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Abstract. Recently, Suzuki in 2008 obtained a generalization of Banach

contraction principle. Subsequently, a number of new fixed/common fixed

point theorems for mappings in metric spaces/partial metric spaces have been
established by many authors. In this paper, we obtain a common fixed point

theorem for multivalued maps in partial metric spaces which generalizes some

well known results and also extends many results in the settings of partial
metric.

1. Introduction

In 1994, Mathews[12] introduced the notion of partial metric spaces(PMS) as
a part of denotational semantics of data for networks and proved the Banach
contraction principle in partial metric context for the applications in program
verification.

Definition 1.1. [12] A partial metric on a non empty set X is a function p :
X ×X → R+ such that for all x, y, z ∈ X:

(a) x = y ⇔ p(x, x) = p(x, y) = p(y, y).
(b) p(x, x) ≤ p(x, y).
(c) p(x, y) = p(y, x).
(d) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Then the pair (X, p) is said to be partial metric space.

If p(x, y) = 0, then (a) and (b) imply that x = y. But converse is not true in
general. An obvious example of the partial metric space is (R+, p), where partial
metric p is defined as p(x, y) = max {x, y}.

If p is a partial metric on X, then the mapping ps : X ×X → R+ defined by
ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) is a metric on X.

Let (X, p) be a partial metric space. Then a sequence {xn} in X is called:

(i) Convergent to a point x ∈ X iff limn→+∞ p(xn, x) = p(x, x);
(ii) Cauchy sequence whenever limm,n→+∞ p(xm, xn) exists and finite.

A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn}
in X is convergent with respect to τp. Furthermore,

lim
m,n→+∞

p(xm, xn) = lim
n→+∞

p(x, xn) = p(x, x).
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Lemma 1.2. [12] Let (X, p) be a partial metric space, then

(i) A sequence {xn} in X is a Cauchy sequence in (X, p) iff it is Cauchy
sequence in metric space (x, ps).

(ii) A partial metric space (X, p) is complete if and only if the metric space
(X, ps) is complete.

After the introduction of above concept by Mathews[12], various generalizations
of contraction principle are obtained by researchers in partial metric spaces(see for
instance, [2], [3], [6] and references therein). Most of the contractive conditions
used in proving existence of fixed points in partial metric spaces (PMS) are ex-
tensions of well known contractive conditions used to investigate the existence of
fixed points for maps in metric spaces (see, [16]). Nadler [13] was the first who
extended the Banach contraction concept for multivalued mappings and proved
the remarkable result for multivalued contractions in metric spaces. Afterwards,
there appears many generalizations of Nadler’s result (see for instance, [5], [8], [9],
[10], [18] and references therein). Recently, Ayadi et al.[4] introduced the partial
Hausdorff metric, showing that the Nadler’s fixed point theorem can be general-
ized to the partial metric spaces also.

Let (X, p) be a partial metric space and CBp(X)(resp. CLp(X)) be the collec-
tion of non-empty closed and bounded (resp. closed) subsets of Xrespectively. The
Hausdorff (resp. Generalized Hausdorff) metric Hp is defined by

Hp(A,B) = max

{
sup
x∈A

p(x,B), sup
y∈B

p(y,A)

}
for every A,B ∈ CBp(X)(resp. CLp(X)), where p(x,A) = infy∈A p(x, y).

For a non-empty subset A of a partial metric space (X, p), a ∈ A if and only if
p(a,A) = p(a, a), where A denotes the closure of A with respect to partial metric
p. Note that A is closed in (X, p) if and only if A = A.

Throughout this paper, for x, y ∈ X, we follow the following notations, where
f, g, S and T are mappings to be defined specifically in a particular context:

M(Sx, Ty) = max

{
p(x, y),

p(x, Sx) + p(y, Ty)

2
,
p(x, Ty) + p(y, Sx)

2

}
M1(Sx, Ty) = max

{
p(fx, gy),

p(fx, Sx) + p(gy, Ty)

2
,
p(fx, Ty) + p(gy, Sx)

2

}
Suzuki[19], in 2008, introduced a new type of mapping and proved a good

generalization of Banach contraction principle. Then, many results appeared in
the literature on Suzuki type contraction conditions for the existence of fixed points
for singlevalued as well as multivalued mappings in metric spaces (see [5], [7], [11],
[17] and references therein).

Further, these results have been extended in the setting of partial metric spaces
by many authors (see [1],[2], [14], [15] and references therein).

Recently, Rao et al.[15] introduced the new condition (W.C.C.) and obtained
the Suzuki type fixed point theorems for a generalized multivalued mappings on
partial Hausdorff metric spaces.
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Definition 1.3. [15] Let (X, p) be a partial metric space with f, g : X → X and
S : X → CBp(X). Then the triplet (f, g;S) is said to satisfy condition (W.C.C.)
if p(fx, gy) ≤ p(y, Sx) for all x, y ∈ X.

Theorem 1.4. [15] Let (X, p) be a complete partial metric space and S, T : X →
CBp(X) and f, g : X → X. Assume that there exists 0 ≤ r < 1 such that for
every x, y ∈ X,

φ(r)min{p(fx, Sx), p(gy, Ty)} ≤ p(fx, gy)⇒ Hp(Sx, Ty) ≤ rM1(Sx, Ty) (1.1)

where, ∪x∈XSx ⊂ g(X) and ∪x∈XTx ⊂ f(X) and φ : [0, 1)→ (0, 1] defined as

φ(r) =

{
1 if 0 ≤ r < 1

2
(1− r) if 1

2 ≤ r < 1.
(1.2)

If the triplet (f, g;S) or the triplet (f, g;T ) satisfy the condition(W.C.C.), then f ,
g, S and T have a unique common fixed point in X.

Here, we remark that a common fixed point for the mappings exists even if the
conditions of the above theorem are not satisfied. To prove our claim, we give
following counter example where the conditions (1.1) and (W.C.C) of the above
theorem are not satisfied but there is a common fixed point for the maps.

Example 1.5. Let X = {0, 1, 2} be endowed with the partial metric p : X×X →
R+ defined by

p(0, 0) = p(1, 1) = 0, p(2, 2) =
1

3
,

p(0, 1) = p(1, 0) =
1

4
,

p(0, 2) = p(2, 0) =
2

5
,

p(1, 2) = p(2, 1) =
13

20
.

Define the mappings f, g : X → X as identity maps and S, T : X → CBp(X) by

Sx =

{
{0} if x ∈ {0, 1}
{0, 1} if x = 2

and Tx =

{
{0} if x ∈ {0, 1}
{1} if x = 2.

In this example, if we take x = 1, y = 1, then p(fx, gy) = 0, Hp(Sx, Ty) = 0,
min{p(fx, Tx), p(gy, Ty)} = 1

4 and M(Sx, Ty) = 1
4 . It is clear that

φ(r)min{p(fx, Tx), p(gy, Ty)} > p(fx, gy) but Hp(Sx, Ty) ≤ rM(Sx, Ty).

And also, if we take x = 1, y = 0, then p(fx, gy) = 1
4 , p(y, Sx) = 0 and

p(y, Tx) = 0. It means that condition (W.C.C.) is also not satisfied but 0 is
the common fixed point of S and T .

Now, we give our main result which is more general for the existence of common
fixed points of mappings in partial metric spaces. We use the following lemma
essentially due to Nadler [13] in case of metric spaces and also true for the partial
metric context as in [4].
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Lemma 1.6. Let A,B ∈ CLp(X) and a ∈ A, then for any ε > 0, there exists a
point b ∈ B such that p(a, b) ≤ Hp(A,B) + ε.

2. Main Results

Theorem 2.1. Let X be a complete partial metric space and let S and T be maps
from X to CLp(X). If there exists r ∈ [0, 1) such that for all x, y ∈ X,

min{p(x, Sx), p(y, Ty)} ≤ (1 + r)p(x, y) implies Hp(Sx, Ty) ≤ rM(Sx, Ty).
(2.1)

Then there exists an element z ∈ X such that z ∈ Sz ∩ Tz.

Proof. Here, we take M(Sx, Ty) > 0. Otherwise, if M(Sx, Ty) = 0 then x = y is
a common fixed point of S and T . Let β = r + ε where ε > 0. Let x0 ∈ X and
x1 ∈ Tx0, by lemma 1.6, there exists x2 ∈ Sx1 such that

p(x2, x1) ≤ Hp(Sx1, Tx0) +M(Sx1, Tx0).

Similarly there exists x3 ∈ Tx2 such that

p(x3, x2) ≤ Hp(Tx2, Sx1) + εM(Tx2, Sx1).

Continuing in this manner, we find a sequence {xn} in X such that

x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1

and

p(x2n+1, x2n) ≤ Hp(Tx2n, Sx2n−1) + εM(Tx2n, Sx2n−1)

p(x2n+2, x2n+1) ≤ Hp(Sx2n+1, Tx2n) +M(Sx2n+1, Tx2n).

Now, we show that for any n ∈ N,

p(x2n+1, x2n) ≤ β p(x2n−1, x2n). (2.2)

Suppose p(x2n−1, Sx2n−1) ≥ p(x2n, Tx2n), then

min{p(x2n−1, Sx2n−1), p(x2n, Tx2n)} ≤ p(x2n−1, Sx2n−1) ≤ (1 + r)p(x2n−1, x2n).
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By (2.1), we get

p(x2n+1, x2n) ≤ Hp(Tx2n, Sx2n−1)

≤ rM(Sx2n−1, Tx2n)

≤ rM(Sx2n−1, Tx2n) + εM(Sx2n−1, Tx2n)

= βM(Sx2n−1, Tx2n)

= β max
{
p(x2n−1, x2n),

p(x2n−1, Sx2n−1) + p(x2n, Tx2n)

2
,

p(x2n−1, Tx2n) + p(x2n, Sx2n−1)

2

}
≤ β max

{
p(x2n−1, x2n),

p(x2n−1, x2n) + p(x2n, x2n+1)

2
,

p(x2n−1, x2n+1) + p(x2n, x2n)

2

}
≤ β max{p(x2n−1, x2n), p(x2n, x2n+1)}
≤ β p(x2n−1, x2n)

which proves (2.2).
If p(x2n, Tx2n) ≥ p(x2n−1, Sx2n−1) then

min{p(x2n−1, Sx2n−1), p(x2n, Tx2n)} = p(x2n−1, Sx2n−1)

≤ p(x2n−1, x2n) ≤ (1 + r)p(x2n−1, x2n).

Now, from (2.1), we have

p(x2n+1, x2n) ≤ Hp(Tx2n, Sx2n−1)

≤ M(Sx2n−1, Tx2n) + εM(Sx2n−1, Tx2n)

= βM(Sx2n−1, Tx2n)

= β max
{
p(x2n−1, x2n),

p(x2n−1, Sx2n−1) + p(x2n, Tx2n)

2
,

p(x2n−1, Tx2n) + p(x2n, Tx2n−1)

2

}
≤ β max

{
p(x2n−1, x2n),

p(x2n−1, x2n) + p(x2n, x2n+1)

2
,

p(x2n−1, x2n+1) + p(x2n, x2n)

2

}
≤ β max{p(x2n−1, x2n), p(x2n, x2n+1)}
≤ β p(x2n−1, x2n).

This yields (2.2). In an analogous manner, we can show that

p(x2n+2, x2n+1) ≤ βp(x2n+1, x2n). (2.3)

Now, we conclude from (2.2) and (2.3) that for any n ∈ N,

p(xn, xn+1) ≤ β p(xn, xn−1)

⇒ p(xn, xn+1) ≤ βn p(x1, x0).
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Thus, for all m,n ∈ N with m > n, we get

p(xm, xn) ≤ p(xn, xn+1) + p(xn+1, xn+2) + . . .+ p(xm−1, xm)

≤ βnp(x1, x0) + βn+1p(x1, x0) + . . .+ βm+n−1p(x1, x0)

≤ βn

(
1− βm

1− β

)
p(x1, x0) ≤

(
βn

1− β

)
p(x1, x0).

It implies limm,n→+∞ p(xm, xn) = 0 and so {xn} is a Cauchy sequence. Since X is
complete, {xn} converges to some point z ∈ X, i.e., limn→+∞ p(xn, z) = p(z, z).
Furthermore,

lim
m,n→+∞

p(xm, xn) = lim
n→+∞

p(xn, z) = p(z, z) = 0.

Since xn → z, there exists n0 ∈ N such that

p(xn, z) ≤
1

3
p(z, y) for y 6= z and all n ≥ n0.

As in ([14], 913),

(1 + r)−1p(x2n−1, Sx2n−1) ≤ p(x2n−1, Sx2n−1)

≤ p(x2n−1, x2n) ≤ p(x2n−1, z) + p(z, x2n)

≤ 2

3
p(y, z) = p(y, z)− 1

3
p(y, z)

≤ p(y, z)− p(x2n−1, z)
≤ p(x2n−1, y).

Therefore

p(x2n−1, Sx2n+1) ≤ (1 + r)p(x2n−1, y). (2.4)

Now, either p(x2n−1, Sx2n−1) ≤ p(y, Ty) or p(y, Ty) ≤ p(x2n−1, Sx2n−1).
In either case by (2.4) and (2.1), we have

p(x2n, T y) ≤ Hp(Sx2n−1, T y) ≤ rM(Sx2n−1, T y)

≤ rmax

{
p(x2n−1, y),

p(x2n−1, Sx2n−1) + p(y, Ty)

2
,
p(x2n−1, T y) + p(y, Sx2n−1)

2

}
.

Making n→∞, we get

p(z, Ty) ≤ rmax

{
p(z, y),

p(z, z) + p(y, Ty)

2
,
p(z, Ty) + p(y, z)

2

}
≤ rmax

{
p(y, z),

p(z, Ty) + p(y, z)

2

}

⇒ p(z, Ty) ≤ rmax
{
p(y, z),

p(z, Ty) + p(y, z)

2

}
. (2.5)

It is clear from (2.5) that

p(z, Ty) ≤ r p(z, y). (2.6)

Now, we show that

Hp(Sz, Tz) ≤ rmax
{
p(z, y),

p(z, Sz) + p(y, Ty)

2
,
p(z, Ty) + p(y, Sz)

2

}
. (2.7)
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Suppose that y 6= z, then for every n ∈ N there exists zn ∈ Ty such that

p(z, zn) ≤ p(z, Ty) +
1

n
p(y, z).

So by (2.6), we obtain

p(z, Ty) ≤ p(y, zn) ≤ p(y, z) + p(z, zn)

≤ p(y, z) + p(z, Ty) +
1

n
p(y, z)

≤ p(y, z) + r p(y, z) +
1

n
p(y, z)

= (1 + r +
1

n
)p(y, z).

Hence

p(z, Ty) ≤ (1 + r) p(y, z). (2.8)

Now either p(z, Sz) ≤ p(y, Ty) or p(y, Ty) ≤ p(z, Sz).
So in either case, by (2.8) and the assumption we have

Hp(Sz, Ty) ≤ rM(Sz, Ty)

which is (2.7). Now taking y = x2n in (2.7), we get

P (Sz, x2n+1) ≤ Hp(Sz, Tx2n)

≤ rmax
{
p(z, x2n), p(z,Sz)+p(x2n,Tx2n)

2 , p(z,Tx2n)+p(x2n,Sz)
2

}
≤ rmax

{
p(z, x2n), p(z,Sz)+p(x2n,x2n+1)

2 , p(z,x2n+1)+p(x2n,Sz)
2

}
.

Taking the limit as n→∞ we have

p(Sz, z) ≤ r

2
p(Sz, z)

⇒ p(Sz, z) = 0 = p(z, z)

⇒ z ∈ Sz = Sz.

With similar arguments, we can show that z ∈ Tz. Hence z ∈ Sz ∩ Tz. �

Now we show that the Example 1.5 satisfies the conditions (2.1) of the Theorem
2.1 with r = 10

21 for all x, y ∈ X . Note that Sx and Tx are closed for all x ∈ X
under the given partial metric p.

(i) If x = y = 0 then Hp(Sx, Ty) = 0, min{p(x, Sx), p(y, Ty)} = 0 and
M(Sx, Ty) = 0.

(ii) If x = 0, y = 1 then Hp(Sx, Ty) = 0, min{p(x, Sx), p(y, Ty)} = 0 and
M(Sx, Ty) = 1

4 .

(iii) If x = 0, y = 2 then Hp(Sx, Ty) = 1
4 , min{p(x, Sx), p(y, Ty)} = 0 and

M(Sx, Ty) = 13
20 .

(iv) If x = 1, y = 0 then Hp(Sx, Ty) = 0, min{p(x, Sx), p(y, Ty)} = 0 and
M(Sx, Ty) = 1

4 .

(v) If x = 1, y = 1 then Hp(Sx, Ty) = 0, min{p(x, Sx), p(y, Ty)} = 1
4 and

M(Sx, Ty) = 1
4 .
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(vi) If x = 1, y = 2 then Hp(Sx, Ty) = 1
4 , min{p(x, Sx), p(y, Ty)} = 1

4 and

M(Sx, Ty) = 13
20 .

(vii) If x = 2, y = 0 then Hp(Sx, Ty) = 0, min{p(x, Sx), p(y, Ty)} = 0 and
M(Sx, Ty) = 2

5 .

(viii) If x = 2, y = 1 then Hp(Sx, Ty) = 0, min{p(x, Sx), p(y, Ty)} = 1
4 and

M(Sx, Ty) = 13
20 .

(ix) If x = 2, y = 2 then Hp(Sx, Ty) = 1
4 , min{p(x, Sx), p(y, Ty)} = 2

5 and

M(Sx, Ty) = 21
40 .

Thus for all x, y ∈ X with r = 10
21 , we get

min{p(x, Tx), p(y, Ty)} ≤ (1 + r)p(x, y) implies Hp(Sx, Ty) ≤ rM(Sx, Ty).

Evidently, 0 ∈ S0 ∩ T0.
Here, we remark that our result, i.e. Theorem 2.1 is also generalization of the

result of R. Kamal et al. ([11], Theorem 2.2) in partial metric context.
Now if we take S and T as single valued mappings of X, we get following result

which is generalization of ([14], Theorem 2) and extension of ([11], Corollory 2.3).

Theorem 2.2. Let X be a complete partial metric space and S, T : X → X.
Assume there exists r ∈ [0, 1) such that for every x, y ∈ X,

min {p(x, Sx), p(y, Ty)} ≤ (1 + r)p(x, y) implies d(Sx, Ty) ≤ rM(Sx, Ty).

Then S and T have a unique common fixed point.

Proof. It can be proved easily by taking S and T as single valued maps in Theorem
2.1. Uniqueness of the common fixed point is obvious. �

Taking S = T in Theorem 2.1, we get following Corollaries which are general-
izations of results of [18] in the settings of partial metric.

Corollary 2.3. Let X be a complete partial metric space and T : X → CL(X).
Assume there exists r ∈ [0, 1) such that for every x, y ∈ X,

p(x, Tx) ≤ (1 + r)p(x, y) implies Hp(Tx, Ty) ≤ rM(Tx, Ty).

Then there exists z ∈ X such that z ∈ Tz.

Corollary 2.4. Let X be a complete partial metric space and T : X → X. Assume
there exists r ∈ [0, 1) such that for every x, y ∈ X,

p(x, Tx) ≤ (1 + r)p(x, y) implies p(Tx, Ty) ≤ rM(Tx, Ty).

Then T has a unique fixed point.
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