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Abstract: In this paper, we formulate a robust SEIR epidemic disease model with a profitless delay and nonlinear
incidence, and analyze the dynamics behaviors of the model under pulse vaccination. By use of the discrete
dynamical system determined by the stroboscopic map, we obtain an ’infection-free’ periodic solution, further,
show that the ’infection-free’ periodic solution is globally attractive when some parameters of the model are
under appropriate conditions. Using the theory on delay functional and impulsive differential equation, we obtain
sufficient condition with time delay for the permanence of the system, and prove that time delays, pulse vaccination
and nonlinear incidence can bring obvious effects on the dynamics behaviors of the model. Our results indicate
that the delay is “profitless”. The theoretical results are confirmed by numerical simulations.
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1. INTRODUCTION

The SEIR infections disease model is a very important biologic model and has been studied by [1-9]. An
epidemic model based on these assumptions is customarily called SIR(susceptible, infectious, recovered) model.
However, many diseases incubate inside the hosts for a period of time before the hosts become infectious. We
assume that a susceptible individual first goes through a latent period after infection before becoming infectious.
For example, the incubation time for canine madness is anything from a few months to years after the patient
has got canine madness virus. To include the latent period it is necessary to consider a new group in the population
(i.e. exposed). The resulting model is SEIR (susceptible, exposed, infectious, recovered) epidemic type. For a
schematic representation of the flow of individuals between the four epidemiological subclasses [5] where the
authors model the course of an Ebola outbreak via an SEIR model.

In recent years, pulse vaccination, the repeated application of vaccine over a defined age range, is gaining
prominence as a strategy for the elimination of childhood viral infectious such as measles hepatitis, parotitis,
smallpox and phthisis. Pulse vaccination strategy (PVS)[1,10-12], consists of periodical repetitions of impulsive
vaccinations in a population, on all the age cohorts, differently from the traditional constant continuous
vaccination.

Epidemic models with nonlinear incidence were proposed by a number of authors [13-15]. For example,

the nonlinear incidence 1�
SI

S
�
� , SI�  measures the infection force of the disease and1 (1 )� � S�  measures the

inhibition effect from the behavioral change of the susceptible individuals when their number increases or from
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the crowding effect of the infective individuals.This incidence rate seems more reasonable than SI�  because it

includes the behavioral change and crowding effect of the infective individuals and prevents the unboundedness
of the contact rate by choosing suitable parameters.

Generally, death for the infectious during a latent period occurs continuously, which is called the phenomena
of ’time delay’, so, time delay has important biologic meaning in epidemic models. Recently, many epidemic
models with time delay were extensively studied by [3,8,16-18]. The investigation of impulsive delay differential
equations is inchoate, and most of impulsive delay differential equations are analyzed in theory [19-21], however
the good results on global qualitative analysis for delay biologic models with impulse effect are not extensive.
Time delay and impulse are introduced into epidemic disease models, which greatly enriches biologic background.
Therefore, in present paper, we propose a delay SEIR epidemic model with nonlinear incidence and pulse
vaccination, study their dynamic behaviors (the ’infection-free’ periodic solution, the permanence, global
attractive behavior) under pulse vaccination.

The organization of this paper is as follows. In the next section, we introduce the SEIR epidemic model with
time delay and pulse vaccination. In Section 3 and 4, we investigate the dynamic behaviors of the model and
obtain the sufficient condition for global attractivity of ’infection-free’ periodic solution and the permanence of
the population. Lastly, we give pulse vaccination strategy and show the effect of pulse vaccination rate, period
of pulsing, latent period of the disease, and nonlinear incidence on the dynamics behaviors of model by numerical
analysis.

2. SEIR EPIDEMIC MODEL

In the following model, we study a population that is partitioned into four classes, the susceptible, exposed,
infectious and recovered, with sizes denote by S; E; I and R, respectively, and consider nonlinear incidence, the
latent period of disease, and pulse vaccination strategy. Motivated by [1-4,6,7], we give the following assumptions:

(i) Death rate (d) is equal to birth rate (b), that is, the population has a constant size, which is normalized

to unity ( ) ( ) ( ) ( ) 1� � � �S t E t I t R t ;

(ii) All new-born transfer to the ’susceptible’ class (S) as soon as who are born, and the treatment with
pulse vaccination is taken successfully to a proportion (with m) of those to all newborns;

(iii) The nonlinear incidence in this model is 1�
S

S I�� , where � is called saturation.

(iv) Suppose that the latent period of disease is � (latent period time delay) and consider the death toll of the

exposed individuals during latent period of disease, that is the ( )
1 ( ) ( )��
� � �S t

S te I t���
� �� �  term.

Therefore, under assumptions above, we consider a new SEIR model with time delay and pulse vaccination
as follows:

b
S(t) E(t) I(t) R(t)

bS bE bI bR

mb

1

S
I

S
�
� �

( )
( )

1 ( )
b S t

e I t
S t

� � � �
� � �

� � � � rI
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�� �� �� �� �� � �� �� R t R t mb

(1)

where mb (with 0 < m < 1) is those new-born vaccinated successfully. The details for system (1) can be seen in
[3, 9,  13-15].

Note that the variables E and R do not appear in the first and third equations of system (1), hence we only
need to consider the subsystem of (1) as follows:

( )
( ) ( ) ( )

1 ( )

( )
( ) ( ) ( ) ( )

1 ( )

( ) ( )

( ) ( )

b

S t
S t b I t bS t

S t
t nT n N

S t
I t e I t r b I t

S t

S t S t mb
t nT n N

I t I t

�

�

�

� �� � � �� �� �� � � � ��� �� �� � � � �� �� � ��
� �� � �� � � �� �

� � �� ��

�

� �

�
�

�
� �

� �
(2)

We note that if the initial epidemic state (S(0), I(0)) is such that: S(0)-m b � 0 (when the pulsing rate m is
very large), then the fraction of susceptible subjects after the pulsing would be nonpositive: S(0+) � 0, which
implies all the susceptibles transfer to the recovered class right now, so, our aim is obtained. However, from the
fact and the standpoint of economy, we hope the minimum amount of the susceptibles are vaccinated such that
the epidemic disease is eradicated eventually. Therefore, we will find the conditions which the epidemic disease
is eradicated eventually provided that S(0) – mb > 0 in the rest of this paper.

The initial conditions for (2) are

2
1 2( ( ) ( )) ([ 0] ) (0) 0( 1 2)� �� � � � � � � � � � �is s C C R i� � � � (3)

From the biological point of view, we only consider system (2) in the biological meaning region:

{( ) 0}� � � � � �D S I S I
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Lemma 2.1. (see [22]) Consider the following impulse differential inequalities:

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
k

k k k k k

w t p t w t q t t t

w t d w t b t t k N�

� � � � � � �

� � � � � � � �

where ( ) ( ) ( ) 0�� � � � � �kp t q t C R R d  and kb  are constants.

Assume

(A0) the sequence {tk} satisfies 0 1 20 � � � � ��t t t  with lim �� � ��t kt

(A1)w � PC�(R+, R) and w(t) is left-continuous at tk, k � N.

Then

� � � �
0

00

0

0

0

( ) ( ) ( ) exp ( ) exp ( )

exp ( ) ( )

� �� � � �

� �

� �
� � � � �� �

� �
� �� � � �� �
� �

�� �� �

� ��

k
kk k j

k

t t

k j kt t
t t tt t t t t t

tt

k st
s t t

w t w t d p s ds d p s ds b

d p d q s ds t t� �

When pulse vaccination and delays are incorporated into SEIR models, the systems become nonautonomous,
which make it difficult for us in studying the model. Therefore, the literature on this one is not extensive. Now
we study the global attractivity of ’infection-free’ solution (infection-eradication) and the permanence (endemic)
of the systems (2) with initial conditions (3) under the influence of impulse, time delay and nonlinear incidence.

3. ‘INFECTION-FREE’ PERIODIC SOLUTION

3.1 Existence of ’Infection-free’ Solution

Before starting our theorem, we give the following lemma.

Lemma 3.1. (see [23]) Consider the following delay differential equation

1 2

( )
( ) ( )� � � �

dx t
r x t r x t

dt
�

where a, b, � are all positive constants and x(t) > 0 for t � [–�, 0].

(i) If 1 2� �r r  then lim ( ) 0�� � �t x t

(ii) If 1 2� �r r  then lim ( )�� � ���t x t

We begin the analysis of (2) by first demonstrating the existence of an ’infection-free’ solution, in which
infectious individuals are entirely absent from the population permanently, i.e.,

( ) 0 0� � � �I t t (4)
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This is motivated by the fact that I* = 0 is an equilibrium solution for the variable I(t), as it leaves I�(t) = 0.
Under these conditions, we show below that the susceptible population oscillates with period T in synchronization
with the periodic pulse vaccination. In the section that follows, we determine the global attractivity of this
’infection-free’ periodic solution.

Assuming (4), we know that the growth of the susceptible in the time-interval ( 1)� � �nT t n T  and give

some basic properties of the following subsystem of (2)

( ) ( )

( ) ( )�

� � � � � � � �
�

� � � � � � ��

�S t bS t b t nT n N

S t S t mb t nT n N
(5)

For integrating and solving equation (5) between pulses, yields

( )( ) 1 (1 ( )) ( 1)� �� � � � � � � �b t nTS t S nT e nT t n T

where S(nT) be the initial value at time nT. Using the second equation of system (5), we deduce the stroboscopic
map on the discrete dynamical system (see [22]) such that

(( 1) ) 1 (1 ( )) ( ( ))�� � � � � � �bTS n T S nT e mb f S nT (6)

where ( ) 1 (1 ) �� � � �bTf S S e mb . If 1 0�� � � �bTmb e  then it is easy to know that difference equation (6)

has unique a positive equilibrium  
1

1 �
�

�
� � bT

mb
e

S . Since ( )f S  is a straight line with respect to S with slope less

than 1, we obtain that S* is globally asymptotically stable. This implies that the corresponding periodic solution
of system (5), is globally asymptotically stable.

Then we have

( )( ) 1 ( ( 1) ]
1

(0 ) ( ) 1
1

b t nT
bT

bT

mb
S t e t nT n T n N

e
mb

S S nT
e

� � �
�

� � � �
�

� � � � � � � � � ��� �
�
� � � � �
� ��

which is unique a globally asymptotically stable positive periodic solution of system (5).

When the pulsing rate m is very large, then the fraction of susceptible subjects after the pulsing would be

nonpositive: (0 ) 0� � �S , which implies all the susceptibles transfer to the recovered class right now, so, our

aim is obtained. However, from the fact and the standpoint of economy, we hope the minimum amount of the
susceptibles are vaccinated such that the epidemic disease is eradicated eventually. Therefore, we will find the

conditions which the epidemic disease is eradicated eventually provided that 
1

1 0(1 0)�
�

�
� � � � �bT

bTmb
e

mb e

in the rest of this paper.

Since the solution of (5) is
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( ) (0 ) 1 ( ) ( ( 1) ]
1

(0 ) 1
1

bt
bT

bT

mb
S t S e S t t nT n T

e

mb
S

e

� � �
�

� �
�

� � �� �� � � � � � � � �� � �� �� �� �� ��
� � � �� ��

(7)

we have the following Lemma (3.2).

Lemma 3.2. System (5) has unique a positive periodic solution ( )�S t , that is to say the system (2) has an

’infection-free’ periodic solution ( ( ) 0)� �S t  for ( ( 1) ]� � � � �t nT n T n N , for any solution ( ( ) ( ))�S t I t  of (2)

we have ( ) ( )��S t S t  as � ��t

Now we give the conditions which assure the global attractivity of the infection-free periodic solution

( ( ) 0)� � �S t

3.2 Global Attractive of ’Infection-free’ Periodic Solution

Denote

(1 )

(1 )( 1)

bT

bT

e mb

e mb

� �� �� �� �
� � �

�

� �
R (8)

where 
�

���
be

r b

�� .

Theorem 3.2. If R1 < 1 and 1 – mb – e–bT, then the ’infection-free’ periodic solution ( ( ) 0)� �S t  of system (2)

is globally attractive.

Proof. Let (S(t), I(t)) be any solution of system (2) with initial condition (3). Since R1 < 1, we have

� �
1

1

1
( ) 0

1 1

�

�

�

�

� �

�

�
� � � �

� �

bT

bT

bT

bT

mbe
b e

mbe
e

e r b��
�

Since 1�
x

x�  is a monotonically increasing function with respect to x , we can choose a sufficiently small positive

constant � such that

� �
1

1

1
( ) 0

1 1

�

�

�

�

� �

�

� �
� � � �

� � �

bT

bT

bT

bT

mbe
b e

mbe
e

e r b� �
�

� � (9)

Note that ( ) ( ) ( ) ( )�� � � � � �dS t dt b bS t S t S t mb  for ( 1)� � �nT t n T , then we consider the following

impulsive impulse differential inequalities:
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( )
( )

( ) ( )�

� � � � � � ��
�
� � � � � � � ��

dS t
b bS t t nT n N

dt
S t S t mb t nT n N

By using Lemma 2.1, we have

0

0
0

( ) (0 )

(0 ) 1 1
1 1

� � ��

� � � �

� �
� �

� �

� � �� � �

� �
� � � � � �� �� �� �

� ��
t t t

nT s
tbds bds bd

nT t s nT t

bT bT
bt

bT bT

S t S e mb e e bds

mbe mbe
S e

e e

�

which implies

limsup ( ) 1
1

bT

bT
t

mbe
S t

e

�

�
��

� � �
�

Hence, there exist a positive integer n1 and a arbitrarily small positive constant�  such that for all 1�t n T ,

( ) 1
1

�

�� � � �� �
�

bT

bT

mbe
S t

e
� � (10)

From (10) and the second equation of (2), we get that, for 1� �t n T � ,

( ) ( ) ( ) ( )
1

�� � � � �
�

� bI t e I t r b I t� �
� �

�� (11)

Consider the following comparison equation

( )
( ) ( ) ( )

1
�� � � � �

�
bdz t

e z t r b z t
dt

� �
� �

�� (12)

We see that (9) i.e.

( ) 0
1

� � � � �
�

be r b� �
�

��

According to Lemma 3.1 we obtain that

lim ( ) 0
��

� �
t

z t

Since 2( ) ( ) ( ) 0� � �I s z s s�  for all [ 0]� � � �s �  by the comparison theorem in differential equation and the

nonnegativity of solution (with ( ) 0�I t ), we have that ( ) 0�I t  as t ����
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Without loss of generality, we may assume that 0 ( )� �I t �  for all  0�t , by the first equation of system (2),

we have

( ) ( )� � � �
dS

b b S t
dt

��

Then we have 1( ) ( )�� t S tz  and 1( ) ( )�� �� t S tz  as  ��� 0, where 1( )� tz  is a unique positive periodic solution of

1
1

1 1

1

( )
( ) ( )

( ) ( )

(0 ) (0 )

dz t
b b z t t nT n N

dt

z t z t mb t nT n N

z S

�

� �

� � � �� � � � � � ��
�� � � � � � � ��
� � ��
��

(13)

From (13), we have that, for ( 1)� � �nT t n T ,

1( ) exp{ ( )( )}
1 exp{ ( ) }

� � � � � �
� � � �

�
b mb

t b t nTz
b b T

��
�� ��

By using comparison theorem of impulsive equation (see Theorem 3.1.1 in [22]), for any �1 > 0 there exists such

a 1 0�T  that, for 1�t T ,

1 1( ) ( )S t tz� �� �� (14)

On the other hand, from the first equation of (2), it follows that

( )� � �
dS

b bS t
dt

Then we have 2( ) ( )� �S t tz  and 2( ) ( )�� �� t S tz  as � �t , where 2( )� tz  is a unique positive periodic solution

of

2
2

2 2

2

( )
( ) ,

( ) ( )

(0 ) (0 )

dz t
b bz t t nT n N

dt

z t z t mb t nT n N

z S

�

� �

� � � � � � ��
�� � � � � � � ��
� � ��
��

(15)

From (15), we have that, for ( 1)� � �nT t n T ,
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( )
2( ) 1

1
� �

�� � �
�

� b t nT
bT

mb
t ez

e

By using comparison theorem of impulsive equation, for any �1 > 0 there exists a T2 > 0 such that

2 1 2( ) ( ) forS t t t Tz� � � � �� (16)

Let ��� 0, then it follows from (14) and (16) that

1 1( ) ( ) ( )S t S t S t� �� � � � � � � (17)

for t large enough, which implies ( ) ( )��S t S t  as � ��t  This completes the proof.

Corollary 3.2. (i) If (1 )( )be r b� �� � � � � , then ’infection-free’ periodic solution ( ( ) 0)� �S t  is globally

attractive. (ii) If (1 )( )be r b� �� � � � �  and m > m* or T < T* or � > �* or ��> �� , then ’infection-free’ periodic

solution ( ( ) 0)� �S t  is globally attractive, where the critical values m*, T*, �
*, and�� are listed in Table 1 for

system (2).

Table 1
Critical Values of Some Parameters of System (2) (

1
 < 1 must be satisfied)

The conditions for global attractivity of (S*(t), 0)

m > m*

( 1)[ (1 )( )]

( )

bT b

b

e e r b

b e r b
m

�

�

� � � ��
� �� �� �

�
�

�

� �

� �

T < T
*

(1 ) ( ) ( )
1

(1 )( )

b

b

mb e r b r b

b e r b
T In

�

�

� �� � � � �� �
� � � �
�

�

�

� �

� �

t > t*

(1 )
1

( ) (1 ) 1 (1 )
ln

bT

bT

e mb

b r b e mb

� �� � �� � �
� �� �� � �� �� �

� �

a > a*

� �1 ( )

( ) (1 )

bT b b

bT

e e r b mb e

r b e mb

� � � �� �� � � � � �� � �
� �� � �� �

� �

Remark 3.2: From Theorem 3.2, we can see that a short period of pulsing (with T) or a large pulse vaccination
rate (with m) or a long latent period of the disease (with �) or a large saturation (with �) is sufficient condition
for the global attractivity of the ‘infection-eradication’ periodic solution.

4. PERMANENCE

4.1. Uniform Persistence of the Population

Before starting our theorem, we give the following definition.

Definition 4.1. System(2) is said to be uniformly persistent if there are positive constants mi, i = 1,2 and a
finite time T0 such that for all solutions (S(t), I(t)) with initial values S(0+) > 0, I(0+) > 0, m1 � S(t), m2 � I(t) holds
for all t � T0.
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Definition 4.2. System(2) is said to be permanent if there exists a compact region D � int � such that every
solution of system (2) with initial conditions (3) will eventually enter and remain in region D.

Denote

2

( )(1 )
where

1 ( )

bT b

bT

e e

mb e r b

� �

�

� �
� � � �

� � � �
�

�
�

�� �
�

R (18)

Theorem 4.1. If R2 > 1, then the system (2) is uniformly persistent, that is, there exist two positive constants

m1 and m2 such that 1( ) � �S t m 2( ) �I t m  for t  large enough.

Proof. Suppose that ( ) ( ( ) ( ))� �X t S t I t  is any positive solution of system (2) with initial conditions (3).

The second equation of system (2) may be written as follow:

( ) ( )
( ) ( ) ( ) ( )

1 ( ) 1 ( )
� �

�

� �
� � � � �� �� �� �

�� tb b

t

S t d S
I t e r b I t e I d

S t dt S
� �

�

�
� � � �

� � � (19)

Define

( )
( ) ( ) ( )

1 ( )
�

�
� � �

��
t

b

t

S
V t I t e I d

S
�

�

�
� � �

� �

Calculating the derivative of V(t) along the solution of (2), it follows from (19) that

( ) ( )
( ) 1 ( )

1 ( )

( )
( ) 1 ( )

1 ( )

bdV t e S t
r b I t

dt r b S t

S t
r b I t

S t

�� �
� � �� �� �� �

� �
� � � �� ��� �

�

��
�

�

(20)

Set

2 2( 1)
b

m� � � �
�
R

Since R2 > 1, then 
2 0� �m  and there exists a positive constant �1 small enough such that

1
1

� �
�

�
�
�

�
(21)

where

1
2 2

0
1 exp{ ( ) }� �� � � � �

� � � �
b mb

m b m b T
�

� �
�
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For any positive constant t0, we claim that the inequality 
2( ) ��I t m  cannot hold for all 0�t t . Otherwise,

there is a positive constant t0, such that 
2( ) ��I t m  for all 0�t t . From the first and third equation of system (2),

we have

2

( )
( ) ( )

( ) ( )

�

�

� � � � � � ��
�
� � � � � ��

dS t
b m b S t t nT

dt
S t S t mb t nT

�

Similarly, by Lemma 2.1, there exists such 1 0� �T t � , for 1�t T  that

1
2 2

( )
1 exp{ ( ) }� �� � � �� �

� � � �
b mb

S t
m b m b T

�
� �

� (22)

From (20) and (22), we see that

1

( )
( ) 1 ( )

1

� �
� � � � � �� ��� �

�
dV t

r b I t t T
dt �

�

�
(23)

Let

1 1[ ]
min ( )

� � �
� �l

t T T
I I t

�

We show that ( ) � lI t I  for all 1�t T . Otherwise, there exists a nonnegative constant T2 such that ( ) � lI t I  for

1 1 2[ ]� � � � �t T T T� 1 2( )� � � lI T T I�  and 
1 2( ) 0� � � ��I T T�  Thus from the second equation of (2), (21) and

(22), we easily see that

1 2( ) ( )
1

( ) 1
1

0

�� �
� � � � �� ��� �

� �� � �� ��� �
� �

�

�

b l

l

I T T e r b I

r b I

�� �
�

�

�

�

�

�

which is a contradiction. Hence we get that ( ) 0� �lI t I  for all 1� �t T  From (23), we have

( )
( ) 1

1

0

� �
� � �� ��� �
� �

� ldV t
r b I

dt

�

�
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which implies ( ) � ��V t  as � ���t  This is a contradiction to ( ) 1 �� � �bV t e ���  Therefore, for any positive

constant t0, the inequality 
2( ) ��I t m  cannot hold for all 0�t t .

On the one hand, if 
2( ) ��I t m  holds true for all t large enough, then our aim is obtained. On the other hand,

I(t) is oscillatory about 
2
�m .

Let

( )2
2 2min 0

2

�� �
� �� � �
� �
� �
� �

� � � �r bm
m m e �

In the following, we shall show that 2( ) � �I t m  There exist two positive constants �t �  such that

2( ) ( ) �� � �I t I t m�

and

2( ) for�� � � � � �I t m t t t �

In the following, we only need to prove that 2( ) �I t m (
2 20 �� �m m )  for � � �t t t � . When t ( 1�t T )

is large enough, the inequality ( ) �S t �  holds true for  � � �t t t � , since 
2( ) ��I t m . Since I(t) is continuous

and bounded and is not effected by impulses, we conclude that I(t) is uniformly continuous. Hence there exists

a constant T3 ( with 0 < T3 < �  and T3 is independent of the choice of t ) such that 2

2( )
�

� mI t  for all 3� � � �t t t T

If 3� T� , our aim is obtained. If 3 � � �T � �  from the second equation of (2) we have that ( ) ( ) ( )� � ��I t r b I t

for � � � �t t t �  Then we have ( )
2( ) � � �� r bI t m e �  for � � � � �t t t t� �  since 

2( ) �� �I t m  It is obvious

that 2( ) �I t m  for � � � �t t t �  Similarly, if �� � , by the second equation of (2), then we see that 2( ) �I t m

for � � � �t t t �  Thus, proceeding exactly as the proof for above claim, we can obtain 2( ) �I t m  for

� � � �t t t� � . Since the interval [ ]� �t t �  is arbitrarily chosen (we only need t  to be large), we get that

2( ) �I t m  for t large enough. In view of our arguments above, the choice of m2 is independent of the positive
solution of (2) which satisfies that 2( ) �I t m  for sufficiently large t.

From the first equation of (2), we have that

( ) ( )� � � �
dS

b b S t
dt

�

Then we have 3( ) ( )� �S t tz , where 3( )� tz  is unique a globally asymptotically stable positive periodic solution of
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3
3

3 3

3

( )
( ) ( )

( ) ( )

(0 ) (0 ) 0

dz t
b b z t t nT n N

dt

z t z t mb t nT n N

z S

�

� �

� � � � � � � � ��
�� � � � � � � ��
� � � ��
��

�

(24)

There exists a � > 0 small enough such that

3 3 1( )
( ) ( ) (0 )

1
�

� �� � � � �� �
� �

� � b T

b mb
S t t mz z

b e �� (25)

This completes the proof.

4.2 Permanence of the Population

Theorem 4.2. If R2 > 1. then system (2) is permanent.

Proof. Suppose that ( ) ( ( ) ( ))� �X t S t I t  is any positive solution of system (2) with initial conditions (3).

By Theorem 4.1, there exist positive constants m1, m2 and T* such that 1 2( ) ( )� � �S t m I t m  for ��t T . Set

2
1 2{( ) ( ) ( ) ( ) ( ) 1}�� � � � � � � � � � �D S I R m S t m I t S t I t

Then D is a bounded compact region which has positive distance from coordinate axes. By Theorem 4.1,
one obtains that every solution of system (2) with the initial condition (3) eventually enters and remains in the
region D. The proof is completed.

Corollary 4.2. If m < m* or T > T* or � < �* or � < �*, then system (2) is permanent, that is, the disease can
generate an endemic, where the critical values m*, T

*, �*, and �* are listed in Table 2 for system (2).

Table 2
Critical Values of Some Parameters of System (2)  (

2
 > 1 must be satisfied)

The conditions for permanence of the population

m < m* � �( ) 1 1

( )1
bT bTb e e

bm
� �� � � � �

� �� �
�

�

�

�

T > T* � �( )1
1ln 1 mb

bT ��
� �� � � �
�

�
�

t < t* � �(1 )1
( )[(1 )(1 ) ]

ln
bT

bT

e mb
b r b e mb

�

�
� � �

� � �� � � �
� �

a < a* 1
1

bT

bT
e

e mb

�

�
�

� � �
� � ��

Remark 4.2.1. Let m = 0 and � = 0 then system (1) become ([3,9])
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

b

b

S t b S t I t bS t

E t S t I t e S t I t bE t

I t e S t I t r b I t

R t rI t bR t

�

�

� � � � �
�

� � � � � ��
�

� � � � � ��
� � � ��

�

�

�

�

�

�

�

� � � �

� � � (26)

If 1
be

r b

�

�� �
��R , then the ’infection-free’ equilibrium of (26) is globally attractive. If 1

be
r b

�

�� �
��R , then

the disease is permanent. The homologous results were also given in [3] and [9].

Remark 4.2.2. From Theorem 4.1 and 4.2, we can see that a long period of pulsing (with T) or a small pulse
vaccination rate (with m) or a short latent period of the disease (with �) or a small saturation (with �) is sufficient
condition for the permanence of the epidemic disease.

5. NUMERICAL ANALYSIS AND ECOLOGICAL DISCUSSION

In this paper, we introduce a time delay, pulse vaccination and nonlinear incidence into the SEIR model, and
theoretically analyze the influence of pulse vaccination, the latent period of disease, nonlinear incidence on
infection-eradication and the permanence of epidemic disease. Theorem 3.2, 4.1 and 4.2 show that R1 and R2

depend on time delay �, so, we call it “profitless” delay. By Theorem 3.2, 4.1 and 4.2, we can choose a smaller
vaccination period (with T) or increase the proportion (with m) of those vaccinated successfully to all of the
newborn population such that R1 < 1 in order to prevent the epidemic disease from generating endemic.

In the following, we will analyze the influence of pulse vaccination rate, period of pulsing, latent period of
the disease, nonlinear incidence rate on the system (2) by numerical analysis. We consider the hypothetical set

of parameter values as 0 5 0 3 2 0 3 1 0 2 0 5� � � � � � � � � � � � � � � � � �b r m T� � � .

Table 3. The influence of pulse vaccination rate (with m), period of pulsing (with T), latent period of the
disease (with �), and saturation (�) for nonlinear incidence on the global attractivity of the ’infection-eradication’
periodic solution and the permanence of epidemic disease.

m T � � R
1

R
2

Attractivity Permanence

0.2 0.5 1 0.3 0.8226 0.7848 yes no

0.05 0.5 1 0.3 1.0858 1.0694 no yes

0.2 6 1 0.3 1.1618 1.0784 no yes

0.2 0.5 0.1 0.3 1.2900 1.0714 no yes

0.2 2 1 0.5 0.9709 0.8756 yes no

0.2 2 1 0.1 1.3052 1.1571 no yes

0.4 0.5 0 0.3 0.7359 0.6791 yes no

0.2 0.5 0 0.3 1.3561 1.1029 no yes

0.4 0.5 1 0 0.6395 0.4485 yes no

0 2 0.3 0.7075 0.6198 yes no
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By Theorem 3.2, we know that when R1 = 0.8226 < 1, the disease dies out ultimately (see Fig.1 (1)), the
susceptible population (S) periodically oscillate (see Fig.1 (2)), and the ’infection-eradication’ periodic solution
is globally attractive (see Fig. 1 (3)). By Theorem 4.1 and 4.2, when R2 = 1.0694 > 1, the system (2) is
permanent (see Fig.2 (4) and (5)). Fig. 2 also shows periodic fluctuating of the population for system (2) which
implies it can generate an endemic (see Fig. 2 (6)).

From the second to eighth line of Table 3, we can see that a smaller pulse vaccination rate or a longer period
of pulsing or a shorter latent period of the disease or a smaller saturation (�) for nonlinear incidence could cause
global attractive ’infection-eradication’ periodic solution to lose and generate an endemic. From the seventh
and eighth line of Table 3, we can see that when pulse vaccination rate (m = 0.4) is larger or the period of
pulsing is shorter, although � = 0 or ��= 0, the epidemic disease can not be permanent. The last line of Table 3
show that when the latent period of disease are larger, although m = 0, the epidemic disease couldn’t be permanent
yet. Ultimately, when the latent period time delay is too long, the permanence of system disappears and the
the epidemic disease dies out. This shows the sensitivity of the model dynamics on latent period time delay.
The ultimate scenario makes intuitive biological sense: if the susceptible takes too long to transfer to the
infectious, then the infectious population will suffer low survival and, as a result, the highest possible

Fig. 1: Dynamical Behavior of the System (2) with 0 5 0 3 2 0 3 0 0 4 0 5� � � � � � � � � � � � � � � � � �b r m T� � �  and 1 0 7359 1� � �R .

(1)Time-series of the Infective Population (I) of System (2). (2)Time-series of the Susceptible Population (S)
of System (2). (3) Phase Portrait (Global Attractivity of the ’infection-eradication’ Periodic Solution)

of the Susceptible and Infectious Population of the System (2).
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recruitment rate to the infectious (�e–b�) will drop below the the infectious death rate b, leading to the extinction
of  I. This implies that pulse vaccination and time delays brings determinant effect on the dynamics behaviors
of the model, the otherwise effects are accidental. Therefore, it is very important to consider time delays for
latent period of the disease in SEIR epidemic disease models. This give us much help in presenting a pulse
vaccination strategy.

Fig. 2: Dynamical Behavior of the System (2) with 0 5 0 3 2 0 3 0 0 2 0 5� � � � � � � � � � � � � � � � � �b r m T� � �  and 2 1 1029 1� � �R .

(4)Time-series of the Infective Population of System (2). (5)Time-series of the Susceptible Population of
System (2). (6)Phase Portrait (T–periodic Solution) of the Susceptible and Infectious

Population of the System (2).
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