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Abstract: This paper deals with the problem of robust stabilization for uncertain discrete stochastic fuzzy systems
with time-varying delays. The uncertainties are time-varying but norm-bounded. The purpose is to design a state
feedback fuzzy controller such that the resulting closed-loop system is robustly stochastically stable. Based on
Takagi-Sugeno (T-S) fuzzy model, a delay-dependent sucient condition for the solvability of the problem is
obtained by utilizing a proper Lyapunov functional together with the linear matrix inequality (LMI) approach.
Finally, a numerical example is provided to demonstrate the applicability of the proposed design method.
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1. INTRODUCTION

Fuzzy logic control has attracted increasing attention because it can provide an alternative approach to the
control of plants that are complex, uncertain, ill-defined, and has available qualitative knowledge from domain
experts for their controller design during the last four decades. Among several model-based fuzzy logic control
approaches, the method based on the Takagi-Sugeno (T-S) fuzzy model has become quit popular in the past
three decades. T-S fuzzy model can drastically reduce the number of rules in modeling higher nonlinear systems.
Consequently, T-S fuzzy models are less prone to the curse of dimensionality than other fuzzy models. More
importantly, T-S fuzzy models provide a basis for development of systematic approaches to stability analysis
and controller design of fuzzy control systems [6].

Since the T-S fuzzy model were proposed by Takagi and Sugeno [16], there have been dramatic progress in
stability analysis and control design of this model-based fuzzy systems [2, 15, 17]. When parametric uncertainties
appear in a T-S fuzzy system, the robust stability problem was addressed in [12, 18], where the stability conditions
were expressed in terms of LMIs. Sucient conditions for the solvability of the  robust H� fuzzy control problem
for uncertain T-S fuzzy systems were proposed in [2, 3, 9, 11] by using the algebraic Riccati inequality-based
approach and the LMI-based approach, respectively. Time delays are frequently encountered in various
engineering systems such as aircraft, long transmission lines in pneumatic systems, and chemical or process
control systems. It has been shown that the existence of time delays is often one of the main causes of instability
and poor performance of a control system [8]. T-S fuzzy systems with time delays have been studied over the
last decades. In [4], the stability analysis and stabilization problems for such T-S fuzzy delay systems were
considered, and state feedback fuzzy controllers and fuzzy observers were designed via the so-called parallel
distributed compensation (PDC) scheme. The robust H� control problem for uncertain T-S fuzzy systems with
time delays was investigated in [10]. The corresponding results for the discrete case can be found in [5, 23, 26].
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On the other hand, the study of stochastic systems has attracted considerable attention. Since stochastic modeling
has come to play an important role in many branches of science and engineering applications, many fundamental
results for deterministic systems have been extended to stochastic systems [20, 24]. When parameter uncertainties
and time-delay appear in stochastic systems, the problems of robust stochastic stability analysis and controller
design have been studied in [14, 21, 22], where some useful robust stochastic stability conditions were proposed.
The combination of stochastic system and T-S fuzzy model can be seen in [13], where the stochastic stability and
fuzzy controller design were investigated. The delaydependent stabilization problem for stochastic fuzzy systems
with constant time delays was addressed in [25]. A sliding mode fuzzy controller was designed in [7] to stabilize
a stochastic T-S fuzzy system with unknown nonlinearities and constant time delays. It should be pointed out that
the studies in [7, 13, 25] are concerned with the continuous-time case. To the best of our knowledge, so far, no
results on the delaydependent roust stabilization for discrete stochastic T-S fuzzy systems are available in the
literature, which is still open and remains unsolved. This motivates the present study.

In this paper, we are concerned with the delay-dependent stabilization problem for uncertain discrete stochastic
fuzzy systems with time-varying delays. The parameter uncertainties are assumed to be timevarying norm-bounded,
and the system delay is supposed to be time-varying but bounded. We aim at designing a state-feedback fuzzy
controller such that the resulting closed-loop system is robustly stochastically stable. A delay-dependent sucient
condition for the solvability of the formulated problem is proposed. The desired state feedback controller is
constructed by solving certain LMIs, which can be easily implemented by using standard numerical algorithms
[1]. We also provide a numerical example to demonstrate the eectiveness and applicability of the proposed method.

Notation: Throughout this paper, for real symmetric matrices X and Y , X � Y (respectively, X > Y) means
that the matrix X–Y is positive semi-definite (respectively, positive definite). I is an identity matrix with appropriate
dimension. The superscript “T” represents the transpose of a matrix. The notation “*” is used as an ellipsis for
terms that are induced by symmetry. � is the set of natural numbers. l2 [0,�) refers to the space of square
summable infinite vector sequences. The notation � · � stands for the usual l2[0,�) norm while | · | refers to the
Euclidean vector norm. We use �min(·) and �max(·), respectively, to denote the minimum and maximum eigenvalue
of a symmetric matrix. diag(A1, A2, . . . , An) denotes the following diagonal matrix,
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Matrices, if the dimensions are not explicitly stated, are assumed to have compatible dimensions for algebraic
operations.

2. DEFINITIONS AND PROBLEM FORMULATION

Consider the following uncertain discrete stochastic T-S fuzzy system with time-varying delays:

Plant Rule i: IF s1(k) is µi1 and s2(k) is µi2 . . . and sg(k) is µig THEN

x(k + 1) = Ai(k)x(k) + Adi(k)x(k – �(k)) + B1i(k)u(k)

+[Ei(k)x(k) + Edi(k)(k – �(k)) + B2i(k)u(k)]�(k), (1)

x(k) = �(k), k = –�2,–�2 + 1, · · · , 0. i = 1, 2, · · · , r, (2)
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where µij is the fuzzy set and r is the number of IF-THEN rules; x(k) � �n is the state; u(k) � �m is the control
input; s1(k), s2(k), . . . , sg(k) are the premise variables which do not depend on the input variables u(k). Throughout
this paper, we make the following assumptions:

Assumption 1: �(k) � �q is a real scalar process on a probability space (�,�,�) relative to an increase
family (�k)k�� of �- algebras �k � � generated by (�(k)k��, � is the set of natural numbers,

� {�(k)} = 0, � {�(k)2} = �,

where the scalar � > 0, and the stochastic process �(0), �(1), · · · , are independent.

Assumption 2: �(k) > 0 is an integer representing the time-varying delay of the system, which satisfies

�1 ���(k) ���2,

where �1 > 0 and �2 > 0 are integers. x(k) = �(k), k = –�2,–�2 + 1, · · · , 0 are the initial conditions and independent
of the process {�(k)}.

Assumption 3: Ai(k), Adi(k), B1i(k), Ei(k), Edi(k), B2i(k) are known real constant matrices of appropriate
dimensions, �Ai(k), �Adi(k), �Ei(k), �Edi(k), �B1i(k), �B1i(k) are unknown matrices representing time-varying
parameter uncertainties, Fi(·) : ���

ll×l2 is an unknown time-varying matrix function, where for i = 1, 2, . . . , r,

Ai(k) = Ai + �Ai(k), Adi(k) = Adi + �Adi(k), Edi(k) = Edi + �Edi(k),

Ei(k) = Ei + �Ei(k), B1i(k) = B1i + �B1i(k), B2i(k) = B2i + B2i(k),

[�Ai(k) �Adi(k) �Ei(k) �Edi(k) �B1i(k) �B2i(k)] = MiFi(k)[N1i N2i N3i N4i N5i N6i], (3)

Fi(k)T Fi(k) ��I, �k � �. (4)

The uncertain matrices �Ai(k), �Adi(k), �Ei(k), �Edi(k), �B1i(k), �B1i(k) are said to be admissible if both (3) and
(4) hold.

We denote by le2([0, �); �r) the space of r-dimensional nonanticipatory square-summable stochastic processes
f(·) = (f(k)k��) on � with respect to (�k) k�� satisfying
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By using a center-average defuzzier, product inference, and singleton fuzzifier, the final output dynamic fuzzy
model can be inferred as follows:
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s(k) = [s1(k) s2(k) . . . sg(k)],

and µij(sj(k)) is the grade of membership of sj(k) in µij . Then, it can be seen that
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Throughout this paper, we shall use the following definitions:

Definition 1: The uncertain discrete stochastic time-delay system (�) is said to be robustly stochastically
stable with u(k) = 0 if there exists a scalar c > 0 such that for all admissible uncertainties
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where x(k) denotes the solution of equation (5) at time k under initial conditions in (3).

In the present study, by the parallel distributed compensation(PDC) technique [17], we are interested in
designing a fuzzy state feedback controller in the following form:

Control Rule i: IF s1(k) is µi1 and s2(k) is µi2 . . . and sg(k) is µig THEN

u(k) = Kix (k), i = 1, 2, . . . , r, (6)

where Ki � �m×n is the controller gain to be determined. Then, the overall fuzzy state feedback controller is
given by

1

( ) ( ( )) ( )
r

i i
i

u k h s k K x k
�

� �� (7)

The objective of this paper is to design a state feedback fuzzy controller in the form of (7) such that the
resulting closed-loop system is robustly stochastically stable.

Before concluding this section, we introduce the following lemma, which will be used in the derivation of
our main results in the next sections.

Lemma 1: [19] Let � ,��,��,�� and � be real matrices with appropriate dimensions such that � > 0 and
�T� � I. Then we have the following:

(1) For any scalar ��> 0 and vectors x and y of appropriate dimensions,

2xT���y ���–1xT��T x + �yT�T�y.

(2) For any scalar ��> 0 such that � – ���T > 0,

(� + ���)T�–1(� + ���) ���T (� – ���T )–1� + �–1�T�.
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3. ROBUST STABILIZATION

In this section, we will give some sucient conditions for the solvability of the delay-dependent stabilization
problem for the stochastic time-delay T-S fuzzy systems. The result on robust stochastic stability analysis for
system (�) is provided in the following theorem:

Theorem 1: The uncertain discrete stochastic fuzzy time-delay system � with u(k) = 0 is robustly
stochastically

stable if there exist matrices P > 0, Q > 0, and scalars �1i > 0 and �2i > 0 such that the following LMIs hold for all
i = 1, 2, · · · , r,
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where
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Proof: Pre- and post-multiplying the LMI in (8) by diag(I, I, P–1, P–1, I, I) respectively, result in
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which, by the Schur complement formula, we have that there exists a scalar ��> 0 such that
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For system (�), we choose the following Lyapunov functional candidate:
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From (21) and (22) it is easy to see

1 1 11{[ ( ) ( )] } ( ) ( )k k k k k k k kk V V VV � � �� � � � �� � � � � �� �

1 ( ) ( ) ( ( )) ( ( ))T Tx k Qx k x k k Qx k k� � � � � � �

and

� {Vk+1(�k+1)��k} – Vk(�k)

{ ( 1) ( 1)} ( ) ( ) ( ) ( ( )) ( ( ))T T Tx k Px k x k Q P x k x k k Qx k k� � � � � � � � � � �� (23)

Now, by Lemma 1 we can see

�(x(k + 1)TPx(k + 1)) = 
1 1

1
( ( )) ( ( )) ( )

2

r r
T

i j
i j

h s k h s k k
� �

�� �

1 1 1 1{( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )T T
i i i i i j j j j j j j i i iiA M F k N P A M F k N A M F k N P M F k NA� � � � � �

2 2 2 2[( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )]} ( )T T
i i i i j j j j j j j j i i i iE M F k N P E M F k N E M F k N P M F k N kE�� � � � � � � �

1

( ( )) ( )
r

T
i

i

h s k k
�

� ��

1 1 2 2{( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )} ( )T T
i i i i i i i i i i i i i i i iA M F k N P A M F k N E M F k N P E M F k N k� � � � � � � � �

1

( ( )) ( )
r

T
i

i

h s k k
�

� ��

1 1 1 1 1 1
1 1 1 1 2 2 2 2{ ( ) [ ( ) ]} ( )T T T T TT
i i i i i i i i i i i i i i ii P M M A N N E P M M E N N kA

� � � � � �� � � � � � � � � � � � � �

where

( ) [ ( ) ( ( )) ]T T Tk x k x k k� � � � �  (24)

Therefore, by (16), for all �(k) � 0, we obtain
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< 0 0
1

{ ( )V
�
� �

<
2

2

0
sup { ( ) }

i
c i
�� � �

� � � ��

where

2 2
2 1 1 2

max max
1

{max{ ( ) ( )} 1
2

c P Q
� �� � � � � � �

� � �� � �� �� �� � �
(28)

which completes the proof.

Now, we are in a position to present the result on the robust stabilization problem for the uncertain discrete
stochastic time-delay system (�).

Theorem 2: Consider the uncertain discrete stochastic fuzzy time-delay system (�). This system is robustly

stochastically stabilizable if there exist matrices X > 0, ˆ 0, iQ Y�  and scalars �1ij > 0 and �2ij > 0, 1 � i � j � r such
that the following LMI holds:
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In this case, a desired stabilizing fuzzy controller can be chosen as in (7) with the state feedback gains as

Ki = YiX
–1, i = 1, 2, . . . , r. (30)
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1 222 33
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Now, applying the state feedback controller in (7) with the controller gains given in (30) to system �, we obtain
the following closed-loop system:
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�C : x(k + 1) = 
� �

� � ���
1 1

( ( )) ( ( )){ ( ) ( ) ( ) ( ( ))
r r

i j ij di
i j

h s k h s k A k x k A k x k k

+[Eij(k) x(k) + Edi(k) x(k – �(k))]�(k)}, (32)

where

Aij = Ai + B1iKj , Eij = Ei + B2iKj, (33)

�Aij(k) = Ai(k) + B1i(k)Kj , Eij(k) = Ei(k) + B2i(k)Kj, (34)

Aij(k) = Aij + Aij(k), Eij(k) = Eij + Eij(k). (35)

For system (�c), using the same Lyapunov functional as in (17) we obtain

1 1 1 1

1
( ( 1) ( 1)) ( ( )) ( ( )) ( ( )) ( ( )) ( )

4

r r r r
T T

i j k l
i j k l

x k Px k h s k h s k h s k h s k k
� � � �

� � � ������

{[ ( ) ( )] [ ( ) ( )]T
ij ji ij ji kl lk kl lkk k P k k� � � � � � � � � � �� � � � � � � �

+�[�ij + �ji + ��ij(k) + ��ji(k)]TP[�kl + �lk + ��kl(k) + ��lk(k)]} × �(k)

1 1 1 1

1
( ( )) ( ( )) ( ( )) ( ( )) ( )

8

r r r r
T

i j k l
i j k l

h s k h s k h s k h s k k
� � � �

� �����

×{[�ij + �ji + ��ij(k) + ��ji(k)]T P[�kl + �lk + ��kl(k) + ��lk(k)]

+[�kl + �lk + ��kl(k) + ��lk(k)]T P[�ij + �ji + ��ij(k) + ��ji(k)]

+ � [�ij + �ji + ��ij(k) + ��ji(k)]T P[�kl + �lk + ��kl(k) + ��lk(k)]

+[�kl + �lk + ��kl(k) + ��lk(k)]T P[�ij + �ji + ��ij(k) + ��ji(k)]} × �(k)

1 1

1
( ( )) ( ( )) ( )

4

r r
T

i j
i j

h s k h s k k
� �

� ���

× {[�ij + �ji + ��ij(k) + ��ji(k)]T P[�ij + �ji + ��ij(k) + ��ji(k)]

+ �[�ij + �ji + ��ij(k) + ��ji(k)]T P[�ij + �ji + ��ij(k) + ��ji(k)]} × �(k), (36)

where �(k) is defined in (24) and

�ij = [Aij  Adi], �ij = [�ij �di], (37)

��ij(k) = [��ij(k) ��di(k)], ��ij(k) = [��ij(k) ��di(k)]. (38)

It follows from (3), (4) and (34) that

��ij(k) + ��ji(k) = MiFi(k)[N1i + N5iKj ] +MjFj(k)[N1j + N5jKi]

= MijFij(k)N1ij ,

��ij(k) + ��ji(k) = MiFi(k)[N3i + N6iKj ] +MjFj(k)[N3j + N6jKi]

= MijFij(k)N2ij ,

where

( ) 0
( )

0 ( )
i

ij
j

F k
F k

F k

� �
� �� �
� �

(39)
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1 5 2
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1 5 2

i i j i
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j j i j

N N K N
N

N N K N
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� �
� �
� �
� �

�
� �

�
(40)

3 6 4
2

3 6 4

i i j i
ij

j j i j

N N K N
N

N N K N

� �
� �
� �
� �
� �

�
� �

�
(41)

(42)

By Lemma 1 we have

[�ij + �ji + �ij(k) + �ji(k)]T P[�ij + �ji + �ij(k) + �ji(k)]

�[�ij + �ji]
T (P–1 – �1ij

1 1
1 1 1) [ ]T T

ij ij ij ji ij ij ijM M A A N N� �� � �

[ ( ) ( )] [ ( ) ( )]T
ij ji ij ji ij ji ij jik k P k k� � � � � � � � � � �� � � � � � � �

1 1 1
2 2 2 2[ ] ( ) [ ]T T T

ij ji ij ij ij ij ji ij ij ijP M M N N� � �� � � � � �� � � � � �

By the same deduction as in Theorem 1 and together with (23) and (36) we can see

1 1{ ( ) } ( )k k k k kV V� � � �� � � �

1 1

1
( ( )) ( ( )) ( )

4

r r
T

i j
i j

h s k h s k k
� �

� ���

1 1 1
1 1 1 1{[ ] ( ) [ ]T T T

ij ji ij ij ij ij ji ij ij ijP M M N N� � �� � � � �� � � � � �

1 1 1
2 2 2 2[ ] ( ) [ ] 4 } ( )T T T

ij ji ij ij ij ij ji ij ij ijP M M N N k� � ��� � � � � � � � �� � � � � � (43)

where is define in (17).

On the other hand, from (31), (37), (40) and (41) we can see

11 12

1 213 14 15

4 [ ]

[ ]

T
ij ji

T T T
ij ji ij ijN N

� �� � � �� �

� � � � � � �� � �

� �

� �

� �

� � �

So, by Schur complement formula, together with (31) and (43) we obtain

� {Vk+1(�k+1)|�k} – Vk(�k) < 0. (44)

Thus, similar to the proof of Theorem 1, we obtain that system �c is robustly stochastically stable. This completes
the proof.

4. NUMERICAL EXAMPLE

In this section, by applying the PDC technique, we provide a simulation example to illustrate the H� controller
design approach developed in this paper. The uncertain T-S fuzzy neutral delay system considered in this
example is with two rules:
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Plant Rule 1: If x1(k) is µ11 then

x(k + 1) = A1(k)x(k) + Ad1(k)(k – �(k)) + B11(k)u(k)

+ [E1(k)x(k) + Ed1(k)(k – �(k)) + B21(k)u(k)]�(k),

Plant Rule 2: If x1(k) is µ21 then

x(k + 1) = A2(k)x(k) + Ad2(k)(k – �(k)) + B12(k)u(k)

+[E2(k)x(k) + Ed1(k)x(k – �(k)) + B22(k)u(k)]�(k),

Control Rule 1: If x1(k) is µ11 then

u(k) = K1x(k),

Control Rule 2: If x1(k) is µ21 then

u(k) = K2x(k),

where

1 1 1
0 9 0 4 0 24 0 13 0 14 0 09

0 5 0 8 0 0 12 0 17 0 35dA A E
� � � � � � � � �� � � � � �

� � � � � �� � � � � �� � � � �� � � � � �

1 11 21
0 12 0 24 2 5 0 8 0 8 1

0 12 0 48 0 6 1 5 0 6 2 5dE B B
� � � � � � �� � � � � �

� � � � � �� � � � � �� � � � � � � � � �� � � � � �

2 2 2
1 1 0 6 0 11 0 23 0 25 0 56

0 1 0 4 0 0 12 0 33 0 17dA A E
� � � � � � � �� � � � � �

� � � � � �� � � � � �� � � � � � �� � � � � �

2 12 22
0 13 0 26 1 8 1 3 1 4 1 6

0 13 0 52 0 6 1 1 0 9 1 5dE B B
� � � � � � �� � � � � �

� � � � � �� � � � � �� � � � � � �� � � � � �

The parameter uncertainties �Ai(k), �Adi(k), �Ei(k), �Edi(k) �B1i(k) and �B2i(k), i = 1, 2, are assumed to satisfy
(3) and (4) with

M1 = 2
0 1 0 1

0 2 0 1
M

� �� � � �
� � �� � � �� �� � � �

N11 = [0.01 0], N21 = [–0.01 0.01], N31 = [0.03 0],

N41 = [0.02  0], N51 = [–0.02 0.01], N61 = [0.04 0.02],

N12 = [0 0.01], N22 = [0.01 0.01], N32 = [0.02 0.01],

N42 = [0.02 0.01], N52 = [–0.02 0], N62 = [0.03 0].

The membership functions of µ11 and µ21 are shown as follows:

1 1
1 12 2

1 1 1 1
1 1 11 1 1 2 1 21 1 12 2 2 2

1 1

1 1

( ( )) 1 ( ( )) 1

1 1 0 1

x x

h x k x x h x k x x

x x

� �� � � � � �
� �� �� � � � � � �� � � � � � � � �� �� �
� �� � � �� �� �
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The purpose of this example is to design a fuzzy state feedback controller such that the resulting closedloop
system is robustly stochastically stable. The time delay level is specified to be �1 ���(k) ���2 with �1 = 2 and �2 =
4 and � {�(k)2} = � is satisfied with ��= 1. Then, by using the Matlab LMI Control Toolbox to solve the LMIs
in (29), we obtain a set of feasible solutions as follows:

18 1651 7 7165 70 3736 30 7473ˆ
7 7165 5 0125 30 7473 21 7422

X Q
� � � � � �� � � �

� � � �� � � �� � � � � �� � � �

1 2
7 4424 4 2374 3 1239 1 2835

1 0579 0 7452 4 5360 1 9180
Y Y

� � � � � �� � � �
� � � �� � � �� � � � � �� � � �

�111 = 0.0777,  �112 = 0.1874,  �122 = 0.0676,

�211 = 0.1769,  �212 = 0.1980,  �222 = 0.0218.

Then, by Theorem 2, the final controller are obtained as follows:

1 1 2 2
0 1462 0 6203 0 1826 0 0251

( ) ( ( )) ( ( )) ( )
0 0142 0 1705 0 2519 0 0051

u k h x k h x k x k
� �� � � � � � �� � � �

� � �� �� � � �� � � � � � � �� � � �� �

5. CONCLUSIONS

This paper has provided sucient conditions for the solvability of the problem of robust stochastic stabilization
for a class of uncertain stochastic T-S fuzzy systems with time-varying delays. These conditions are expressed
in terms of LMIs, which can be easily tested by using commercially available software. It has been shown that
a desired state feedback fuzzy controller can be constructed when the given LMIs are feasible. The eectiveness
and applicability of the proposed design method have been demonstrated by a numerical example.
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