) ( ( ) ( ))

2
V t E t E t I t I t� � � �

The time derivative of ( )V t  along solutions of (6.4) becomes

V�(t) = (E1 – E2)(E�1 – E�2 ) + (I1 – I2)(I�1 – I�2)

= (E1 – E2){(� – �1�) b
a

 [( a
b

– E1 – I1)I1 – ( a
b

– E2 – I2)I2]

–(b + � + 2� – �2�)(E1 – E2)}

+(I1 – I2){(� – �2�)(E1 – E2) – (b + d + 2�)(I1 – I2)}
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= –(b + � + 2� – �2�)(E1 – E2)
2 – (b + d + 2�)(I1 – I2)

2

+(� + � – �1� – �2�)(E1 – E2)(I1 – I2)

–(� – �1�) b
a

(E1 – E2)[(E1I1 – E2I2) + (I2
1 – I2

2 )]

Note that

�E1I1 – E2I2� � �E1I1 – E1I2� + �E1I2 – E2I2� ��
a
b

(�I1 – I2� + �E1 – E2�)

and

�I2
1 – I2

2 � � 2 a
b

 �I1 – I2�

which gives the following

V �(t) � –(b + � + 2� – �2� – �� – �1��)(E1 – E2)
2 – (b + d + 2�)(I1 – I2)

2

+(�� + � – �1� – �2�� + 3�� – �1��)�E1 – E2��I1 – I2�.

The above quadratic form is negative definite if and only if

�� – �1�� < b + � + 2� – �2�

and

(�� + � – �1� – �2�� + 3�� – �1��)2 < 4(b + � + 2� – �2� – �� – �1��)(b + d + 2�)

It is easy to check that the above conditions are satisfied if and only if (6.5) is satisfied. Hence we can find some
positive constant � satisfying

V�(t) � –���{(E1 – E2)
2 + (I1 – I2)

2}.

which shows that for any solution (E1(t), I1(t), E2(t), I2(t)) of (6.4), we have

� � � �1 2 1 2lim ( ) ( ) 0 lim ( ) ( ) 0
t t

E t E t I t I t
�� ��

� � � � � �

By Lyapunov’s theorem, we know that �(x) � R4
+ is contained in the set {x � R4

+: 
�V = 0} = {(E1, I1, E2, I2) � R4

+:
E1, I1 = I2}. Here �(x) is �–limit set of the solution (E1(t), I1(t), E2(t), I2(t)) of (6.4) with initial value in R4

+. On the
set W = {(E1, I1, E2, I2) � R4

+ : E1 = E2, I1 = I2}, we now consider the following system for E = Ei and I = Ii (i = 1,
2) i.e.

2 1

2

( ) ( ) ( )

( ) ( ) ( )

dE b a
E I I b E f E I

dt a b

dI
E b d I g E I

dt

� � �� � � � � � � � � � � � � �� ��� � �
�
� � � � � � � � � ���

�

�

(6.6)

It is trivial that the equilibrium (E*, I*) of system (6.6) is locally asymptotically stable and the equilibrium (0, 0)

is unstable as R0� > 1. Take Dulac’s function B = 1
I

, since

2 2
1 2

( )
( ) 0

b Ef g b

E I I I a I I

� � � � � � � � �� �� � � �� � � � � � � � � �� � � �� �� � � �
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then there is no periodic solution of (6.6). Thus, (E*, I*) of system (6.6) is globally asymptotically stable. This
shows that the endemic equilibrium P+ of system (2.1) is globally asymptotically stable. This completes the
proof.

Remark 6.1: Unfortunately, we are unable yet to prove the global stability of the endemic equilibrium
when it exists. Numerical simulation shows that the additional condition (6.5) is just sufficient. We will explore
global stability of P+ if it exists in near future.

7. DISCUSSION

In this paper, we have formulated a compartmental SEIS epidemic model with transport-related infection. We
derived an explicit formula for the reproductive number R0�. From Theorems 3.1, 4.1, 5.1 and 6.1, we know that
when the reproduction number R0� � 1, disease eradication in both cities is possible. However, when  R0�> 1, the
disease will always exist in both cities in the sense of permanence, which means the number of infected individuals
independent of initial value will ultimately remain above a positive level. If we neglect the movement of
individuals, that is, consider the case � = 0, then (2.1) is reduced to a very well known SEIS model

( )

dS SI
a bS dI

dt S E I
dE SI

bE E
dt S E I
dI

E b d I
dt

�� � � � � �� � ��
�� � � � � ��
� ��

�
� � � � ���

(7.1)

Above model has been analyzed many times in the past and the basic reproduction number is give below

0 ( )( )
R

b b d
��

� �
� � �

When R0 � 1, the disease-free equilibrium of system (7.1) is GAS. When R0 � 1, the endemic equilibrium of
system (7.1) is GAS. Comparing R0�  and R0, we see that R0� � R0  for �1 + �2 > 0 as � > 0. Even if the disease dies
out separately in two cities in the absence of transport-related infection, it is possible that the disease will cause
endemic disease due to transport-related infection.

Now we consider the coexistence steady state P+ (S
*, E*, I*, S*, E*, I*) when the disease is endemic in both

cities. It is easy to check that

0 0 ( 1 2)
i i

S I
i

� �� �
� � � � � � �

�� ��

This implies that at the steady state the total number of susceptible individuals in both cities decreases with the
increase of �i, while one of infected individuals increases with the increase of �i.

Since we know that the endemic equilibrium P+ of (2.1) is LAS and system (2.1) is permanent if R0� > 1. The
global asymptotic stability results of P+ are obtained for the model (2.1) with certain condition (6.5). Computer
observations suggest that the endemic equilibrium is still GAS when (6.5) is invalid (see Figure 1 and Figure 2).

66



Global Dynamics of an SEIS Epidemic Model with Transport-related Infection and Exposed 19

Conjecture: The endemic point P+ of (2.1) is globally asymptotically stable if it exists.

About Figure 1 and Figure 2, we give some simple biological meaning. For convenience, we denote

1 1 1 2

2
2 1 2

{9 4( 2 ) 6 }

4( 2 )( 2 ) ( )

b d

b d b

� � �� � � � � �� � � � � � � � � � �� � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � �

Hence, � < 0 is equivalent to (6.5). From Figure 1 and Figure 2, we take initial value (2,1,0.8,1,0,0), which
means there is no patient in city 2 at time 0. But the disease is still developed to become endemic in city 2 by
exposed and infected individuals’ movement.

Figure 1: The Left Figure Shows that Movement Paths of S
1
, E

1
 and I

1
 as functions of time t. The Right Figure Shows that

Movement Paths of S
2
, E

2
 and I

2
 as Functions of Time t. Here, a = 1, b = 0.2, d = 0.2,  = 0.8,  = 0.1, 

1
 = 0.8, 

2
 = 1 and

 = 0.3. We have R
0

= 2.1778 > 1 and  = 1.2964 > 0. Initial Data are (2,1,0.8,1,0,0). The Endemic Equilibrium is GAS

Figure 2: The Left Figure Shows that Movement Paths of S
1
, E

1
 and I

1
 as Functions of Time t. The Right Figure Shows that

Movement Paths of S
2
, E

2
 and I

2
 as Functions of Time t. Here, a = 1, b = 0.4, d = 0.044,  = 0.8,  = 0.4, 

1
 = 0.8, 

2
 = 1 and

 = 0.5. We have R
0

= 1.7463 > 1 and = 0. Initial Data are (2,1,0.8,1,0,0). The Endemic Equilibrium is GAS
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