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Abstract: In this paper, a generalized F-expansion method is used to construct exact solutions of the Kawahara
equation. As a result, many new and more general exact travelling wave solutions are obtained including single
and combined non-degenerate Jacobi elliptic function solutions, solitary wave solutions and trigonometric function
solutions. Compared with the most existing F-expansion methods, the proposed method gives new and more
general exact solutions. More importantly, the method with the help of symbolic computation provides a powerful
mathematical tool for solving a great many nonlinear partial differential equations in mathematical physics.
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1. INTRODUCTION

It is well known that nonlinear complex physical phenomena are related to nonlinear partial differential equations
(NLPDEs) which are involved in many fields from physics to biology, chemistry, mechanics, etc. As mathematical
models of the phenomena, the investigation of exact solutions of NLPDEs will help one to understand these
phenomena better. In the past several decades, many effective methods for obtaining exact solutions of NLPDEs
have been presented, such as inverse scattering method [1], Hirota’s bilinear method [2], Bäcklund transformation
[3], Painlevé expansion [4], sine-cosine method [5], Adomian Pade approximation [6], homogenous balance
method [7], homotopy perturbation method [8–10], variational method [11–17], asymptotic methods [18], non-
perturbative methods [19], algebraic method [20–22], tanh function method [23–26] and so on.

Recently, F-expansion method [27–29] was proposed to construct periodic wave solutions of NLPDEs,
which can be thought of as an over-all generalization of Jacobi elliptic function expansion method [30–32]. F-
expansion method was later extended in different manners [33–40]. Very recently, by using a new and more
general ansätz we proposed a generalized F-expansion method [41] which generalized the work made in [27–
29,35,38–40] to obtain new and more general exact solutions of NLPDEs. With the help of Mathematica the
generalized F-expansion method can be applied to a great many NLPDEs.

The present paper is motivated by the desire to extend the generalized F-expansion method [41] to the
Kawahara equation:

0� � � � �t x xxx xxxxxu uu u u (1)

which occurs in the theory of magneto-acoustic waves in a plasmas [42] and in the theory of shallow water
waves with surface tension [43]. Sirendaoreji [44] obtained some travelling wave solutions of Eq. (1) by using
a direct algebraic method. Wazwaz [45] obtained solitary wave solutions by means of tanh method.
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The rest of this paper is organized as follows: in Section 2, we give the description of the generalized F-
expansion method; in Section 3, we extend this method to the Kawahare equation; in Section 4, some conclusions
are given.

2. DESCRIPTION OF THE GENERALIZED F-EXPANSION METHOD

For a given NLPDE with independent variables 1 2( )� � � � � mx t x x … x  and dependent variable u:

1 2 1 2 1 1 2 2
( ) 0� � � � � � � � � � � � � � � �

m m m mt x x x x t x t x t tt x x x x x xF u u u u … u u u … u u u u … u … (2)

we seek its solutions in the more general form:
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where 0 0 ( )�a a x , ( )�i ia a x , ( )�i ib b x , ( )�i ic c x , ( )�i id d x ( 1 2 )� � � �i … n  and ( )� x� �  are all functions

to be determined later, ( )F �  and ( )�F �  satisfy
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where P, Q and R are all parameters, the prime denotes d d� � . Given different values of P, Q and R, the

different Jacobi elliptic function solutions F(�) can be obtained from Eq. (4) (see Appendix A).

It can be easily found that the ansätz (3) is more general than those in [27–29,35,38–40], to be more precise,

if 0� � �i i ib c d , 0a  and ai are constants, and � is merely a linear function of 1 2� � � � mt x x … x , then the ansätz

(3) becomes that introduced in [27–29]:
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If 0� �i ic d , 0a  and ai are constants, and � is merely a linear function of 1 2� � � � mt x x … x , then the ansätz

(3) reduces to that constructed in [38,39]:
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If 0� �i ic d , then the ansätz (3) changes into that used in [35]:
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If 0�id , then the ansätz (3) converts into that proposed in [40]:
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So we may obtain new and more general exact solutions of NLPDEs by using the ansätz (3). In order to
determine u explicitly, we take the following four steps:

Step 1. Determine the integer n  by balancing the highest order nonlinear term(s) and the highest order
partial derivative of u in Eq. (2).

Step 2. Substitute (3) along with (4) and (5) into Eq. (2) and collect coefficients of ( ) ( )� jl FF � �

( 0 1 0 1 2 )� � � � �� �� �l j … , then set each coefficient to zero to derive a set of over-determined partial differential

equations for a0, ai, bi, ci, di ( 1 2 )� � � �i … n  and �.

Step 3. Solve the system of over-determined partial differential equations obtained in Step 2 for a0, ai, bi, ci,
di and � by use of Mathematica.

Step 4. Select P, Q, R and F(�) from Appendix A and substitute them along with a0, ai, bi, ci, di and � into (3)

to obtain Jacobi elliptic function solutions of Eq. (2) (see Appendix B for ( )�F � ), from which hyperbolic

function solutions and trigonometric function solutions can be obtained in the limit cases when m � 1 and
m � 0 (see Appendix C).

Remark 1. In order to determine the explicit solutions of the partial differential equations derived in Step 2,
we may choose special forms of a0, ai, bi, ci, di and � (As we do in Section 3).

3. EXACT SOLUTIONS OF THE KAWAHARA EQUATION

By balancing uux and uxxxxx in Eq. (1), we get n = 4. We suppose that Eq. (1) has the following formal solution:

2 3 4 1 2 3 4
0 1 2 3 4 1 2 3 4( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )� � � �� � � � � � � � �u a a F a F a F a F b F b F b F b F� � � � � � � �

2 3 1
1 2 3 4 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )�� � � � �� � � � �c F c F F c F F c F F d F F� � � � � � � � �

2 3 4
2 3 4( ) ( ) ( ) ( ) ( ) ( )� � �� � �� � � �d F F d F F d F F� � � � � � (6)

where a0, ai, bi, ci, di  (i = 1, 2, 3, 4) and � are all function of x and t to be further determined.

With the aid of Mathematica, substituting (6) along with (4) and (5) into Eq. (1), the left-hand side of Eq.

(1) is converted into a polynomial of ( ) ( )� jl FF � �  ( 0 1 0 1 2 )� � � � �� �� �l j … , then setting each coefficient to
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zero, we get a set of over-determined partial differential equations for a0, ai, bi, ci, di and �. However, it is very
difficult for us to solve the set of over-determined partial differential equations. As the calculation goes on, in

order to simplify the work or make the work feasible, we choose special forms by setting 0 0 ( )�a a t , ( )�i ia a t ,

( )�i ib b t , ( )�i ic c t , ( )�i id d t , � �kx� � , ( )� t� �  and k = constant, then we get the following results:

Case 1

3 3 2 5 2

0 1

31 910 5640 (13 1) 1183 ( 108 ) 507
0

507

� � � � � �
� � � � �

k k Q k PR k Q k Q PR
a a

k

�
(7)

2 2 4 2 2 2
2 3 4 1 2

140 140
(52 1) 0 840 0 (52 1)

13 13
� � � � � � � � � � � �a k P k Q a a k P b b k R k Q (8)

4 2 2 2 4
3 4 1 2 3

140
0 840 (13 1) 0 840

13
� � � � � � � � � � � � �b b k R c k P k Q c c k P P (9)

2 2 4
4 1 2 3 4

140
0 0 (13 1) 0 840

13
� � � � � � � � � � � � � � � � �c d d k R k Q d d k R R t c� (10)

4 2 6 2 4 2 231 3549 ( 132 ) 21970 ( 1044 ) 212940 (13 ( 12 ) ) 0� � � � � � � � �k Q PR k Q Q PR k PR k Q PR Q (11)

where � and c are arbitrary constants. The sign  “±” means that all possible combinations of “+” and “–” can be
taken in c3 and d4. If the same sign is used in c3 and d4, then “+” must be used in a0, d2 and (11). If different signs
are used in c3 and d4, then “–” must be used in a0, d2 and (11). Furthermore, the same sign must be used in c1 and
c3. Hereafter, the sign “±” always stands for this meaning in the similar circumstances.

Case 2

3 5 2
2 2

0 1 2

31 910 1183 ( 108 ) 507 140
0 (52 1)

507 13

� � � �
� � � � � � � �

k k Q k Q PR
a a a k P k Q

k

�
(12)

4 2 2 2
3 4 1 2 3 4 1

140
0 840 0 0 0 0 (13 1)

13
� � � � � � � � � � � � � � � �a a k P b b b b c k P k Q (13)

4
2 3 4 1 2 3 40 840 0 0 0 0 0� � � � � � � � � � � � � � � � � �c c k P P c d d d d t c� � (14)

4 2 6 231 3549 ( 132 ) 21970 ( 36 ) 0� � � � � �k Q PR k Q Q PR (15)

where � and c are arbitrary constants.

Case 3

3 5 2
2 2

0 1 2

31 3640 18928 ( 18 ) 507 280
0 (52 1)

507 13

� � � �
� � � � � � � �

k k Q k Q PR
a a a k P k Q

k

�
(16)
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4 2 2 2 4 2
3 4 1 2 3 4

280
0 1680 0 (52 1) 0 1680

13
� � � � � � � � � � � � �a a k P b b k R k Q b b k R (17)

1 2 3 4 1 2 3 40 0 0 0 0 0 0 0� � � � � � � � � � � � � � � � � � �c c c c d d d d t c� � (18)

4 2 6 231 56784 ( 12 ) 1406080 ( 36 ) 0� � � � � �k Q PR k Q Q PR (19)

where � and c are arbitrary constants.

Case 4

3 5 2

0 1 2 3 4

31 910 1183 ( 108 ) 507
0 0 0 0

507

� � � �
� � � � � � � � � � �

k k Q k Q PR
a a a a a

k

�
(20)

2 2 4 2
1 2 3 4 1 2 3

140
0 (52 1) 0 840 0 0 0

13
� � � � � � � � � � � � � � �b b k R k Q b b k R c c c (21)

2 2 4
4 1 2 3 4

140
0 0 (13 1) 0 840

13
� � � � � � � � � � � � � � � �c d d k R k Q d d k R R t c� � (22)

4 2 6 231 3549 ( 12 ) 21970 ( 36 ) 0� � � � � �k Q PR k Q Q PR (23)

where � and c are arbitrary constants.

Case 5

3 5 2
2 2

0 1 2

31 3640 18928 ( 18 ) 507 280
0 (52 1)

507 13

� � � �
� � � � � � � �

k k Q k Q PR
a a a k P k Q

k

�
(24)

4 2
3 4 1 2 3 4 1 20 1680 0 0 0 0 0 0� � � � � � � � � � � � � � � �a a k P b b b b c c (25)

3 4 1 2 3 40 0 0 0 0 0� � � � � � � � � � � � � � �c c d d d d t c� � (26)

4 2 6 231 56784 ( 3 ) 703040 (2 9 ) 0� � � � � �k Q PR k Q Q PR (27)

where � and c are arbitrary constants.

Case 6

3 5 2

0 1 2 3 4

31 3640 18928 ( 18 ) 507
0 0 0 0

507

� � � �
� � � � � � � � � � �

k k Q k Q PR
a a a a a

k

�
(28)

2 2 4 2
1 2 3 4 1 2

280
0 (52 1) 0 1680 0 0

13
� � � � � � � � � � � � �b b k R k Q b b k R c c (29)
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3 4 1 2 3 40 0 0 0 0 0� � � � � � � � � � � � � � �c c d d d d t c� � (30)

4 2 6 231 56784 ( 3 ) 703040 (2 9 ) 0� � � � � �k Q PR k Q Q PR (31)

where w and c are arbitrary constants.

Substituting Cases 1–6 into (6) respectively, we have six kinds of formal solutions of Eq. (1):

3 3 2 5 231 910 5640 (13 1) 1183 ( 108 ) 507

507

� � � � � �
� �

k k Q k PR k Q k Q PR
u

k

�

2 2 2 4 2 4 2 2 2 4 2 4140 140
(52 1) ( ) 840 ( ) (52 1) ( ) 840 ( )

13 13
� �� � � � � �k P k Q F k P F k R k Q F k R F� � � �

2 2 4 2 2 2 2140 140
(13 1) ( ) 840 ( ) ( ) (13 1) ( ) ( )

13 13
�� � �� � � � �k P k Q F k P PF F k R k Q F F� � � � �

4 4840 ( ) ( )��� �k R RF F� � (32)

where � � �kx t c� � , k  is determined by (11).

3 5 2
2 2 231 910 1183 ( 108 ) 507 140

(52 1) ( )
507 13

� � � �
� � � �

k k Q k Q PR
u k P k Q F

k

�
�

4 2 4 2 2 4 2140
840 ( ) (13 1) ( ) 840 ( ) ( )

13
� �� � � �k P F k P k Q F k P PF F� � � � (33)

where � � �kx t c� � , k  is determined by (15).

3 5 2
2 2 231 3640 18928 ( 18 ) 507 280

(52 1) ( )
507 13

� � � �
� � � �

k k Q k Q PR
u k P k Q F

k

�
�

4 2 4 2 2 2 4 2 4280
1680 ( ) (52 1) ( ) 1680 ( )

13
� �� � � � �k P F k R k Q F k R F� � � (34)

where � � �kx t c� � , k  is determined by (19).

3 5 2
2 2 231 910 1183 ( 108 ) 507 140

(52 1) ( )
507 13

�� � � �
� � � �

k k Q k Q PR
u k R k Q F

k

�
�

4 2 4 2 2 2 4 4140
840 ( ) (13 1) ( ) ( ) 840 ( ) ( )

13
� � �� �� � � �k R F k R k Q F F k R RF F� � � � � (35)
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where � � �kx t c� � , k  is determined by (23).

3 5 2
2 2 231 3640 18928 ( 18 ) 507 280

(52 1) ( )
507 13

� � � �
� � � �

k k Q k Q PR
u k P k Q F

k

�
�

4 2 41680 ( )� �k P F � (36)

where � � �kx t c� � , k  is determined by (27).

3 5 2
2 2 231 3640 18928 ( 18 ) 507 280

(52 1) ( )
507 13

�� � � �
� � � �

k k Q k Q PR
u k R k Q F

k

�
�

4 2 41680 ( )�� �k R F � (37)

where � � �kx t c� � , k  is determined by (31).

From Appendix A, choosing ( ) ns�F � � , 1�P , 2(1 )� � �Q m , 2�R m , inserting them into (32) and

using Appendix B, we obtain combined non-degenerate Jacobi elliptic function solution of Eq.(1):

3 2 3 2 2 5 2 2 231 910 (1 ) 5640 (13 (1 ) 1) 1183 ((1 ) 108 ) 507

507

� � � � � � � �
� �

�k k m k m k m k m m
u

k

�

2 2 2 4 2 2 2 22 4 2140 140
(52 (1 ) 1) 840 (52 (1 ) 1)ns ns sn

13 13
� � � � � � �k k m k k m k m� � �

4 4 2 2 2 44 2140
840 (13 (1 ) 1)cs ds 840 cs dssn ns

13
� � � � �k m k k m k� � � � � �

2 2 2 4 3 2140
(13 (1 ) 1)cn dn 840 cn dn sn

13
� � � ��k m k m k m� � � � � (38)

where � � �kx t c� � , k  is determined by (11) with 1�P , 2(1 )� � �Q m  and 2�R m .

In the limit case when 1�m , from (38) we obtain solitary wave solution of Eq. (1):

3 3 2 5
2 2 231 1820 5640 (26 1) 123032 507 140
(104 1)coth

507 13

� � � �
� � � �

�k k k k k
u k k

k

�
�

4 2 2 4 2 24 2 4 2140 140
840 (104 1) 840 (26 1)coth tanh tanh csch

13 13
� � � � � �k k k k k k� � � �

4 2 2 42 2 2 2 2140
840 (26 1) 840cosh coth sech sech tanh

13
� � �� �k k k k� � � � � (39)

where � � �kx t c� � , k  is determined by (11) with P = 1, Q = –2 and R = 1.
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When 0�m , from (38) we obtain trigonometric function solution of Eq. (1):

3 5
2 2 42 431 910 1183 507 140
(52 1) 840csc csc

507 13

� � �
� � � � �

k k k
u k k k

k

�
� �

2 2 4 3140
(13 1)cot csc 840 cot csc

13
� � ��k k k� � � � (40)

where � � �kx t c� � , k  is determined in (11) with 1�P , 1� �Q  and 0�R .

Choosing ( ) ns cs� �F � � � , 1 4� �P , 2(1 2 ) 2� � �Q m , 1 4� �R , inserting them into (32) and using

Appendix B, we obtain combined non-degenerate Jacobi elliptic function solution of Eq. (1):

3 2 3 2 2 5 2 2134 1820 (1 2 ) 2820 (13 (1 2 ) 2) 1183 ((1 2 ) 27) 2028

2028

� � � � � � � � �
� �

k k m k k m k m
u

k

�

2 2 2 2 4 435 105
(26 (1 2 ) 1)(ns cs ) (ns cs )

13 2
� � � � � �k k m k� � � �

2 2 2 4
2 4

35 1 105 1
(26 (1 2 ) 1)

13 (ns cs ) 2 (ns cs )
� � � �

� �
k k m k

� � � �

2 2 2 4 235
(13 (1 2 ) 2)(cs ds ns ds ) 105 (cs ds ns ds )(ns cs )

13
� � � � �� �k k m k� � � � � � � � � �

2 2 2 4
3

35 ds ds
(13 (1 2 ) 2) 105

13 ns cs (ns cs )
� � � � �

� �
� �

k k m k
� �

� � � � (41)

where � � �kx t c� � , k  is determined by (11) with 1 4� �P ,
2(1 2 ) 2� � �Q m  and 1 4� �R .

In the limit case when  m � 1, from (41) we obtain solitary wave solution of Eq. (1):

3 3 2 5
2 2 2134 1820 2820 (13 2) 30758 2028 35
(26 1)(coth csch )

2028 13

� � � �
� � � � �

�k k k k k
u k k

k

�
� �

4 4 2 2 4
2 4

105 35 1 105 1
(coth csch ) (26 1)

2 13 (coth csch ) 2 (coth csch )
� � � � �

� �
k k k k� �

� � � �

2 2 4 22 235
(13 2)( coth csch ) 105 ( coth csch )(coth csch )csch csch

13
� � � � ��k k k� � � � � � � �

2 2 4
3

35 csch csch
(13 2) 105

13 coth csch (coth csch )
� � �

� �
� �

� k k k
� �

� � � � (42)
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where � � �kx wt c� , k  is determined by (11) with P = 1/4, Q = –1/2 and R = 1/4.

When m � 0, from (41) we obtain trigonometric function solution of Eq. (1):

3 3 2 5
2 2 2134 1820 2820 (13 2) 30758 2028 35
(26 1)(csc cot )

2028 13

� � � � �
� � � � �

k k k k k
u k k

k

�
� �

4 4 2 2 4
2 4

105 35 1 105 1
(csc cot ) (26 1)

2 13 (csc cot ) 2 (csc cot )
� � � � �

� �
k k k k� �

� � � �

2 2 4 2 2235
(13 2)(cot csc ) 105 (cot csc csc )(csc cot )csc

13
� � � �� �k k k� � � � � � � �

2 2 4
3

35 csc csc
(13 2) 105

13 csc cot (csc cot )
� � � �

� �
� �

k k k
� �

� � � � (43)

where � � �kx t c� � , k  is determined by (11) with P = 1/4,  Q = 1/2 and R = 1/4.

With the aid of Appendices A, B and C, from (32)–(37) we can obtain other single and combined Jacobi
elliptic function solutions, solitary wave solutions and trigonometric function solutions of Eq. (1), we omit them
here for simplicity.

Remark 2. All solutions obtained from Cases 1 and 4 can not been obtained by the F-expansion methods
[27–29,33–40]. To the best of our knowledge, they are new and have not been reported in former literature.
With the aid of Mathematica, we have verified all solutions obtained in this paper by putting them back into the
original Eq. (1).

4. CONCLUSION

In this paper, the generalized F-expansion method has been successfully used to obtain new and more general
exact solutions of the Kawahara equation. These exact solutions include single and combined non-degenerate
Jacobi elliptic function solutions, solitary wave solutions and trigonometric function solutions. To our best
knowledge, these solutions have not been reported in former literature. It may be important to explain some
physical phenomena. It is shown that the generalized F-expansion method with the help of Mathematica provides
a powerful mathematical tool for obtaining more general exact solutions of a great many NLPDEs in mathematical
physics, such as the (3+1)-dimensional Kadomtsev–Petviashvili (KP) equation, the (2+1)-dimensional Broer–
Kaup–Kupershmidt (BKK) equations, Nizhnik–Novikov–Vesselov (NNV) equations and so on. Compared with
the most existing F-expansion methods [27–29,35,38–40], the proposed method gives new and more general
exact solutions. Its applications are worth further studying.
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APPENDIX A

Given different values of P, Q and R, the different Jacobi elliptic function solutions ( )F �  of Eq. (4) can be

obtained, which are listed in Table 1.

Table 1
Relations between values of (P, Q, R) and corresponding F( ) in Eq. (4)

P Q R F(�)

m2 –(1+m2) 1 sn�,  cdx= 
cn
dn
�
�

–m2 2m2–1 1–m2 cn�

–1 2–m2 m2–1 dn�

1 –(1+m2) m2 ns��= (sn�)–1, dc��=
dn
cn
�
�

1–m2 2m2–1 –m2 nc��= (cn�)–1

m2–1 2–m2 –1 nd��= (dn�)–1

1-m2 2–m2 1 sc��= 
sn
cn
�
�

–m2 (1–m2) 2m2 – 1 1 sd� = 
sn
dn
�
�

1 2–m2 1–m2 cs� = 
cn
sn
�
�

1 2m2 – 1 –m2 (1–m2) ds� = 
dn
sn
�
�

1

4

21 2

2

m� 1

4
ns� ± cs�

21

4

m� 21

2

m� 21

4

m�
nc� ± sc�

1

4

2 2

2

m � 2

4

m
ns� ± ds�

2

4

m 2 2

2

m � 2

4

m
sn� ± icn�

APPENDIX B

Derivatives of Jacobi elliptic functions

2 2sn cn dn cd (1 )sd nd cn sn dn dn sn cnm m� � � �� � � �� � � � � � �� � � � � �� � � � � ��

2 2ns cs ds dc (1 )nc sc nc sc dc nd cd sdm m� � � �� � � � �� � � � � �� � � � �� � � � ��

sc dc nc cs ns ds ds cs ns sd nd cd� � � �� � � �� � � � � �� � � � � �� � � � ��
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APPENDIX C

Jacobi elliptic functions degenerate into hyperbolic functions when m � 1:

sn tanh cn sech dn sech sc sinh sd sinh cd 1� � � � � � � � � � � �� � � � � � � � � � �

ns coth nc cosh nd cosh cs csch ds csch dc 1� � � � � � � � � � � �� � � � � � � � � � �

Jacobi elliptic functions degenerate into trigonometric functions when m � 0:

sn sin cn cos dn 1 sc tan sd sin cd cos� � � � � � � � � � � �� � � � � � � � � � �

ns csc nc sec nd 1 cs cot ds csc dc sec� � � � � � � � � � � �� � � � � � � � � � �
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