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Delay-dependent Robust Stability of Neutral-type
Neural Networks with Time Delays*

Jianlong Qiu1,2, Jinde Cao2

Abstract: In this paper, the problem of the global robust asymptotic stability (GRAS) for a class of interval
neural networks described by nonlinear delayed differential equations of the neutral type is investigated. A series
of sufficient criteria for such problems are obtained by employing Lyapunov-Krasovskii functional and LMI
technique. These conditions are dependent on the size of the time delay, which are usually less conservative than
delay-independent ones. Moreover, the activate functions in system are generalized without assuming the
boundedness and differentiability. Finally, the effectiveness of the present results is demonstrated by numerical
example.
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1. INTRODUCTION

Recently, the problem of the global stability for delayed neural networks has attracted much attention due to its
applicability in solving some image processing, signal processing, optimization and pattern recognition problems.
Many important results on the global asymptotic or exponential stability have been reported in the literature,
see, e.g., ([1]-[4], [7]) and the references therein. However, the stability may be destroyed by some unavoidable
uncertainties caused by the existence of modelling errors, external disturbance and parameter fluctuation during
the implementation on very-large-scale-integration chips. Therefore, the investigation on robustness of the
networks against such errors and fluctuation is very important and significant. Many attentions have been
devoted to the investigation of robust stability for CNNs and DCNNs, such as Liao et al. in [8] investigated the
global robust stability of delayed interval Hopfield neural networks; Cao, Huang and Qu in [10] gave a new
sufficient condition on the existence, uniqueness, and global robust stability of equilibria for interval neural
networks with time delays by constructing Lyapunov functional and using matrix-norm inequality; Singh in
[11] gave a novel global robust stability criterion for neural networks with delay, and other results ([??0], [18]).

On the other hand, due to the complicated dynamic properties of the neural cells in the real world, the
existing neural network models in many cases cannot characterize the properties of a neural reaction process
precisely. It is natural and important that systems will contain some information about the derivative of the past
state to further describe and model the dynamic behavior for such complex neural reactions. These systems are
called neutral-type neural networks. For example, in the biochemistry experiments, neural information may
transfer across chemical reactivity, which results in a neutral-type process [13]. The stability analysis of neutral
systems with delay has received considerable attention over the decades, see, e.g., ([6], [14]-[17]) and the
references therein.
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Motivated by the above discussions, the main aim of this paper is to investigate global robust asymptotic
stability (GRAS) for a class of interval delayed neural networks described by a nonlinear differential equation
of neutral type. By constructing appropriate Lyapunov-Krasovskii functional and using the linear matrix inequality
(LMI) optimization approach, some sufficient conditions are obtained to ensure the existence, uniqueness and
global asymptotical stability of the equilibrium point of such a kind of delayed neural networks. The obtained
conditions are dependent on the size of the time delay, which are usually less conservative than delay-independent
ones. It is worth pointing out that these conditions do not require the activate functions are bounded and
differentiable. Also, it should be noted that the proposed LMI condition can be checked numerically efficiently
by resorting to recently developed interior-point methods. To the best of our knowledge, if any, few authors
have considered global robust asymptotic stability for this class of neural networks with time delays. The work
will have significance impact on the design and applications of globally stable neural networks with time delays.

The remaining of our paper is organized as follows: In Section 2 the model formulation and some preliminaries
are given. The main results are stated in Section 3. In Section 4, an example is provided to show the validity of
the stability conditions. In the end, our paper is closed with a conclusion.

Notation Throughout this paper, nR  denotes the n -dimensional Euclidean space. For vector � nX R , its

norm is defined as || ||� TX X X . E denotes identity matrix. The notation A > B (respectively, A � B) means

that the matrix A – B is symmetric positive definite (respectively, positive semi-definite ), where A and B are
matrices of the same dimensions. AT and A–1 denote the transpose and inverse of the matrix A. �max(A) and
�min (A) represent the maximum and minimum eigenvalues of matrix A, respectively. For an arbitrarily real

matrix B and two real symmetric matrices A and C, 
�� �

� �
� �

A

B C  denotes a real symmetric block matrix, where�

represents the elements above the main diagonal of a symmetric matrix.

2. PRELIMINARIES

In this paper, we consider a class of neural networks with time delays described by a nonlinear delayed differential
equation of neutral type:

� �
1 2

1 1 1

( ) ( ) ( ( )) ( ( )) ( )
� � �

� � � � � � � � �� � �� �
n n n

i ji i ij j ij j ij ij j
j j j

t a u t w u t w u t v t If gu u� � (1)

( ) ( ) 0� � � � � �i iu t t t� � (2)

where 1 2� � � ��i n  and n denotes the number of neurons in a neural network; ( )iu t  denotes the state of the ith

neuron at time t ; � ��
j jf g  are activation functions of the j th neuron; the scalar 0�ia  is the rate with which the

ith unit will reset its potential to the resting state in isolation when disconnected from the network and external

inputs at time t ; 1 2 1 2� � � � � � � ��ij ij ijw w v i j n  are known constants denoting the strength of the ith neurons on

the j th neurons; � is non-negative constant, which correspond to finite speed of axonal signal transmission
delay; Ii denote the i th component of an external input source introduced from outside the network to the cell i

at time. The initial ( ) 1 2� � � � � ��i s x i n�  are bounded and first order continuous differentiable on ( 0]� �� .
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Throughout this paper we assume that the activation function satisfies the following assumption.

(H) The neurons activation functions � ��
j jf g  are Lipscthiz continuous, that is, there exist constants

0 0� � �j jl k  such that

� � � �
1 2 1 2

1 2 1 2

( ) ( ) ( ) ( )
0 0

� �
� � � � � �

� �
j j j j

j j

f f g g
l k

� � � �

� � � �

for any 1 2 1 2 1 2� � � � � � � � � ��R j n� � � �

In the practical implementation of neural networks, the values of the constant and weight coefficients
depend on the resistance and capacitance values which are subject to uncertainties. This may lead to some
deviations in the values of 1�i ija w , 2ijw  and ijv . Hence, it is important to ensure the global robust asymptotic
stability of the designed network against such parameter deviations. Since these deviations are bounded in
practice, the quantities 1�i ija w , 2ijw  and ijv  may be intervalized as follows:

1 1 1 1 1 1 11 1 1 1

2 2 2 2 2 2 22 2 2 2

[ ] { ( ) 1 2 }(3)

[ ] { ( ) 1 2 }(4)

[ ] { ( ) 1 2 }(5)

[

�

�

�� � � � � � � � � �� � � � � � � �

�� � � � � � � � � �� � � � � � � �

�� � � � � � � � � �� � � � � � � �

�� �

�

�

�

I i ii i

I ij n n ijij ij

I ij n n ijij ij

I

A A A A diag a A A A i e a i na a

W W W w W W i e w i nW W w w

W W W w W W i e w i nW W w w

V V ] { ( ) 1 2 }�

�
�
�
�
�
� � � � � � � � �� � � � � � � �� �ij n n ijij ijV V v V V V i e v i nv v

(6)

Let 1 2( )� � � �� � � �� T
nU u u u  be an equilibrium point of model (1) for a given iI . To simplify proofs, we will

shift the equilibrium point �U  of system (1) to the origin by using the transformation

( ) ( ) 1 2�� � � � � � � ��i i iy t u t u i n

It is easy to see that system (1) can be transformed into

1 2
1 1 1

( ) ( ) ( ( )) ( ( )) ( ) 1 2
� � �

� � � � � � � � � � � � �� � �� � �
n n n

i i ij j j ij j j iji j
j j j

t a y t w f y t w g y t v t i ny y� � (7)

where � �( ( )) ( ( ) ) ( )� �� � �j j j j jj j
f y t y t u uf f , � �( ( )) ( ( ) ) ( ) 1 2� �� � � � � � � � � � ��j j j j jj j

g y t y t u u j ng g� �  Then

it is easy to see that (0) 0 (0) 0� � � �j jf g  and ( ) ( )� � �j jf g  satisfy assumption (H).

Denote

1 2

1 2

1 1 2 2

1 1 2 2

( ) ( ( ) ( ) ( ))

( ) ( ( ) ( ) ( ))

( ( )) ( ( ( )) ( ( )) ( ( )))

( ( )) ( ( ( )) ( ( )) ( ( )))

� � � � �

� � � � � � � � �

� � � � �

� � � � � � � � �

�

�

�

�

T
n

T
n

T
n n

T
n n

Y t y t y t y t

Y t y t y t y t

F Y t f y t f y t f y t

G Y t g y t g y t g y t

� � � �

� � � �
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A = diag (a1, a2, ..., an), 1 1( ) �� ij n nW w , 2 2( ) �� ij n nW w  and ( ) �� ij n nV V  (where we do not assume that

matrices W1, W2, V to be symmetric). Then system (4) can be rewritten in the following vector-matrix form

1 2( ) ( ) ( ( )) ( ( )) ( )� � � � � � � �� �Y t AY t W F Y t W G Y t VY t� � (8)

Definition: The neural network model given by (1) with the parameter ranges defined by (3) is globally

robust asymptotically stable if the unique equilibrium point 1 2( )� � � �� � � �� T
nU u u u  of the model is globally

asymptotically stable for all 1 1 2 2� � � � �I I IA A W W W W  and � �IV V

Before we develop the delay-dependent criteria, we note that the following two facts and two lemmas.

Fact 1. [2] Suppose W, U are any matrices,�  is a positive number and matrix H = HT > 0, then the following
inequality holds

1 1� �� � � �T T T TW U U W W HW U H U� �

Fact 2. (Schur complement) The following linear matrix inequality (LMI)

( ) ( )
0

( ) ( )

� �
� �� �

� �
T

Q x S x

S x R x

where ( ) ( )� TQ x Q x , ( ) ( )� TR x R x , and ( )S x  depend affinely on x, is equivalent to

1(1) ( ) 0 ( ) ( ) ( ) ( ) 0�� � � � �TR x Q x S x R x S x

1(2) ( ) 0 ( ) ( ) ( ) ( ) 0�� � � � �TQ x R x S x Q x S x

Moreover, for convenience, we define ( 1 2� � � � � ��i j n  and 1 2� �k )

max{ } max{ }� �� � �� � � � � � �� � � �ijk ijijk ijk ij ijw vw vw v

and

1 1 1 1

� � � �
� � � �� � � �
� � � �
� � � �

� � � �� � � �

� � � �� � � �
n n n n

ik ijk ljk i ij lj
j l j l

b w w c v v

1 2 1 2( ) ( )� � � � � � � � � �� �k k k nk nB diag b b b C diag c c c (9)

Lemma 1.[12] For any constant matrix 1 1� IW W , 1 1� IW W  and � IV V

1 1 1 2 2 2� � � � � �T T TWW B W W B VV C

where the diagonal matrices 1 2�B B  andC  were defined in Eq. (6).

Lemma 2.[5] The equilibrium of the system is globally asymptotically stable if there exists a C1 function

� �nV R R  such that (i) V is a positive definite, decrescent and radially unbounded, and (ii) � �V  is positive
definite.
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3. MAIN RESULTS

Theorem 1. Under the assumption (H), the equilibrium point U* of system (1) is globally robust asymptotically
stable if there exist positive definite matrix P, positive definite diagonal matrix Q and positive constants

1 2 3� � � �� � � � �  such that

1
2

1
2

1
2

1 1

2 2

3

1

2

(10)

(11)

0 (12)
00 0 (13)

0 0 0 0 (14)

0 0 0 0 0 (15)

0 0 0 0 0 0

� � � � � � �� �
� �

� � � � �� �
� �

� � � �� �
� �� � � �� � �� �
� �� � �
� �

� �� �
� �
� �

PB E

PB E

PC E

�

�

�

��

(16)

where

22
1 1

1 2 2

2 3

1 2

1 2

4( )( )

4( )

4( )

( )

( )

� � � � � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �

�

�
n

n

P A AP KQK L LB LA
Q E B

E E C

L diag l l l

K diag k k k

� � ��
� � ��

� � � ��

and 0 0 1 2� � � � � � � ��i il k i n  are given as in assumption (H).

Proof: In order to show under what condition the origin is globally robust asymptotically stable for the
system (1), we consider the following Lyapunov-Krasovskii functional

1 2 3 4( ) ( ) ( ) ( ) ( )� � � � �V t V t V t V t V t (17)

where

1( ) ( ) ( )� �TV t Y t PY t (18)

2 ( ) ( ( )) ( ( ))
�

� ��
t T

t
V t G Y QG Y d

�
� � � (19)

3( ) ( ) ( )
�

� �� � �t T

t
V t Y Y d

�
� � � � (20)

0

4 ( ) ( ) ( )
� �

� �� � � �t
T

t
V t Y Y d d

� �
� � � � � (21)
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Computing the time-derivative of ( ) ( 1 2 3 4)� � � �iV t i  along the trajectory of system (5), we have

1( ) 2 ( ) ( )� �TV t Y t PY t

1 22 ( ) [ ( ) ( ( )) ( ( )) ( )]� � � � � � ��TY t P AY t W F Y t W G Y t VY t� �

1( )[ ] ( ) 2 ( ) ( ( ))� � � �T TY t PA AP Y t Y t PW F Y t

22 ( ) ( ( )) 2 ( ) ( )� � � � ��T TY t PW G Y t Y t PVY t� � (22)

2 ( ) ( ( )) ( ( )) ( ( )) ( ( ))� � � � �T TV t G Y t QG Y t G Y t QG Y t� � (23)

3( ) ( ) ( ) ( ) ( )� � � � �� �� �T TV t t Y t t Y tY Y� � � � (24)

4 ( ) ( ) ( ) ( ) ( )
�

� � ��� �� �
tT T

t
V t t Y t Y dY Y

�
�� � � � � (25)

Then we have

1 2( ) ( )[ ] ( ) 2 ( ) ( ( )) 2 ( ) ( ( ))� � � � � �� T T TV t Y t PA AP Y t Y t PW F Y t Y t PW G Y t �

2 ( ) ( ) ( ( )) ( ( )) ( ( )) ( ( ))� � � � � ��T T TY t PVY t G Y t QG Y t G Y t QG Y t� � �

( ) ( ) ( ) ( ) ( ) ( ) ( )
�

� � � � � � ��� � �� � �
tT T T

t
t Y t t Y t Y dY Y Y

�
� �� � � � � � � � (26)

By Fact 1, Lemma 1 and assumption ( )H , we have

( ( )) ( ( )) ( ) ( )� �T TG Y t QG Y t Y t KQKY t (27)

1
1 1 1 1 12 ( ) ( ( )) ( ) ( ) ( ( )) ( ( ))�� �T T T TY t PW F Y t Y t PWW PY t F Y t F Y t� �

1 1
2 21 2

1 1 1 1( )[ ] ( )�� � �TTY t PB B P L Y t� � (28)

1
2 2 2 2 22 ( ) ( ( )) ( ) ( ) ( ( )) ( ( ))�� � � � �T T T TY t PW G Y t Y t PW W PY t G Y t G Y t� � � � �

1 1
2 21

2 2 2 2( ) ( ) ( ( )) ( ( ))�� � � � �TT TY t PB B PY t G Y t G Y t� � � � (29)

1
3 32 ( ) ( ) ( ) ( ) ( ) ( )�� � � � �� ��TT T TY t PVY t Y t PVV PY t t Y tY� � � � �

1 1
2 21

3 3( ) ( ) ( ) ( )�� � � � ���T TTY t PC C PY t t Y tY� � � � (30)

2
1 1( ) ( ) 4 ( ) ( ) 4 ( ( )) ( ( ))� ���T T T Tt Y t Y t A Y t F Y t W W F Y tY

2 24 ( ( )) ( ( )) 4 ( ) ( )� � � � � ���TT T TG Y t W W G Y t t V VY tY� � � �

2
1 24 ( )[ ] ( ) 4 ( ( )) ( ( ))� � � � �T TY t LB L Y t G Y t B G Y tA � �

4 ( ) ( )� � � ���T t CY tY � � (31)
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Substituting (18)-(22) into (17), we have

1 1 1 1
2 2 2 21 2 1

1 1 1 1 2 2 2( ) ( )[ � �� � � � � � �� T TTV t Y t P A AP KQK PB B P L PB B P� � �

1 1
2 2 21

3 14( )( )] ( )�� � � �TPC C P LB L Y tA� � ��

2 2( ( ))[ 4( ) ] ( ( ))� � � � � � �TG Y t Q E B G Y t� � � �� �

3( )[ 4( ) ] ( ) ( ) ( )
�

� � � � � � � � �� �� �
tT T

t
t E E C Y t Y dY Y

�
� � � � �� � � � � �

       � 1 1 1 1
2 2 2 21 2 1

1 1 1 1 2 2 2

1
( )[ � �

�
� � � � � � ��

t T TT

t
Y t P A AP KQK PB B P L PB B P

�
� � �

�
1 1
2 2 21

3 14( )( )] ( )�� � � �TPC C P LB L Y tA� � ��

2 2( ( ))[ 4( ) ] ( ( ))� � � � � � �TG Y t Q E B G Y t� � � �� �

�3( )[ 4( ) ] ( ) ( ) ( )� � � � � � � �� �� �T Tt E E C Y t Y dY Y� � � � �� � �� � � �

      

�

�

�
1

2

0 0 0(32)

0 0 0(33)1
( ) ( )

0 0 0(34)

0 0 0

�

� ��
� �

�� �� � � � � �� ��� �� ��� �

�
t T

t
t t d

�
� � �

�

��

(35)

where

�

�

�

1 1
2 2

1 1 1 1
2 2 2 2

1 2
1 1 1 1

21 1
2 3 12 2

2 21

32

4( )( )

4( )

4( )

( ) ( ( )) ( )) ( ))

�

� �

� �
� �
� �

� � � � � � �

� � � � � �

� � � � � ��
� � � � � ��

� � � � � � � �� �

T

T T

TT T T T

P A AP KQK PB B P L

PB B P PC C P LB LA
Q E B

E E C

Y t G Y t Y t Y

� �

� � � ��

� � ��

� � � ��

� � �

By Fact 2 and the condition (7),

( ) 0� ��V t

From Lemma 2, we derive that the equilibrium of system (1) is globally asymptotically stable when

1 1 2 2� � � � �I I IA A W W W W  and � IV V . This completes the proof.

Corollary 1. Under the assumption (H), the equilibrium point U* of system (1) is globally robust
asymptotically stable if there exist positive definite matrix P, positive definite diagonal matrix Q and positive

constants 1 2 3� � � �� � � � �  such that
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�

�

�

�

1

2

3

1

2

(36)

(37)

0 (38)

0 0 (39) 0

0 0 0 0 (40)

0 0 0 0 0 (41)

0 0 0 0 0 0

� �� � � � � � �
� �

� � � � �� �
� �� � � �
� �

� � �� � � �� �
� �

� � �� �
� �� �� �� �
� �

P E

P E

P E

�
�

�

��

(42)

where

�

� �

2
1 1 1

2 2 2 31 2

4( )( )

4( ) 4( )

� � � � � � � � �
� � � � � � � � � �� �

PA AP KQK LB L LB LA
Q B B E C C

� � ��
� � �� � � � ��

Proof: The proof is similar to that of Theorem 1, and omitted here.

When 0 ( 1 2 )� � � � � ��ijv i j n , system (1) degenerated into the following model

� �
1 2

1 1

( ) ( ) ( ( )) ( ( )) 1 2
� �

� � � � � � � � � � � � �� � ��
n n

i i i ij j ij j ij j
j j

t a u t x w u t w u t I i nf gu � (43)

Corollary 2. Under the assumption (H), the equilibrium point U* of system (25) is globally robust
asymptotically stable if there exist positive definite matrix P, positive definite diagonal matrix Q, and positive
constants �1, �2 such that

�

�
1
2

1
2

1

1 1

2 2

2

(44)

(45)
0

0 (46)

0 0 0

� � �� ��
� �

� �� �� � � �� �
�� �

� ��� �

PB E

PB E

Q E

�

�
�

(47)

where

� 2
11 � � � � �� PA AP KQK L�

Proof: Consider the Lyapunov functional

( ) ( ) ( ) ( ( )) ( ( ))
�

� � ��
tT T

t
V t Y t PY t G Y QG Y d

�
� � �
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Similarly, calculate the derivative of V(t) along the degenerated system (25). By a minor modification of the
proof of Theorem 1, we can easily obtain that the equilibrium point U* of system (25) is globally robust

asymptotically stable.

4. EXAMPLE

Example: Let � � 1 2� � � � �
j j

jf g  with the Lipschtiz constant 1 2 1� �l l . Consider the following delayed neural

network in (1) with parameters

1 1

2 0 2 1 0 0 4 0 2 0 5 0 2

0 2 0 2 1 0 0 5 0 1 0 6

� � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � �� � � � � � � �

A A W W

2 2

0 1 0 1 0 1 0 16 0 1 0 0 2 0

0 0 1 0 05 0 1 0 0 1 0 0 2

� � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � �� � � � � � � �

V VW W

By Theorem 1, we can conclude that this delayed neural network is globally robust stable for all

0 2 0173� � �� . When 2 0173� �� , we use the Matlab LMI Control Toolbox to solve the LMI in (7), and

obtain the solution as follows

1 2 315 3706 7 8443 1 5388 2 1561 0 0881

33 1647 0 8 5530 0

0 33 3376 0 9 1925

� � � � � � � � � � � � � � �

� �� � � �
� � � �� � � �� �� � � �

P Q

� � � � �

5. CONCLUSION

In this paper, we have studied the global robust asymptotic stability for a class of interval delayed neural
networks of neutral type. A series of delay-dependent sufficient conditions in the form of LMI have been
established to ensure global robust stability of this model by using Lyapunov method. The obtained criteria
improve and extend several earlier works greatly.
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