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Existence and Uniqueness Theorem of a Coupled System of Linear
Schrödinger Equations

Lazhar Bougoffa and Mohammad A Al. Khadhi *

Abstract: In this paper, we study a boundary value problem for of a coupled system of linear Schrödinger
equations. Using Lax-Milgram theorem, we prove the existence and uniqueness of the strong solutions.
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1. INTRODUCTION

Coupled linear equations of second-order are needed in the formulation of various physical situations. As an
example of such type of equations, is the the following coupled system of Schrödinger equations [1,2,3,4,5,6]
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in the bounded domain � = (0, 1) where f, g � L2 (0, 1) and pi, qi, ri � C1 (0, 1), i = 1, 2. To this system we attach
the following boundary conditions
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We shall assume: there exist some positive constants pik, qik, rik, ik ikik rq � ��  and �ik, k = 0, 1 such that �x �[0, 1],
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where i = 1, 2. Here and in all that follows: the notation (y . z�) means 
� �
� �
� �

.
d dz

y
dx dx

In [1], the author has proved a new theorem concerning the conditions for solvability of this system. Other

results on the separation of this system and the afflication of Adomian decomposition method were investigated

in [6].

Here, our aim is to prove the existence and uniqueness of the strong solution for the given boundary value

problem associated to a coupled system of Schrödinger. The proof is based on Lax-Milgram theorem.

2. PRELIMINARIES

We reformulate the given system as the problem of solving the operator equation

LU = F

where U, LU and F are respectively the pairs:

U = (u, v),

LU = (�1(u, v), �2(u, v)) ,

and

F = (f, g),

where

�1(u, v) = –(p1(x)u�)� + q1(x)u – r1(x)v

and

�2(u, v) = –(p2(x)v�)� + q2(x)u – r2(x)v.

The operator L is considered from a space E into the space L2(0, 1) × L2(0, 1),

E = {(u, v) � (L2(0, 1))2 / u�, v�, (p1u�)�, (p2v�)� � L2(0, 1)},

where u(0) = u(1) = 0 and v(0) = v(1) = 0, with respect to the norm
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Note that E is Hilbert space with the scalar product
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For W = (w1, w2) � E define the operator Mwi, i = 1, 2 by

Mwi = wi - (piw�i)� .
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Consider the scalar products (�1(u, v), Mw1)L2
 and (�2(u, v), Mw2)L2

. Employing integration by parts, and

taking into account of the given boundary conditions, we obtain
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Adding (1) and (3), we obtain
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also, adding (2) and (4), we get
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If we assume side to side (5) and (6), we get
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Now we are in a position to give the following definition of the strong solution as follows

Definition 1: A solution U = (u, v) � E is called a strong solution of

LU = F,

if

�(U,W) = �(W), �W = (w1, w2) � E,

where the bilinear form � (U, W) is defined by
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is a linear functional.

3. EXISTENCE AND UNIQUENESS OF SOLUTION

Theorem 1: Let F = (f(x), g (x)) � L2 (0, 1) × L2 (0, 1). Then there exists one and only one strong solution
W0 = (w10, w20) � E of problem

LU = F.

Proof: Clearly the bilinear form �(U, W) is a bounded bilinear functional and coercive for U = (u, v) � E
and W = (w1, w2) � E. Indeed, for U = (u, v) � E and using conditions (H1)we get
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where d1 = min(q11, q21), d2 = min (r11, r21), d3 = min (p11, p11q11, p21q21) and d4 = min(p11r11, p21, p21r21).

We observe that the following term in (7) can be expressed as
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using conditions (H2), we obtain
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� (U, U)  ������U��E,

where � = min (di, �11+ r21, �21 + �21, 1), i = 1, … 4.

Also, for (f(x), g(x)) � L2 (0, 1) × L2 (0, 1),
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is a bounded linear functional on E. Indeed,
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So, �(W) ��max (� f � L2, �g� L2) �W �E. Thus by Lax-Milgram theorem, there exists a unique solution W0�� E.

The following inequality follows immediately.

Corollary 1.

2 20 0E L LW C F W E��� �� � �� �� �� � �

where C > 0 is independent on W0
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