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Abstract: This paper introduces the robust stability of delay Lurie-type neutral control system. A new criterion
is presented in term of linear matrix inequalities by using Lyapunov method. Since the criterion takes the size
of the neutral and discrete delays into account, it is less conservative than the existing ones. Examples are
given to that illustrate the advantage of our approach and reciprocal influences between the neutral and discrete
delays.
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1. INTRODUCTION

The problem of the stability of Lurie-type control systems has been widely studied for several decades [1-3,7],
which is due to theoretical interests as well as a powerful tool for practical system analysis and design. Since
time delays are frequently encountered in various engineering systems and are often a source of instability, a
considerable number of studies have also been done on the stability of delay control systems [3-10]. Recently,
the stability analysis of neutral differential systems, which contain delays both in its state and in the derivatives
of its states, has been widely investigated by many researcher [4,8-10]. Some stability criteria formulated in
terms of linear matrix inequalities (LMIs), the linear matrix inequality can be easily solved.

The stability criteria are often classified into two categories according to their dependence on the size of the
delays, namely, delay-dependent stability criteria and delay-independent stability criteria. In general, the delay-
dependent stability criterion is less conservative than delay-independent stability one when the size of time-
delay is small.

In this paper, using the Lyapunov functional technique, we present a novel delay-dependent stability criterion
for delay Lurie differential systems. Based on a new method, we employ free weighting matrices to express the

influences of, and the relationship between the terms ( )�x t �  and ( ) ( )
�

� � �
t

t
x t x s ds

�
. The new criterion is

given in terms of LMIs, which make the free weighting matrices ease to select. Since this criterion is both
neutral-delay-dependent and discrete-delay-dependent, it is less conservative than previous methods for mixed
neutral- and discrete-delays. Two examples are given to show both the superiority of the present result to those
in the literature and the influences between neutral and discrete delays.

Through the paper, Rn space denotes n-dimensional Euclidean space, Rn×m space is the set of all n × m real
matrices, I denotes identity matrix of appropriate order, and�  represents the elements below the main diagonal

of a symmetric block matrix. The notation W > 0 ( 0����� ) denotes a symmetric positive definite (positive

semidefinite, negative, negative semidefinite) matrix W.
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2. THE DESCRIPTION OF SYSTEMS AND PRELIMINARIES

Consider the Lurie neutral functional differential system described by the following equation:

2 1( ) ( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( ( ))

( ) ( )

� � � � � � � � � � ���
�

��

� �
T

x t Cx t A A t x t B B t x t D D t f t

t c x t

� � �

� (1)

where x(t) � Rn space is the state vector, A � Rn×n space, B � Rn×n space, C � Rn×n space and D � Rn×1 space,
c � Rn×1 space are known real constant matrices, �1, �2 > 0 are unknown constant state delays. The initial
condition of system (1) satisfy

1 2( ) ( ) [ { } 0]x t t t max� � � � � �� � �
and the nonlinear f(�) satisfy

2( ) [0 ] { ( ) (0) 0 0 ( ) 0}� � � � � � � � � �f K k f f k� � � � � � � (2)

for 0 � � ��k . The uncertainties are assumed to be of the following form

[ ( ) ( ) ( )] ( )[ ]� � � � a b dA t B t D t LF t E E E (3)

where � � �a b dL E E E  are constant matrices with appropriate dimensions, and ( )F t  is unknown real and possibly

time-vary matrix with Lebesgue measurable elements bounded by

( ) 1� � �� �tF t (4)

Before proceeding further, we will state well known Lemma.

Lemma 2.1:[13] The linear matrix inequality

1 2

2 3

0
� �
� �
� �
� �
� �� �

� �
�

� �

T

is equivalent to

1
1 2 3 2 10 0�� �� � � � �� �T

where 1 1 3 3� �� �� � �T T  and �2 depend on x

Lemma 2.2: [14] For matrices P, L, N, F � Rn×n with P > 0, || F ||  � 1 and � > 0, one has the following:

(1) 1( ) ( �� � �T T TLFN P P LFN PLL P N N� �
(2)  If 0� �TP MM� , then

1( ) ( )�� �TA LFN P A LFN  1 1( )� �� � � �T T TA P MM A N N� �

3. MAIN RESULT

System (1) can be written as

2 1

1

( ) ( ) ( ) ( ) ( ( ))

( ) ( ) ( ( ))

( )

( ) ( )

� � � � � � ��
� � � � ��
� � ��
� ��

� �

a b d

T

x t Cx t Ax t Bx t Df t Lu

y E x t E x t E f t

u F t y

t c x t

� � �
� �

�

(5)
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In order to simplify the treatment of the problem, We define an 
2([ 0] )�� � � � �n nD R R�  as

2( ) ( ) ( )� � � �tx x t Cx t �

The stability of system � is defined as follow:

Definition 3.1 (Hale [11])The operator � is said to be stable if the zero solution of the homogeneous

difference equation 0 2( ) 0 0 { ([ 0] 0}� � � � � � � � � � �� �tx t x f C f� �  is uniformly asympotically stable.

Now, we have the following theorem

Theorem 3.2 Given scalars 1 0��  and 2 0�� , the system (1) is absolute stable if the operator ( )� tx  is

stable and there exist the positive-definite matrices 1 1 2 2 66 66 66 66� � � � � � � � � � �T T T T T TP P Q Q Q Q R R X X Y Y ,

positive scalars 1 2� � �� � � �  and any matrices �ij ijX Y  of appropriate dimensions satisfying the following matrix

inequalities:

1

0
� �

�� �
� �

T

S SL

L S I� (6)

11 12 13 14 15

22 23 24 25

33 34 35

44 45

55

2

0

0

2

��
� ��
� � � �
� � � ��
� � � � � �
�

� � � � � ��
� � � � � � �
�

� � � � � ��
� � � � � � ��
� � � � � � ��

T

T

kc PL

C PL

c L

I

� � � � � �
� � � �

� � �
� �

� � �
�

  

1 2

1 2

1 2

1

1

2

0

0

0 0 0 0

0 0 0

0
0

0 0 0 0

0 0

0 0

0

�
�
�
�
�
�
�
� �
�
�� �
�� �
�� � � �
�� � � � �

T T T
a a
TT T
b b

T

T T T
d d

A S E E

B S E E

C S

D S E E

S SL

I

I

I

� �
� �

� �

�
�

�

(7)

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36
1

44 45 46

55 56

66

0

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �� �

�
� �

� � �
� � �
� � � �
� � � � �

X X X X X X

X X X X X

X X X X

X X X

X X

X

(8)

105



106 Journal of Mathematical Control Science and Applications (JMCSA)

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36
2

44 45 46

55 56

66

0

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �� �

�
� �

� � �
� � �
� � � �
� � � � �

Y Y Y Y Y Y

Y Y Y Y Y

Y Y Y Y

Y Y Y

Y Y

Y

(9)

where

11 1 2 16 16 16 16 1 11 2 11

12 16 26 26 1 12 2 12

13 36 16 36 1 13 2 13

14 46 46 1 14 2 14

15 56 56 1 15 2 15

22 1 26 26 1 22 2 22

� � � � � � � � � �

� � � � � �

� � � � � � �

� � � �

� � � � � �

� � � � � �

T T T

T T

T T T

T T

T T T

T

PA A P Q Q X X Y Y X Y

PB X X Y X Y

A PC X Y Y X Y

X Y X Y

PD A c X Y X Y

Q X X X Y

� � �

� � �

� � �

� � �

� � � �

� � �

�23 36 26 1 23 2 23

24 46 1 24 2 24

25 56 1 25 2 25

33 2 36 36 1 33 2 33

34 46 1 34 2 34

35 56 1 35 2 35

44 1 44 2 44

45 1 45 2 45

55 12

� � � � � �

� � � �

� � � �

� � � � � �

� � � �

� � � � �
� � � �

� � �

� �

T T

T

T T

T

T

T T

T

T

B PC X Y X Y

X X Y

B c X X Y

Q Y Y X Y

Y X Y

C PD Y X Y

R X Y

C c X Y

D c

� �

� � �

� � � �

� � �

� � �

� � �
� � �

� � � �

� � � 55 2 55

1 66 2 66

�
� � �

X Y

S R X Y

�
� �

(10)

Proof For 1 2 66 660 0 0 0 0 0� � � � � � � � � � �P Q Q R X Y  and 0�� , We choose the Lyapunov functional

to be

1 2 3 4 5 6 7� � � � � � �V V V V V V V V

where

1 2 2

1 2

1 1 2

0 0

66 66 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 2 ( )

� � �

� � � �

�� � � � �

� � � �

� � �

� � � � �

��

� �� �

t t t
T T T T

t t t t t

t t
T T

t t

V x P x x s Q x s ds x s Q x s ds s Rx s dsx

s X x s dsd s Y x s dsd f dx x

� � �

�

� � � �
� � � � �

Taking the time derivative of V along the solution of (5) gives that
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� �2 1 12[ ( ) ( )] ( ) ( ) ( ) ( ) ( )� � � � � � � �� T TV x t Cx t P Ax t Bx t Df Lu x t Q x t� � �

1 1 1 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )� � � � � � � � ��T T T Tx t Q x t x t Q x t x t Q x t t Rx tx� � � �

1
2 2 1 66 66 2 66( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t
T T T T

t
t Rx t t X x t s X x s ds t Y x tx x x x

�
� � � � � ��� � � �� � � �

�
� � � �

2
66 1 2( ) ( ) 2 [ ( ) ( ) ( ) ( ) ] ( )

�
� � � � � � � � �� � ��

t
TT

t
s Y x s ds Ax t Bx t Cx t Df Lu cfx

�
� � � � � (11)

Applying Lemma 2.2(1), the following inequality hold:

22[ ( ) ( ) ( ) ]� � �T T T T Tx t P x t C P f c Lu� � � 22[ ( ) ( ) ( ) ] ( )� � � �T T T T Tx t P x t C P f c LF t y� � �

1
2 2[ ( ) ( ) ( ) ]�� � � �T T T T T Tx t PL x t C PL f c L� � � � 2 2[ ( ) ( ) ( ) ]� � � � �T T T T T Tx t PL x t C PL f c L y y� � � � (12)

Note that 1 66 2 66� � �S R X Y� � , and from LMI (6) and Lemma 2.2(2), we have

1 1 1
1 2 1

1 2 1

( ) ( ) [ ( ) ( ) ( ) ( )] ( )

[ ( ) ( ) ( ) ( )]

� � �� � � � � � �

� � � � � � �

� ��

�

T TT

T

t Sx t Ax t Bx t Cx t Df S LLx

Ax t Bx t Cx t Df y y

� � � �

� � � �
(13)

Using the Leibniz-Newton formula, we can write

1
1( ) ( ) ( )

�
� � � � �

t

t
x t x t x s ds

�
�

2
2( ) ( ) ( )

�
� � � �� �

t

t
x t x t x s ds

�
� (14)

According to (14), for any matrices 6 6 ( 1 5)� � � � �i iX Y i … , the following equation hold:

16 1 26 2 36 2 462[ ( ) ( ) ( ) ( )� � � � � ��T T T Tx t X x t X x t X t Xx� � �

1
56 1( ) ][ ( ) ( ) ( ) ] 0

�
� � � � �� �

tT

t
f X x t x t x s ds

�
� � (15)

16 1 26 2 36 2 462[ ( ) ( ) ( ) ( )� � � � � ��T T T Tx t Y x t Y x t Y t Yx� � �

2
56 2( ) ][ ( ) ( ) ( ) ] 0

�
� � � � � �� �

tT

t
f Y x t x t x s ds

�
� � (16)

On the other hand, for any appropriately matrices �ij ijX Y , let 1 2( ) ( ) ( 1 5 5)� � � � � � � � � � �ij ij ij ij ijE X X Y Y i … i j� � ,

so 0�ijE  the following equation also hold;

11 12 13 14 15

12 22 23 24 25

1 113 23 33 34 35

14 24 34 44 45

15 25 35 45 55

0

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �� �

�

T

T T T

T T T

T T T T

E E E E E

E E E E E

E E E E EZ Z

E E E E E

E E E E E

(17)
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where

1 1 2 2( ) ( ) ( ) ( ) ( )� �� � � � � � � �� ��
TT T T T T TZ x t x t x t x t f

Then we add the terms on the left side of Eqs. (15)-(17) to ( )�
tV x ; and consider the fact that, for any 0�r

and any function ( ) ( ) ( )
�

� ��
t

t r
f u f u ds rf u . Then, ( )�

tV x  can be expressed as follows:

1
1 0 1 2 1 2( ) ( ) ( ) ( ) ( )

�
� � � � � ��� t

T T
t t

V x Z t Z t Z t s Z t s ds
� 2

2 2 2 1 2( ) ( )
�

� � � � � ��
t

T T T

t
Z t s Z t s ds y y y y

�
� �

1 1 1 1
1 1 1 2 1 1( )� � � �� � �T T T T TZ M S LL MZ Z N NZ� � (18)

where

� �0�M A B C D , 0 0� �� �� �
T T TN L P L PC L c� , 

2 1( ) [ ( ) ( )]� � �T TTZ t s Z t sx ,

11 12 13 14 15

22 23 24 25

0 33 34 35

44 45

55

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �� �

�
� � �� �

� � �
� � � �

� � � � �
� � � �

� � �
� �

�

(19)

and 1 2 ( 1 5 5)� �� � � � � � � � �ij i … i j�  and S are defined in Eqs. (8) (9) (10). In addition, from condition (2) we can

see ( ( ))f t�  and ( )t�  have the same positive definite or oppositive definite, so condition (2) are equivalent to

( ( ))( ( ( )) ( )) 0� � �Tf t f t kc x t� � (20)

Using (20) and applying S-procedure shows that if there exists 1 2 1 20 0 0 0� � � �� � �� �� �  and

1 1 1 1
0 1 2( )� � � �� � � � � �T T TM S LL M N N� � 1 2 1 1( ) 0� � � �TN N� �

such that

1
1 1 2 1 2( ) ( ) ( ) ( )

�
� � � � ��

tT T

t
Z t Z t Z t s Z t s ds

�
 

2
2 2 2( ) ( )

�
� � � ��

t T

t
Z t s Z t s ds

�
 2 ( ( ))( ( ( )) ( )) 0� � �Tf t f t kc x t� � �

(21)

here 1 0 0� �
� �� �� a dbN E E E , then ( ) 0��

tV x  for any 1( ) 0�Z t  under the condition (2). Since the terms

1
2 1 2( ) ( )

�
� � ��

t
T

t
Z t s Z t s ds

�
 and 

2
2 2 2( ) ( )

�
� � ��

t
T

t
Z t s Z t s ds

�
 in (21) is positive-definite, note that by Lemma 3.1

(Schur complement), (21) is equivalent to
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11 12 13 14 15

22 23 24 25

33 34 35

44 45

55

2

0

0

2

��
� ��
� � � �
� � � ��
� � � � � �
�

� � � � � ��
� � � � � � �
�

� � � � � ��
� � � � � � ��
� � � � � � ��

T

T

kc PL

C PL

c L

I

� � � � � �
� � � �

� � �
� �

� � �
�

1

1
1

1
1

2

0

0

0 0 0 0

0 0 0

0
0

0 0 0 0

0 0

0 0

0

�

�

�

�
�
�
�
�
�
�
� � �
�
�� �
�� �
�� � � �
�� � � � �

T T T
a a
TT T
b b

T

T T T
d d

A E E

B E E

C

D E E

S L

I

I

I

�
�

�

(22)

Pre- and post-multiplying by diag 1 2( )� � � � � � � � �I I I I I I S I I I� �  result in (7). So system (1) is absolute

stable if the LMI (6)-(9) are feasible. This completes our proof.

Remark 3.3 Since for any  0�r  and any function ( ) ( ) ( )
�

� ��
t

t r
f u f u ds rf u , so according to (15)(16)(17),

we have two following equations:

11 12 13 14 15

12 22 23 24 25

1 1 113 23 33 34 35

14 24 34 44 45

15 25 35 45 55

( )

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �� �

�

T

T T T

T T T

T T T T

X X X X X

X X X X X

X X X X XZ Z

X X X X X

X X X X X

�
16 1 26 2 362[ ( ) ( ) ( )� � � � �T T Tx t X x t X x t X� �

1
2 46 56( ) ( ) ] ( ( ) )

�
� � � � �� ��

t
TT

t
t X f X x s dsx

�
� �

1
66( ) ( )

�
�� ��

t
T

t
s X x s dsx

� 1
2 1 2( ) ( )

�
� � � � ��

t
T

t
Z t s Z t s ds

�

and

11 12 13 14 15

12 22 23 24 25

1 2 113 23 33 34 35

14 24 34 44 45

15 25 35 45 55

( )

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �� �

�

T

T T T

T T T

T T T T

Y Y Y Y Y

Y Y Y Y Y

Y Y Y Y YZ Z

Y Y Y Y Y

Y Y Y Y Y

�
16 1 26 2 362[ ( ) ( ) ( )� � � � �T T Tx t Y x t Y x t Y� �

2
2 46 56( ) ( ) ] ( ( ) )

�
� � � � �� ��

t
TT

t
t Y f Y x s dsx

�
� �

2
66( ) ( )

�
�� ��

t
T

t
s Y x s dsx

� 2
2 2 2( ) ( )

�
� � � � � ��

t
T

t
Z t s Z t s ds

�
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Remark 3.4: In the Theorem 1, the relationships between the term 1( )�x t �  and 
1

( ) ( )
�

� �� �
t

t
x t x s ds

�
 and

2( )�x t �  and 
2

( ) ( )
�

� �� �
t

t
x t x s ds

�
 have been considered through the free weighting matrices, 6iX  and

6iY , ( 1 5)� �i  and the optimal weighting matrices can be selected by solving the LMIs (7) and (8). In contrast,

previous methods employ fixed weighting matrices, which are not usually optimal ones.

Remark 3.5: In previous methods, it is very hard to handle the case where the neutral and discrete delays
are different, the result are almost discrete delays dependent and neutral delay independent. But our method
overcomes the difficulty that appears in previous studies, the criterion in Theorem 1 includes information on the
sizes of �1 and �2, which makes it both discrete delays dependent and neutral delay dependent stability criterion.
So this method yields a less conservative criterion than previous criteria.

Remark 3.6: By Theorem 3.2, we can easy obtain a criterion for the system described by (1) with the
special case of D = 0, if we set R = Q2 = Y66 = 0, then the Lyapunov functional reduces to

1
1( ) ( ) ( ) ( )

�
� � �� t

T T

t
V x t Px t x s Q x s ds

� 1

0

66 0
( ) ( ) 2 ( )

� �
� �� � ���

t
T

t
s X x s dsd f dx

�

� �
� � � �

Similar to the proof of Theorem 3.2, we can draw the conclusion of Theorem 7 in the paper of [3]

Remark 3.7: When the system doesn’t contain time-varying structureed uncertainties, it can be described by

2 1( ) ( ) ( ) ( ) ( )

( )T

x t Cx t Ax t Bx t Df

c x t

� � � � � ��
�

��

� � � � �

� (23)

We construct a Lyapunov functional which is same as that in Theorem 3.2. Similar to the proof of Theorem 3.2,
the stability of system (23) can be stated as:

Given scalars 1 0��  and 2 0�� , the system (23) is absolute stable if the operator ( )� tx  is stable and there

exist the symmetric positive-definite matrices 1 2 66 66� � � � �P Q Q R X Y , positive scalars � �� �  and any matrices

( 1 5)� � � � � � ��ij ijX Y i j i j  of appropriate dimensions satisfying (8)(9) and the following matrix inequalities:

11 12 13 14 15

12 22 23 24 25

13 23 33 34 35

14 24 34 44 45

15 25 35 45 55

0
0

2

0

� ��
� �
� �
� �

� � �� �
� �
� ��
� �

�� �� �

T

T T

T T

T T T T

T TT T T

kc A S

B S

C S

I D S

SA SB SC SD S

� � � � � �
� � � � �
� � � � �
� � � � �
� � � � � �

(24)

Here �ij and S is the same as Theorem 3.2.
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Remark 3.8: The above result can be easy extended to the stability of uncertain Lurie-type neutral system
with multiple neutral and discrete delays.

4. EXAMPLES

Example 4.1Consider the Lurie-type neutral system (23) where

2 1 0 5 0 1

1 0 0 1 0 5

� � � � � �� � � �
� � � �� � � �� � � �� � � �

A B
0 2 0 0 2 0 6

0 2 0 1 0 3 0 8

� � � � �� � � � � �
� � � � �� � � � � �� � � � � �� � � � � �

C D c

Applying Remark 3.7 and using the Matlab LMI Toolbox [13], it is found that for �1 = �2 and k = 1 the
maximum upper bounds on the allowable size to be �1 = �2 = 1.987, Table 1 list the upper bounds on �1 that
guarantee the stability of the system for values of �2 from 0.1 to 1.0. It can be seen the upper bound on �1

decrease as �2 when �2 is small.

Table 1
The upper bounds on 

1
 with the difficult values of 

2

�
2

0.1 0.2 0.3 0.4 0.5
�

1
2.057 2.050 2.042 2.035 2.029

�
2

0.6 0.7 0.8 0.9 1.0
�

1
2.023 2.018 2.013 2.009 2.006

Example 4.2: Consider the system described by (1) with

2 0 1 0

0 0 9 1 1

� �� � � �
� � � �� � � �� � � �� � � �

A B
0 1 0 0 2 0 6

0 0 1 0 3 0 8

� � � �� � � � � �
� � � � �� � � � � �� � � �� � � � � �

C D c

1 0 1 0

0 1 1 0

� � � � � �
� � � � � �� � � � � �

� � � � � �
a b dE E E L

�
�

Applying Theorem 3.2, it can be seen that for �1 = �2 and k = 1, ��= 0.1 the maximum upper bounds on the

allowable size to be 1 2 2 33� � � �maxh � � .

For k = 1, we now consider the effect of uncertainty bound � on the maximum time-delay 1 2� �h � �  for

stability of system (1). Table 2 illustrates the numerical for different �. As � increases, h decreases.

Table 2
Allowable time delay h with different  

� 0.05 0.1 0.15 0.2 0.25

h
max

2.87 2.33 1.91 1.57 1.26

� 0.3 0.35 0.4 0.45 0.5

h
max

0.97 0.76 0.60 0.49 0.39

For k = 1, � = 0.1, Table 3 list the maximum bounds on �1 that guarantee the stability of the system for
different �2 from 0.1 to 1.2. It also can be seen that the upper bound on �1 decrease as �2 when �2 is small.
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It is clear that our results are significant better for a constant k when  �1 ����. If the maximum upper bound
on the delay �2 is small, then the maximum upper bound on �1 is larger than that when  �1 = �2.

Table 3
The upper bounds on 

1
 with the difficult values of 

2

�
2

0.1 0.2 0.3 0.4 0.5 0.6

�
1

2.87 2.83 2.79 2.75 2.70 2.66

�
2

0.7 0.8 0.9 1.0 1.1 1.2

�
1

2.61 2.57 2.53 2.49 2.46 2.42

5. CONCLUSION

This paper presents a new delay-dependent stability criterion for uncertainty Lurie-type neutral system with

delays. The criterion takes into account the relationships between the term 1( )�x t �  and 
1

( ) ( )
�

� �� �
t

t
x t x s ds

�

and 2( )�x t �  and
2

( ) ( )
�

� �� �
t

t
x t x s ds

�
 the free weighting matrices used to express the relationships between,

and reciprocal influences of neutral and discrete delays. The criterion has been expressed in the form of LMIs
and is both neutral and discrete delay dependent. Two examples illustrate that this method provides over previous
methods.
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