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Global Stability of an Epidemic Model with Super-infection

Junli Liu* & Tailei Zhang**

Abstract: A two-strain epidemic model is proposed and investigated. The conditions and thresholds to the existence
of various equilibria are established. We compute the reproduction number for each strain independently, and
show that when both the two reproduction numbers are less than unity, both strains die out. Conditions that
guarantee the coexistence of the two strains are obtained. Our analysis shows that coexistence and competitive
exclusion are possible due to the interaction between two strains. The asymptotic stability and the regions of
stability for the equilibria are discussed. To verify our theoretical results, some numerical simulations are also
included.
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1. INTRODUCTION

For many pathogens, they are represented by more than one variant. The importance of including subtypes in
modeling the development and evolution of the disease is well recognized. Competitive exclusion and coexistence
of strains in gonorrhea and other sexually transmitted diseases are discussed in [1,2]. The re-emergence of
tuberculosis and the spread of drug-resistent strains is considered in [3,4]. Dengue is represented by four serotypes
and infections by some particular sequences of them can be particularly dangerous as they are believed to lead
to the deadly haemorrhagic fever. Dengue models with several serotypes are considered in [5,6]. The virus that
causes influenza is so highly mutable that it has promoted scientist to create epidemic models where the infected
individuals are continuously structured by the phenotype of the virus [7]. Other multi-strain models of influenza
are considered in [8,9]. Epidemic model which investigates multistrain interactions and finds that competitive
exclusion is the ultimate outcome is found in [10]. Various mechanisms promote coexistence among the strains.
Some of those are super-infection [11,12], mutation [3,4], coinfection [13], cross-immunity [8,5], density-
dependent host mortality [14] and vaccination [15].

In [16], the authors proposed and investigated a two-strain influenza epidemic model with isolation and
partial cross-immunity, but without super-infection. They established that cross-immunity and host isolation
lead to periodic epidemic outbreaks (sustained oscillation) in this multistrain system. Subthreshold coexistence
driven by cross-immunity is possible even when the isolated reproduction number of one strain is below 1.
Oscillatory coexistence is established via Hopf bifurcation theory.

As we know, super-infection is a mechanism worth consideration, for studies in [17] shows that it is possible
for young individuals to become infected with two different strains in one “flu” season. In this paper, we
consider a two-strain epidemic model with super-infection. The main focus of this paper is on the identification
of competitive outcomes that result from the interactions between two strains. We mainly focus on the disease
which have cross-immunity and super-infection, such as tuberculosis, influenza , HIV and others. The presence
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of multiple variants of the pathogen has richer dynamical behaviors, competitive exclusion and coexistence of
the two strains can occur.

This paper is structured as follows. Section 2 introduces the general two-strain model; section 3 establishes
four thresholds; section 4 carries out the global stability analysis of the disease-free state and the nontrival
equilibria; section 5 gives the stability region analysis of different equilibria, some numerical simulations are
also included to illustrate our theoretical analysis; section 6 summaries our findings and collects some thoughts.

2. TWO-STRAIN MODEL

In this section, we introduce a two strain epidemic model with super-infection. We consider a population N(t)
whose demography is regulated by a constant birth/r-ecruitment rate � and a natural mortality rate µ. The
susceptible population S(t) can be infected by strain one at a transmission rate �1 and go to the class of individuals
infected by strain one I(t). The infected individuals in class I(t) recover at a rate �1 and return to the susceptible
class. Alternatively, susceptibles can be infected by strain two at a transmission rate �2, in which class they go
to the class of individuals infected by strain two J(t). Infected individuals with strain two recover at a rate �2 and
upon recovery return to the susceptible class. We assume that those infected with the second strain can come
into a contact with infectious individuals with the first strain and become reinfected with the first strain. This
process is referred to as super-infection. The biological difference between the two strains is that strain one I(t)
is stronger than strain two J(t), i.e., strain one I(t) can infect individuals already infected by strain two J(t), while
strain two J(t) cannot infect individuals already infected by strain one I(t). The transmission coefficient in case
of super-infection is �1� where � is the coefficient of reduction or enhancement of infection at reinfection. In
particular, if ��< 1 then reinfection is more likely than the regular infection while if 0 < � < 1 then reinfection is
less likely than the regular infection. If � = 0 there is no super-infection. We remark, the influenza virus satisfies
the mechanism mentioned above [17], and can be described by the following model (2.1).

By the assumptions, we can give the model flow diagram.

Figure 1: Transmission Diagram of Super-infection

From the transmission diagram, the model takes the form:

1 2 1 2

1 1 1

2 1 2

( )

( )

� � � �� �� � � � � � � ��
�
� � � �� � � � � � ��
�
�

� � �� � � � � � ���

dS SI SJ
S I J

dt N N
dI SI IJ

I
dt N N
dJ SJ IJ

J
dt N N

(2.1)
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where

N(t) = S(t) + I(t) + J(t),

and is equipped with the following initial conditions:

S(0) = S0, I(0) = I0, J(0) = J0.

We first note that this problem has a unique solution in the positive cone S � 0, I � 0, J � 0. Also, summing the
equations, we have that the total population N(t) satisfies the differential equation:

( )
( )� � ��

dN t
N t

dt

whose solution is given by the formula

0( ) (1 )�� ���
� � � �

�
t tN t N e e

Hence,
µ

( )
�

�N t  as t ���, and the result in [18] allows us to assume, without loss of generality, that 
µ

(0)
�

�N .

Hence, we set

( ) ( ) ( ) ( ) for all
�

� � � � �
�

N t S t I t J t t

If we set

,� � � � �
S I J

s i j
N N N

then s + i + j  = 1 and system (2.1) becomes:

1 1 1

2 1 2

(1 ) ( ) ( )

(1 ) ( ) ( )

�

�

� � � � � �� � � � � � � ���
�
� � � � � �� � � � � � � �
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di
i i j ij i F i j

dt
dj

j i j ij j G i j
dt

(2.2)

Define D = {(i, j) � �2
+ : 0 � i + j � 1}, then it is easy to show that D is a positive invariant set with respect to

system (2.2).

Theorem 2.1: System (2.2) has no periodic solutions in the interior of  D.

Proof: Set Dulac function 
1

( )� �B i j
ij

, then we have

1 2( ) ( )
0

� �� �� �
� � � � � �� �� � � �

FB GB

i j j i

then by the Bendixson-Daluc criterion, we know there is no closed orbit in the interior of  D. This completes the
proof.
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3. STEADY STATES

For any equilibrium (i*, j*) of system (2.2), if it exists, must be a constant solution of the limiting system
associated with (2.2). Thus we have to look for the solution of the following system:

1 1 1

2 1 2

0 (1 ) ( )

0 (1 ) ( )

� � � � � �

� � � � � �

� � � � �� � � � � � �

� � � � �� � � � � � �

i i j i j i

j i j i j j
(3.1)

System (3.1) always has the disease-free equilibrium

E0 = (0, 0), (3.2)

while the existence of non-trivial equilibrium will depend on the value of the two parameters.

1
1

1

2
2

2

�� ����
�� ����

R

R
(3.3)

which are the basic reproduction number for strain I and strain J, respectively, and give the average number of
secondary infectious cases produced by an infected individual with strain I (respectively, by an infected individual
with strain J) during the entire infectious period in a purely susceptible population.

Solving system (3.1) we see that, besides E0, the following one strain exclusion equilibria are feasible,
under some conditions on R1 and  R2. Namely we have

(1) The following strain one exclusive equilibrium exists

1 1 1
1

1
( 0) 1� �� � � � � �E i i

R
(3.4)

if and only if  R1 > 1;

(2) The following strain two exclusive equilibrium exists

2 2 2
2

1
(0, ) 1� �� � � � �E j j

R
(3.5)

if and only if R2 > 1.

Furthermore, the presence of a coexistence equilibrium depends on two other reproduction numbers, namely
the invasion reproduction numbers R12 and R21. By definition, the invasion reproduction number of the first
strain R12 gives the number of secondary infections that one infected individual with the first strain will produce
in a population in which the second strain J is at equilibrium. We refer to [19] for the explanation how these
numbers are computed. The invasion reproduction number of the first strain in our case is given by (see(3.5))

1
12 1

2 2

1
1

� �
� � � � �� �

� �

R
R R

R R
(3.6)

64



Global Stability of an Epidemic Model with Super-infection 215

Denote 2 2
2 2

1
, 1 ,� � � �

� � �� �
� �

N
S J N

R R
 then 1 2 1 2

12
1 1

� �� �
� � �

� � � � � �
S J

R
N N

. R12 is in fact the result of two additive

contributions: 1

1

�
� � �

 gives the number of secondary cases that a “typical” strain-I infected individual will generate

in the fully susceptible proportion of the population 2
�S

N
, while 1

1

�
�
� � �

 is the number of secondary cases that

a “typical” strain-I infected individual will generate in the “super-infection” proportion of the susceptible

population 2
�J

N
.

Analogously, the invasion reproduction number of the second strain R21 gives the number of the secondary
infections that one infected individual with which the second strain will produce in a population in which the
first strain I is at equilibrium. The invasion reproduction number of the second strain in our case is given by (see
(3.4))

2 1
21 2

1 2 1

1
1

� �� �
� � � �� �� � �

R
R R

R R
(3.7)

The meaning of R21 is similar to that of R12. But since strain J is super-infected by strain I, then there is a minus
sign before the second term in R21.

The two invasion reproduction numbers determine the occurrence of one coexistence equilibrium. In fact,
solving (3.1) for non-trivial i* and j* we see that it there exists the endemic equilibrium

E* = (i*, j*)

where

� �� � � � � � �
� � � � �� �� � � � � � ��� �

� �� � � � � � �
� � � � � �� �� � � � �� ��� �

* 2 1 2 1
2

1 1 2 1

* 1 1 2 1
1

1 1 2 1

( )1
( ) ,

( )1

i

j
(3.8)

that is feasible if and only if the following condition is satisfied

1 2 1

2 1 2 1 1

1 1� � � � � �
� � �

� � � � ��R R
(3.9)

Thus we have

(3) If �1� + �2 – �1 > 0, then E* exists if and only if the two invasion reproduction numbers are both greater than
one, that is
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R12  > 1, R21 > 1. (3.10)

In fact, we can check that the upper inequality in (3.9) is equivalent to the inequality R21 > 1, while the lower
inequality is equivalent to the inequality R12  >.

(4) If �1� + �2 – �1 < 0, then E* exists if and only if the two invasion reproduction numbers are both less than one,
that is

R12  < 1, R21 < 1. (3.11)

We note that feasibility implies R1 < R2.

We summarize the issues above in the following theorem:

Theorem 3.1:  Let R1, R2, R12, R21 be the reproduction number respectively defined in (3.3), (3.6), (3.7).
Then

(i) The disease-free equilibrium E0 given in (3.2) exists for all values of the parameters.

(ii) The strain one exclusive equilibrium E1 given in (3.4) exists if and only if R1 > 1.

(iii) The strain two exclusive equilibrium E2 given in (3.5) exists if and only if R2 > 1.

(iv) If �1� + �2 – �1 > 0, the coexistence equilibrium E* given in (3.8) exists if and only if R12
 > 1 and R21

 > 1.

(v) If �1�
 + �2 – �1 < 0, the coexistence equilibrium E*  given in (3.8) exists if and only if R12

 < 1 and R21
 <

1.

We see that though condition (3.9) shows a rather complicated dependence of coexistence from the
parameters, nevertheless there is a simple description in terms of significant parameters such as reproduction
numbers and invasion numbers.

4. STABILITY ANALYSIS

In this section we investigate the stability properties of the equilibria whose existence has been stated in the
previous analysis. Denote R0 = max {R1, R2). Then we start with the trivial disease free equilibrium.

Theorem 4.1: If R0 < 1, then the disease free equilibrium E0 is globally asymptotically stable, if R0 > 1, then
E0 is unstable.

Proof: Taking the linearization of system (2.2) at the point E0, we get the following characteristic equation

[� – (R1 – 1)(µ + �1)][� –(R2 – 1)(µ + �2)] = 0.

The eigenvalues are �� – (R1 – 1)(µ + �1)][�� –(R2 – 1)(µ + �2), we see if R0 > 1 then R1 > 1 or R2 > 1, then at least
one solution of this equation is positive, so E0 is unstable. If R0 < 1, then R1 < 1 and R2 < 1, then �1 < 0, and �2 <
0, thus E0 is locally asymptotically stable. Next we show the global attractiveness of E0 when R0 < 1. Set

V(t) = i + j

calculating the derivative of V(t) along the system (2.2), we obtain

� �
dV di dj

dt dt dt

1 2 1 2( )(1 ) ( ) ( )� � �� � � � � � � � � � �i j i j i j
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1 1 2 2 1 2( )( 1) ( )( 1) ( )( ) 0� � � � � � � � � � � � �� � � �R i R j i j i j

Set H = {(i, j) : 0}�
dV

dt
, then (0, 0) is the largest set in H which is invariant with respect to system (2.2). Then

by Lyapunov-LaSalle invariant principle [20], we see E0 is globally attractive. From the above, we see E0 is
globally asymptotically stable when R0 < 1. Then the proof of Theorem 4.1 is completed.

The theorem below says that each strain can dominate if its reproduction number is larger than one and the
other strain cannot invade its equilibrium.

Theorem 4.2: The one strain exclusive equilibria satisfy:

(i) If R1 > 1, the boundary equilibrium E1 is stable for R21 < 1 and unstable for R21 > 1.

(ii) If R2 > 1, the boundary equilibrium E2 is stable for R12 < 1 and unstable for R12 > 1.

Proof: Let R1 > 1, then the equilibrium E1 exists and the linearization of (2.2) at E1 gives the following
characteristic equation:

1 2 21
1

1
1) [ ( )( 1)] 0

� �� �
� �� � � � � � � � � �� �� �

� �� �
R

R

Then the two eigenvalues are 1
1

1
1)

� �
� �� �� �

� �R
 < 0, �2 = (µ + �2 ) (R21 – 1). Hence if R21 > 1, �2 > 0, then E1 is

unstable. If R21 < 1, �2 < 0, then E1 is stable. This completes (i). Part (ii) can be proved in the same way as we
proved part (i). This completes the proof of Theorem 4.2.

Denote D1 = {(i, j) � D : i � 0}, D2 = {(i, j) � D : j  �  0}, D3 = {(i, j) � D : ij � 0}.

Theorem 4.3: If �1� + �2 – �1 > 0, R21 > 1, R21 > 1, then E* is globally asymptotically stable on D3.

Proof: From Theorem 3.1, we know E* exists under the condition given in Theorem 4.3. By �1�
 + �2

 – �1 <
0, R21 > 1we get �1� + �2 – �1> 0.  The linearization of (2.2) at E* gives the following characteristic equation:

�2 + (�1i
* + ��j

*���������������������i
*j*������= 0 (4.2)

Obviously, (4.2) has no root with nonnegative real part, then E* is locally asymptotically. Since R12 > 1 and
R21 > 1, by Theorem 3.1 and 4.2, we obtain that E1 (E2) does not exist or is unstable (if exists). If R1 � 1 and

R2 � 1, the by (3.9) we have R1 < R2  thus 1 1

2 2 2

1
12 1(1 ) 1,� � � � � �R R

R R R
R R  which is a contradiction. Then E0 is

unstable. Hence by Theorem 2.1, we get E* is globally asymptotically stable on D3. This completes the proof.

Corollary 4.1: If , �1� + �2 – �1 < 0, R12 < 1, R21 < 1, then E*  is unstable.

Proof. From Theorem 3.1, we know E* exists under the condition given in Corollary 4.1, and we have �1�
+ �2 – �1 < 0. Then (4.2) has one positive root. Thus E* is unstable. Completing the proof.

Corollary 4.2:  If R1 > 1 and R2 � 1, then E1 is globally asymptotically sable on D1.

Proof: From the conditions in Corollary 4.2, we have E0 is unstable E2, does not exist. Since R21 =

2 1 2

1 2 1 1

1
2(1 ) 1� �

�� � � �R R
R R R

R , then by Theorem 3.1 and Corollary 4.1, we get E* does not exist or is unstable (if

exists). Then by Theorem 2.1 and Theorem 4.2, we obtain that E1 is globally asymptotically sable on D1. Which
completes the proof.
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Corollary 4.3: If R2 > 1, R1 � 1, and R12 < 1, then E2 is globally asymptotically sable on D2.

Proof: From the conditions in Corollary 4.3, Theorem 3.1 and Theorem 4.1, we have E0 is unstable E1 does
not exist. By Theorem 3.1 and Corollary 4.1, we get E* does not exist or is unstable (if exists). Then by Theorem
2.1 and Theorem 4.2, we obtain that E1 is globally asymptotically sable on D2. The proof of Corollary 4.3 is
completed.

From theorems and corollaries above, we see the disease is extinct when R0 < 1, while when R0 > 1, the
disease may persist.

5. STABILITY REGION OF TWO-STRAIN

In section 3, we know there are four critical curves R1 = 1, R2 = 1, R12 = 1, R21 = 1, which determine the stability
of the four equilibria. Functions R12  and R21 help in the characterization of the stability and coexistence regions
for strain 1 and 2. Changes in the regions of stability for either a single or for both strains can be illustrated as
the coefficient of super-infection are varied. In this section, we investigate the stability region of the nontrivial
equilibria and the change of the region.

First we consider the two curves R12 and R21 = 1.

By R12 = 1 we obtain L1:

1 2
2 2

1 1 1

(1 ) 1
and

1 (1 )

� � � �
� � �

� � � �
R dR

R
R dR R

By R21 we obtain L2:

1

1 2 2
2

211 2 1 1
1

2

1
and

1 ( 1) (1 ( 1))

� �
�
�

� � �
� ��� �� � � �
�

R dR
R

R dR R

We suppose �1� + �2 – �1 > 0, then there are three cases to consider:

(1) 0 < � < 1.

Figure 2(a) and (b) gives the bifurcation diagram in the (R1, R2)-plane. The curves R12 = 1 and R21 = 1 divide the
region �2

+ – {(R1, R2) � R1 < 1, R2 < 1} into three subregions: I, II, III. When the parameters are in region I (II)
only strain 1 (strain 2) will be maintained (a globally stable boundary equilibrium). In Figure 2(a), region III,

Figure 2: The Figures Show when 0 <  < 1, the Stability Regions of Different Nontrivial Equilibria in the (R
1
, R

2
)-plane.

The Curves R
12

 = 1and R
21

 = 1 Divide the Region �2
+
 – {(R

1
, R

2
)  R

1
 < 1, R

2
 < 1} into Three Subregions: I, II, III
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Figure 3(a), (b) gives the bifurcation diagrams of � = 1 and ��> 1, respectively. The curves R12 = 1 and
R21= 1 divide the region �2

+ – {(R1, R2) � R1 < 1, R2 < 1} into three subregions: I, II, III. The meanings of these
regions are the same as those in Figure 2(a).

From Figure 2(a), we see, R21 < 1 is a necessary condition for the stability of strain 1. Hence, E1 is unstable
when R21 > 1. Similarly, E2 is unstable when R12 > 1. Hence, coexistence is expected when R12 > 1 and  R21 > 1.

From Figure 2 and Figure 3, we see the stability region for strain 1 (I) may be significantly larger than that
of strain 2 (II) with the increase of �. The changes in the relative sizes of these stability regions seem to cause
strong super-infection when strain J is infected by strain I.

The possibility that strain J may become established under these conditions can be small. Likewise, weaker
levels of super-infection to strain J after an infection with strain I (�� 0) will support relatively larger regions of
stability for strain J.

The stability region for strain 1(I) and strain 2(II) in the (R1, R2 )-plane (0 < � < 1,  � = 1, � > 1) are illustrated
in Figure 2 and Figure 3. We show that as the levels of super-infection increase, that is, as the values of get
bigger, the region of stability corresponding to strain 1 (region (I)) is increased significantly. Simultaneously,
an increase in the region of multiple strain coexistence (if E* exists) can be observed as super-infection is
increased (see Fig.4(a)-(d)). It seems that as strains become antigenically distinct, that is, when super-infection
is strong, coexistence is more likely. Weak levels super-infection support the survival of a single strain, that is,
in this case competition for susceptibles between strains is “fierce”(“competition exclusion”). The strain with
the highest ability to invade the host is the most likely to become established (driving the other strain to extinction).

6. DISCUSSIONS

In this paper, we consider the development and evolution of a disease represented by two strains. The focus of
this paper is on the interaction of two strains. We have assumed that the first pathogen can infect individuals
already infected by the second, a process called super-infection, while the other way around has such a small
incidence that it can be neglected. Altogether, this makes the first strain stronger. Thus, if R1 > R2 the first strain
dominates. The outcome of the competition between the two strains when R1 < R2 depends on the two invasion
reproduction numbers: the invasion reproduction number of the first strain at equilibrium of the second R12 and

Figure 3: The Figures Show the Bifurcation Diagram of  = 1and  > 1 in the (R
1
, R

2
)-plane, Respectively.

The Meanings of these Regions are the Same as Those of Figure 1(a)

both strains will be maintained (a globally stable positive equilibrium). In Figure 2(b), region III, the two strain
does not coexistence, but two boundary equilibrium are stable.
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invasion reproduction number of the second strain in the equilibrium of the first R21.  If R21 < 1 then strain one
dominates, if R12 < 1 then strain two dominates, if both invasion reproduction number are larger than one, then
the two strains coexist. Our results show that multiple strain coexistence is highly likely for antigenically distinct
(strong super-infection) strains and not for antigenically similar strains. However, more understanding of the
evolutionary implications that result from human host and virus interactions may require the study of systems
that incorporate additional mechanisms such as infection-age structure, isolation, individual differences in
susceptibility or infectiousness, and the possibility of coinfections.
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