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Abstract. We propose to derive common fixed point theorems for a pair of

mappings satisfying a new generalized (α,ϕ, φ)-weakly contractive condition

under weaker control functions with S-α-admissible condition in the frame-
work of metric space. Our results generalize several well-known comparable

results in the literature. As an application of our main result, we further es-

tablish some common fixed point theorems in metric spaces endowed with a
partial order. We supply some illustrative examples to highlight the realized

improvements in our results over the corresponding relevant results in the
existing literature.

1. Introduction and Preliminaries

The celebrated Banach Contraction Principle is one of the cornerstones in the
development of Nonlinear Analysis. In fact, the fixed point theorems have appli-
cations not only in the various branches of mathematics but also in economics,
chemistry, biology, computer science, engineering, etc. In particular, such theo-
rems are used to demonstrate the existence and uniqueness of solutions of differ-
ential equations, integral equations, functional equations and partial differential
equations. Therefore, generalizations of the Banach Contraction Principle have
been explored heavily by many authors. This famous theorem can be stated as
follows.
Theorem 1.1. [4]. Let (X , d) be a complete metric space and T be a mapping
of X into itself satisfying:

d(T x, T y) ≤ kd(x, y), ∀x, y ∈ X , (1.1)

where k is some constant in (0, 1). Then, T has a unique fixed point x∗ ∈ X .

In particular, obtaining the existence and uniqueness of fixed points for self-
maps on a metric space by altering distances between the points with the use of a
certain control function is an interesting aspect. There are control functions which
alter the distance between two points in a metric space. In this direction, Khan
et al. [12] addressed a new category of fixed point problems for a single self-map
with the help of a control function which they called an altering distance function.
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Definition 1.2. (altering distance function [12]). A function ϕ : [0,+∞) →
[0,+∞) is called an altering distance function if the following properties are sat-
isfied:

(a) ϕ is continuous and non-decreasing,
(b) ϕ(t) = 0⇔ t = 0.

In [3], Alber and Guerre-Delabriere introduced the concept of weak contraction
in Hilbert spaces. Rhoades [17] showed that the result which Alber et al. had
proved in [3] is also valid in complete metric spaces.

Definition 1.3. (weakly contractive mapping). Let X be a metric space. A
mapping T : X → X is called weakly contractive if

d(T x, T y) ≤ d(x, y)− ϕ(d(x, y)), ∀x, y ∈ X , (1.2)

where ϕ is an altering distance function.
Theorem 1.4. [17, Theorem 2] . Let (X , d) be a complete metric space. If
T : X → X is a weakly contractive mapping, then T has a unique fixed point.

Note that Alber et al. [3] assumed an additional condition on ϕ which is
lim

t→+∞
ϕ(t) = +∞. But Rhoades [17] obtained the result noted in Theorem 1.4

without using this particular assumption. If one takes ϕ(t) = (1 − k)t, where
0 < k < 1, then (1.2) reduces to (1.1).

Dutta and Choudhoury [6] generalized Theorem 1.4 as follows.

Theorem 1.5. Let (X , d) be a complete metric space and let T : X → X be a
self-mapping satisfying the inequality

ϕ(d(T x, T y)) ≤ ϕ(d(x, y))− φ(d(x, y))

for all x, y ∈ X , where ϕ, φ : [0,+∞) → [0,+∞) are both continuous and nonde-
creasing functions with ϕ(t) = 0 = φ(t) if and only if t = 0. Then T has exactly
one fixed point.

D̄orić [7] gave the following generalized version of Theorem 1.5 and Theorem
1.4.

Theorem 1.6. Let (X , d) be a nonempty complete metric space an let T : X → X
be a self-mapping such that for each x, y ∈ X ,

ϕ(d(T x, T y)) ≤ ϕ(Φ(x, y))− φ(Φ(x, y)),

where

(i) Φ(x, y) = max{d(x, y), d(x, T x), d(y, T y), 12 [d(y, T x) + d(x, T y)]}.
(ii) ϕ : [0,+∞) → [0,+∞) is a continuous, nondecreasing function with

ϕ(t) = 0 if and only if t = 0,
(iii ) φ : [0,+∞)→ [0,+∞) is a lower semi-continuous function with φ(0) = 0

if and only if t = 0.

Then there exists a point z ∈ X such that z = T z.
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Abbas and Khan [1] and Abbas and D̄orić [2] extended Theorem 1.5 to obtain
common fixed points for a pair of mappings. Popescu [15, Theorem 4] proved The-
orem 1.6 under some weaker conditions for control functions which was extended
for a pair of maps in [13].

Samet et al. introduced in [19] the notion of α-admissible mappings and proved
some fixed point theorems using this notion. After that, several other authors
used α-admissible mappings to obtain various (common) fixed point results (see,
e.g., [11, 18] and the references cited therein).

In this paper, we propose to introduce the concept of generalized (α,ϕ, φ)-
weakly contractive mapping, and we study the existence and uniqueness of fixed
points for S-α-admissible mappings. Also, our results improve [1, Theorem 2.1]
and [15, Theorem 4] by considering weaker conditions for control functions ϕ
and φ. As an application of our main result, we further establish common fixed
point theorems for metric spaces endowed with a partial order. We furnish some
illustrative examples to highlight the realized improvements in our results over the
corresponding relevant results in the existing literature.

2. Main Results

In this section, we propose new contraction conditions under which a pair of
mappings has a common fixed point. To achieve our goal, we recall some important
definition.

Definition 2.1. [18] Let X be a non-empty set, let T ,S : X → X and α :
X × X → [0,+∞). The mapping T is called S-α-admissible if, for all x, y ∈ X ,
α(Sx,Sy) ≥ 1 implies α(T x, T y) ≥ 1. If S is the identity mapping, then T is
called α-admissible [19].

Definition 2.2. [18] Let (X , d) be a metric space and α : X × X → [0,+∞).
X is called α-regular if, for every sequence {xn} ⊂ X such that α(xn, xn+1) ≥ 1
for all n ∈ N and xn → x, there exists a subsequence {xnk

} of {xn} such that
α(xnk

, x) ≥ 1 for all k ∈ N.

Our main result is the following

Theorem 2.3. Let (X , d) be a metric space. Suppose that T ,S : X → X are
mappings such that T (X ) ⊂ S(X ), that S(X ) is complete and that they satisfy
generalized (α,ϕ, φ)-weakly contractive condition, that is,

ϕ(α(Sx,Sy)d(T x, T y)) ≤ ϕ(Θ(x, y))− φ(Θ(x, y)) (2.1)

for all x, y ∈ X , where α : X × X → [0,+∞) and

(a)

Θ(x, y) = max{d(Sx,Sy), d(Sx, T x), d(Sy, T y),
1

2
[d(Sy, T x)+d(Sx, T y)]}. (2.2)

(b) ϕ : [0,+∞) → [0,+∞) is a nondecreasing function with ϕ(t) = 0 if and
only if t = 0.

(c) φ : [0,+∞) → [0,+∞) is a function with φ(t) = 0 if and only if t = 0,
and lim infn→∞ φ(tn) > 0 if limn→∞ tn = t > 0,

(d) φ(t) > ϕ(t)− ϕ(t−) for any t > 0, where ϕ(t−) is the left limit of ϕ at t.
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Assume also that the following conditions hold:

(i) T is S-α-admissible;
(ii) there exists x0 ∈ X such that α(Sx0, T x0) ≥ 1;
(iii) X is α-regular;
(iv) either α(Su,Sv) ≥ 1 or α(Sv,Su) ≥ 1 whenever Su = T u and Sv = T v.

Then T and S have a unique point of coincidence in X . Moreover, if T and S
commute at their coincidence points then T and S have exactly one common fixed
point.

Proof. It should be noted that there exists the left limit of ϕ at each t > 0 by the
monotonicity of ϕ.

If T x∗ = Sx∗, then we have a coincidence point. Suppose T x 6= Sx for all
x ∈ X . Let x0 ∈ X be an arbitrary point such that α(Sx0, T x0) > 1. Now
since T (X ) ⊂ S(X ), we can choose x1 ∈ X so that Sx1 = T x0. Again, from
T (X ) ⊂ S(X ), we can find x2 ∈ X so that Sx2 = T x1. Continuing this process
we find a sequence {xn} in X such that

Sxn+1 = T xn for all n ≥ 0.

If there exists n0 ∈ {1, 2, · · · } such that Θ(xn0
, xn0−1) = 0 then it is clear that

Sxn0−1 = T xn0
= T xn0−1, contrary to the assumption. Hence, we can suppose

Θ(xn, xn−1) > 0 (2.3)

for all n ≥ 1.
Step 1. We claim that

α(T xn, T xn+1) ≥ 1 for all n ∈ N ∪ {0}.

Using condition (ii), we have α(Sx0, T x0) = α(T x0, T x1) ≥ 1. Since, by hy-
pothesis, T is S-α-admissible, we obtain

α(T x0, T x1) = α(Sx1,Sx2) ≥ 1, α(T x1, T x2) = α(Sx2,Sx3) ≥ 1.

By induction, we get

α(T xn, T xn+1) ≥ 1 for all n ∈ N ∪ {0}.

Step 2. We claim that

lim
n→∞

d(T xn+1, T xn) = 0.

First of all, by (2.2), we have for n ≥ 1

Θ(xn, xn−1) = max{d(Sxn,Sxn−1), d(Sxn, T xn), d(Sxn−1, T xn−1),

1

2
[d(Sxn−1, T xn) + d(Sxn, T xn−1)]}

= max{d(T xn−1, T xn−2), d(T xn−1, T xn),
1

2
d(T xn−2, T xn)}

≤ max{d(T xn−1, T xn−2), d(T xn−1, T xn)}.

We will prove that

d(T xn+1, T xn) ≤ d(T xn, T xn−1) (2.4)
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for all n ≥ 1. Suppose this is not true, that is, there exists n0 ≥ 1 such that
d(T xn0+1, T xn0

) > d(T xn0
, T xn0−1). Substituting x = xxn0+1

and y = xn0
in the

inequality (2.1), we have

ϕ(d(T xn0+1, T xn0
)) ≤ ϕ(α(T xn0

, T xn0−1)d(T xn0+1, T xn0
))

≤ ϕ(Θ(xn0+1, xn0
))− φ(Θ(xn0+1, xn0

))

≤ ϕ(max{d(T xn0 , T xn0−1), d(T xn0 , T xn0+1)})− φ(Θ(xn0+1, xn0))

= ϕ(d(T xn0
, T xn0+1))− φ(Θ(xn0+1, xn0

)).

This implies φ(Θ(xn0+1, xn0
)) = 0. By the properties of φ, we have Θ(xn0+1, xn0

) =
0, which contradicts (2.3).

Therefore, (2.4) is true and so the sequence {d(T xn+1, T xn)} is nonincreasing
and bounded. Thus there exists ρ ≥ 0 such that limn→∞ d(T xn+1, T xn) = ρ.
Therefore by (2.2),

lim
n→∞

d(T xn, T xn−1) ≤ lim
n→∞

Θ(xn, xn−1)

= lim
n→∞

max{d(Sxn,Sxn−1), d(Sxn, T xn), d(Sxn−1, T xn−1),

1

2
[d(Sxn−1, T xn) + d(Sxn, T xn−1)]}

= lim
n→∞

max{d(T xn−1, T xn−2), d(T xn−1, T xn),
1

2
d(T xn−2, T xn)}.

This implies ρ ≤ limn→∞Θ(xn, xn−1) ≤ ρ and so limn→∞Θ(xn, xn−1) = ρ.
Now we claim that ρ = 0. By (2.1), we have

ϕ(d(T xn, T xn−1)) ≤ ϕ(Θ(xn, xn−1))− φ(Θ(xn, xn−1))

and taking limit as n→∞, we have

ϕ(ρ+) ≤ ϕ(ρ+)− lim inf
n→∞

φ(Θ(xn, xn+1))

which is contradictory, unless ρ = 0. Hence

ρ = 0 = lim
n→∞

d(T xn+1, T xn). (2.5)

Step 3. We show that {T xn} is a Cauchy sequence.
Suppose this is not true. Then there is an ε > 0 such that for an integer k there

exist integers m(k) > n(k) > k such that

d(T xn(k), T xm(k)) > ε. (2.6)

For every integer k, let m(k) be the least positive integer exceeding n(k) satisfying
(2.6) and such that

d(T xn(k), T xm(k)−1) < ε. (2.7)

Then

ε ≤ d(T xn(k), T xm(k))

≤ d(T xn(k), T xm(k)−1) + d(T xm(k)−1, T xm(k)).

Then by (2.6) and (2.7) it follows that

lim
k→∞

d(T xn(k), T xm(k)) = ε. (2.8)
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Also, by the triangle inequality, we have∣∣d(T xn(k), T xm(k)−1)− d(T xn(k), T xm(k))
∣∣ < d(T xm(k)−1, T xm(k)).

By using (2.8) we get

lim
k→∞

d(T xn(k), T xm(k)−1) = ε. (2.9)

Now by (2.2) we get

d(T xn(k), T xm(k)−1) ≤ Θ(xn(k), xm(k)−1)

= max{d(Sxn(k),Sxm(k)−1), d(Sxn(k), T xn(k)), d(Sxm(k)−1, T xm(k)−1),

1

2
[d(Sxm(k)−1, T xn(k)) + d(Sxn(k), T xm(k)−1)]}

≤ max{d(T xn(k)−1, T xm(k)−2), d(T xn(k)−1, T xn(k)), d(T xm(k)−2, T xm(k)−1),

1

2
[d(T xm(k)−2, T xn(k)) + d(T xn(k)−1, T xm(k)−1)]}

≤ max{d(T xn(k)−1, T xm(k)−2), d(T xn(k)−1, T xn(k)),

d(T xm(k)−2, T xm(k)−1),
1

2
[d(T xm(k)−2, T xn(k)−1)

+ d(T xn(k)−1, T xn(k)) + d(T xn(k)−1, T xm(k)−1)]}

and letting k →∞ and using (2.8) and (2.9), we have

ε ≤ lim
k→∞

Θ(xn(k), xm(k)−1) ≤ ε

and so

lim
k→∞

Θ(xn(k), xm(k)−1) = ε.

If there exists a subsequence {k(p)} of {k} such that ε < d(T xn(k(p)), T xm(k(p)))
for any p, then by (2.2) we get

ϕ(ε+) = lim sup
k→∞

ϕ(d(T xn(k), T xm(k)))

≤ lim sup
n

φ(α(T xn(k)−1, T xm(k)−2)d(T xn(k), T xm(k)))

≤ lim sup
n

φ(α(T xn(k)−1, T xm(k)−2)[d(T xn(k), T xm(k)−1) + d(T xm(k)−1, T xm(k))])

= lim sup
n

φ(α(T xn(k)−1, T xm(k)−2)d(T xn(k), T xm(k)−1))

≤ lim sup
k→∞

[ϕ(Θ(xn(k), xm(k)−1))− φ(Θ(xn(k), xm(k)−1))]

= ϕ(ε+)− lim inf
k→∞

φ(Θ(xn(k), xm(k)−1)),

which is a contradiction. We repeat the procedure if there exists a subsequence
{k(p)} of {k} such that ε < d(T xn(k(p)), T xm(k(p)+1)) for any p or ε < d(T xn(k(p)+1), T xm(k(p)))
for any p. Therefore, we can suppose that d(T xn(k(p)), T xm(k(p))) = ε, d(T xn(k(p)+1), T xm(k(p))) ≤
ε and d(T xn(k(p)), T xm(k(p)+1)) ≤ ε for any k ≥ k1. Then Θ(xn(k), xm(k)) = ε for
k ≥ k3 = max{k1, k2}, where k2 is such that d(T xk, T xk+1) < ε for all k ≥ k2.
Substituting x = xn(k), y = xm(k) in (2.1), we have

ϕ(d(T xn(k)+1, T xm(k)+1)) ≤ ϕ(ε)− φ(ε)
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for any k ≥ k2. Obviously d(T xn(k)+1, T xm(k)+1) < ε, otherwise we have φ(ε) = 0.
Letting k →∞ we obtain

ϕ(ε−) ≤ ϕ(ε)− φ(ε),

which contradicts hypothesis (c). Thus {T xn} is a Cauchy sequence.
Step 4. Existence of a coincidence point of T and S.

From the completeness of S(X ), it follows that there exists z ∈ S(X ) such that
Sxn → z as n→∞. Let u ∈ X be such that Su = z. We claim that T u = z.

Since X is α-regular there exists a subsequence {xn(k)} of {xn} such that
α(xn, u) > 1. For each n, applying (2.1) with x = xn(k) and y = u, since

Θ(u, xn(k)) = max{d(Su,Sxn(k)), d(Su, T u), d(Sxn(k), T xn(k)),
1

2
[d(Sxn(k), T u) + d(Su, T xn(k))]}

= max{d(z, T xn(k)−1), d(z, T u), d(T xn(k)−1, T xn(k)),
1

2
[d(T xn(k)−1, T u) + d(z, T xn(k))]},

we have that limk→∞Θ(u, xn(k)) = d(z, T u). Therefore, we have

ϕ(d(T u, z)−) ≤ lim sup
k→∞

ϕ(α(Su,Sxn(k)+1)d(T u,Sxn(k)+1))

= lim sup
k→∞

(ϕ(d(T u, T xn(k))))

≤ lim sup
k→∞

[ϕ(Θ(u, xn(k)))− φ(Θ(u, xn(k)))]

≤ ϕ(d(T u, z))− φ(d(T u, z)).

which contradicts hypothesis (c). Hence T u = z. Therefore, T u = Su = z. Thus
we have proved that T and S have a coincidence point.

The uniqueness of the point of coincidence is a consequence of the conditions
(2.1) and (iv), we omit the details.

If S and T commute at their coincidence points, then by a well-known result of
Jungck [10], they have a unique common fixed point. Thus, the proof is complete.

�

An immediate consequence of Theorem 2.3 is as follows.

Corollary 2.4. Let (X , d) be a metric space. Suppose that T ,S : X → X are
mappings such that T (X ) ⊂ S(X ), that S(X ) is complete and that the following
condition holds:

ϕ(α(Sx,Sy)d(T x, T y)) ≤ ϕ(d(Sx,Sy))− φ(d(Sx,Sy))

for all x, y ∈ X , where α : X × X → [0,+∞) and

(a) ϕ : [0,+∞) → [0,+∞) is a nondecreasing function with ϕ(t) = 0 if and
only if t = 0,

(b) φ : [0,+∞) → [0,+∞) is a function with φ(t) = 0 if and only if t = 0,
and lim infn→∞ φ(tn) > 0 if limn→∞ tn = t > 0,

(c) φ(t) > ϕ(t)− ϕ(t−) for any t > 0.

Assume also that the following conditions hold:

(i) T is S-α-admissible;
(ii) there exists x0 ∈ X such that α(Sx0, T x0) ≥ 1;

17
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(iii) X is α-regular and, for every sequence {xn} ⊂ X such that α(xn, xn+1) ≥
1, we have α(xm, xn) ≥ 1 for all m,n ∈ N with m < n;

(iv) either α(Su,Sv) ≥ 1 or α(Sv,Su) ≥ 1 whenever Su = T u and Sv = T v.

Then T and S have a unique point of coincidence. Moreover, if T and S commute
at their coincidence points then T and S have a unique common fixed point.

If S = I, an identity mapping, in Theorem 2.3, then we have [15, Theorem 4]
as corollary:

Corollary 2.5. Let (X , d) be a complete metric space. Suppose T : X → X is a
mapping and α : X ×X → [0,+∞), such that the following condition holds:

ϕ(α(x, y)d(T x, T y)) ≤ ϕ(Θ(x, y))− φ(Θ(x, y))

for all x, y ∈ X , where

(a)

Θ(x, y) = max{d(x, y), d(x, T x), d(y, T y),
1

2
[d(y, T x) + d(x, T y)]},

(b) ϕ : [0,+∞) → [0,+∞) is a nondecreasing function with ϕ(t) = 0 if and
only if t = 0,

(c) φ : [0,+∞) → [0,+∞) is a function with φ(t) = 0 if and only if t = 0,
and lim infn→∞ φ(tn) > 0 if limn→∞ tn = t > 0,

(d) φ(t) > ϕ(t)− ϕ(t−) for any t > 0.

Assume also that the following conditions hold:

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;
(iii) X is α-regular;
(iv) either α(u, v) ≥ 1 or α(v, u) ≥ 1 whenever u = T u and v = T v.

Then T has a unique fixed point.

Now, we give an example involving mappings T and S that are not continuous
and show that Theorem 2.3 can be used in the situations when [1, Theorem 2.1]
and [15, Theorem 4] cannot. The example is inspired by [13, Example 2.4].

Example 2.6. Let X = [0, 1] be equipped with the standard metric and consider
the following mappings S, T : X → X and functions ϕ, φ : [0,+∞)→ [0,+∞):

Sx =


1, 0 ≤ x < 1/2

1/2, x = 1/2,

1/10, 1/2 < x ≤ 2/3,

0, 2/3 < x ≤ 1,

T x =

{
1/2, 0 ≤ x ≤ 1/2,

1, 1/2 < x ≤ 1,

ϕ(t) =

{
(7/5)t, 0 ≤ t < 1/2,

(2−
√

2)t+ (
√

2− 1), 1/2 ≤ t < +∞,
φ(t) = (1/10)t2.

Consider α : X × X → [0,+∞[ given by

α(x, y) =

{
1, if (x, y) ∈ [0, 12 ]× [ 12 , 1] ∪ [ 12 , 1]× [0, 12 ],

0, otherwise
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We will prove that:

(A) φ(t) > ϕ(t)− ϕ(t−) for any t > 0, where ϕ(t−) is the left limit of ϕ at t.
(B) T ,S : X → X satisfy generalized (α,ϕ, φ)-weakly contractive condition.
(C) T is S-α-admissible;
(D) there exists x0 ∈ X such that α(Sx0, T x0) ≥ 1;
(E) X is α-regular;
(F) either α(Su,Sv) ≥ 1 or α(Sv,Su) ≥ 1 whenever Su = T u and Sv = T v.

Proof. (A) The only point of discontinuity of ϕ is 1/2 and it is φ(1/2) =

0.025 >
√

2/2− 0.7 = ϕ(1/2)− ϕ(1/2−), hence condition (A) is satisfied.
(B) Since φ(t) ≤ ϕ(t) for all t ∈ [0, 1], the only nontrivial cases when the

contractive condition (2.1) has to be checked are when x ∈ [0, 1/2), y ∈
(1/2, 2/3] and x ∈ [0, 1/2), y ∈ (2/3, 1] (or vice versa).

In the first case (2.1) becomes ϕ(1/2) ≤ ϕ(9/10) − φ(9/10) and in the
second ϕ(1/2) ≤ ϕ(1) − φ(1), and both of these inequalities are easily
verified, hence T ,S : X → X is a generalized (α,ϕ, φ)-weakly contraction.

(C) Let (x, y) ∈ X × X such that α(T x, T y) < 1. From the definition of α, it
follows that either T x, T y ∈ [0, 1/2) or T x, T y ∈ (1/2, 1]. By definition
of T , the first case is not possible. In the second case it follows that
Sx,Sy < 1/2 and, hence, α(Sx,Sy) = 0 < 1.

Thus T is S-α-admissible.
(D) Taking x0 = 1

2 , we have α(Sx0, T x0) = α( 1
2 ,

1
2 ) = 1.

(E) Let {xn} be a sequence in X such that α(xn, xn+1) ≥ 1 for all n and
xn → x as n→∞ for some x ∈ X . From the definition of α, for all n, we
have

(xn, xn+1) ∈ [0,
1

2
]× [

1

2
, 1] ∪ [

1

2
, 1]× [0,

1

2
].

Since [0, 12 ]×[ 12 , 1]∪[ 12 , 1]×[0, 12 ] is a closed set with respect to the Euclidean
metric, we get that

(x, x) ∈ [0,
1

2
]× [

1

2
, 1] ∪ [

1

2
, 1]× [0,

1

2
].

Then, the only possibility is that x = 1
2 . Thus X is α-regular for all n.

(F) It is easy to show that only for u = v = 1
2 we have Su = T u(= 1

2 ) and

Sv = T v(= 1
2 ). Then, α(Su,Sv) = α( 1

2 ,
1
2 ) = 1. So, condition (F) is

satisfied.
Now, all the hypotheses of Theorem 2.3 are satisfied; thus T and S have a

unique common fixed point in X (which is 1/2). �

It is easy to show that several existing fixed point results in the literature can
be deduced from our Theorem 2.3.

Taking in Theorem 2.3, α(Sx,Sy) = 1 for all x, y ∈ X , we obtain immediately
the following fixed point theorem.

Corollary 2.7. [13] Let (X , d) be a metric space. Suppose that T ,S : X → X
are mappings such that T (X ) ⊂ S(X ), S(X ) is complete and that the following
condition holds:

ϕ(d(T x, T y)) ≤ ϕ(Θ(x, y))− φ(Θ(x, y))
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for all x, y ∈ X , where

(a)

Θ(x, y) = max{d(Sx,Sy), d(Sx, T x), d(Sy, T y),
1

2
[d(Sy, T x) + d(Sx, T y)]}

(b) ϕ : [0,+∞) → [0,+∞) is a nondecreasing function with ϕ(t) = 0 if and
only if t = 0,

(c) φ : [0,+∞) → [0,+∞) is a function with φ(t) = 0 if and only if t = 0,
and lim infn→∞ φ(tn) > 0 if limn→∞ tn = t > 0,

(d) φ(t) > ϕ(t)− ϕ(t−) for any t > 0.

Then T and S have a unique point of coincidence. Further, if T and S commute
at their coincidence points then T and S have exactly one common fixed point.

Corollary 2.8. [15] Let (X , d) be a complete metric space. Suppose that T : X →
X is a mapping satisfying the following condition:

ϕ(d(T x, T y)) ≤ ϕ(Θ(x, y))− φ(Θ(x, y))

for all x, y ∈ X , where

(a)

Θ(x, y) = max{d(x, y), d(x, T x), d(y, T y),
1

2
[d(y, T x) + d(x, T y)]},

(b) ϕ : [0,+∞) → [0,+∞) is a nondecreasing function with ϕ(t) = 0 if and
only if t = 0,

(c) φ : [0,+∞) → [0,+∞) is a function with φ(t) = 0 if and only if t = 0,
and lim infn→∞ φ(tn) > 0 if limn→∞ tn = t > 0,

(d) φ(t) > ϕ(t)− ϕ(t−) for any t > 0.

Then T has a unique fixed point.

3. Fixed Point Theorems on Metric Spaces Endowed with a Partial
Order

The technique of contraction mappings and the abstract monotone iterative
technique are well known and are applicable to a variety of situations. It is well-
known that there is a possibility to combine these two techniques. In the context
of ordered metric spaces, the usual contraction conditions are weakened but at the
expense that the operator is supposed to be monotone.

The first result in this direction was given by Ran and Reurings [16, Theorem
2.1] who presented an analogue of Banach’s fixed point theorem in partially ordered
sets. It was applied to the resolution of matrix equations. Further, Harjani and
Sadarangani [8, 9] used the above discussed concept and proved some fixed point
theorems for weakly contractive operators in ordered metric spaces. Thereafter
many work has been done in this direction.

We will show that the results of Section 2 can be used to obtain new (common)
fixed point results in ordered metric spaces.

Let X be a nonempty set. Then (X , d,�) is called an ordered metric space if

(i) (X , d) is a metric space,
(ii) (X ,�) is a partially ordered set.
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If (X ,�) is a partially ordered set then x, y ∈ X are called comparable if x � y
or y � x holds.

Let (X ,�) is a partially ordered set and T : X → X , then T is said to be
non-decreasing, if for x, y ∈ X , x � y implies T x � T y.
Definition 3.1. [9]. Suppose (X ,�) is a partially ordered set and S, T : X → X
are self-mappings on X . One says that T is S-non-decreasing if for x, y ∈ X ,

Sx � Sy implies T x � T y.

Theorem 3.2. Let (X , d,�) be an ordered metric space. Suppose that T ,S : X →
X are mappings such that T (X ) ⊂ S(X ), S(X ) is complete and generalized ordered
(ϕ, φ)-weakly contractive condition is satisfied, that is, for every pair (x, y) ∈ X×X
such that Sx and Sy are comparable,

ϕ(d(T x, T y)) ≤ ϕ(Θ(x, y))− φ(Θ(x, y)) (3.1)

where conditions (a)–(d) of Theorem 2.3 are satisfied.
Assume also that the following conditions hold:

(i) T is S-nondecreasing;
(ii) there exists x0 ∈ X such that Sx0 � T x0;
(iii) if {xn} ⊂ X such that xn � xn+1, for all n ∈ N and xn → x, then there

exists a subsequence {xnk
} of {xn} such that xnk

� x for all k ∈ N;
(iv) for all u, v ∈ X , if Su = T u and Sv = T v, then Su and Sv are comparable.

Then T and S have a unique point of coincidence in X . Moreover, if T and S
commute at their coincidence points then T and S have exactly one common fixed
point.

Proof. Define the mapping α : X × X → [0,+∞) by

α(x, y) =

{
1, if x, y ∈ SX and x � y
0, otherwise.

Clearly, (T ,S) is a generalized (α,ϕ, φ)-weakly contractive mapping, since α(Sx,Sy) =
1 for all x, y ∈ X such that Sx � Sy. Otherwise ϕ(α(Sx,Sy)d(T x, T y)) = 0 and
so condition (2.1) holds.

For all x, y ∈ SX , from the S-nondecreasing property of T , we have

α(x, y) ≥ 1⇒ x � y ⇒ T x � T y ⇒ α(T x, T y) ≥ 1.

Thus T is an S-α-admissible mapping. Hence, (i) of Theorem 2.3 holds.
From condition (ii), for x0 ∈ X we have α(Sx0, T x0) ≥ 1. Hence, (ii) of Theorem

2.3 holds.
Now, let {xn} be a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and

xn → x ∈ X as n→∞. By the definition of α, we have

xn, xn+1 ∈ SX and xn � xn+1 for all n ∈ N.

Since SX is complete, we deduce that x ∈ SX . By (iii), there exists a subsequence
{xnk

} of {xn} such that xnk
� x for all k ∈ N and so α(xnk

, x) ≥ 1 for all k ∈ N
and so X is α-regular. Moreover, α(xm, xn) ≥ 1 for all m,n ∈ N with m < n.
Hence, (iii) of Theorem 2.3 holds.
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From condition (iv) and definition of α, Su = T u and Sv = T v implies that
α(Su,Sv) ≥ 1 or α(Sv,Su) ≥ 1. Hence, (iv) of Theorem 2.3 holds.

Thus the hypotheses (i)–(iv) of Theorem 2.3 are satisfied and by Theorem 2.3,
T and S have a unique common fixed point. �

Remark 3.3. 1. Theorem 3.2 is ordered version generalization of [2, Theorem 2.1]
(for two maps) with weaker control function.

2. Theorem 3.2 is generalization of [8, Theorem 2.1] in the sense of using
generalized weakly contraction condition with weaker control function.

The following results are immediate consequences of Theorem 3.2.

Corollary 3.4. Let (X , d,�) be an ordered metric space. Suppose that T ,S :
X → X are mappings such that T (X ) ⊂ S(X ), S(X ) is complete and for every
pair (x, y) ∈ X × X such that Sx and Sy are comparable,

ϕ(d(T x, T y)) ≤ ϕ(d(Sx,Sy))− φ(d(Sx,Sy))

where conditions (b)–(d) of Theorem 2.3 are satisfied.
Assume also that the following conditions hold:

(i) T is S-nondecreasing;
(ii) there exists x0 ∈ X such that Sx0 � T x0;

(iii) if {xn} ⊂ X such that xn � xn+1, for all n ∈ N and xn → x, then there
exists a subsequence {xnk

} of {xn} such that xnk
� x for all k ∈ N;

(iv) for all u, v ∈ X such that Su = T u and Sv = T v, then Su and Sv are
comparable.

Then T and S have a unique point of coincidence in X . Moreover, if T and S
commute at their coincidence points then T and S have exactly one common fixed
point.

Corollary 3.5. Let (X , d,�) be an ordered complete metric space. Let T : X → X
be a mapping satisfying for every pair (x, y) ∈ X × X such that Sx and Sy are
comparable,

ϕ(d(T x, T y)) ≤ ϕ(Θ(x, y))− φ(Θ(x, y))

where conditions (a)–(d) of Theorem 2.3 are satisfied.
Assume also that the following conditions hold:

(i) T is nondecreasing;
(ii) there exists x0 ∈ X such that x0 � T x0;

(iii) if {xn} ⊂ X such that xn � xn+1, for all n ∈ N and xn → x, then there
exists a subsequence {xnk

} of {xn} such that xnk
� x for all k ∈ N;

(iv) for all u, v ∈ X such that u = T u and v = T v, then u and v are compa-
rable.

Then T has exactly one fixed point.

The above Corollary 3.5 is ordered version generalization of [15, Theorem 4]
with weaker control function.

The following example is inspired by [14, Example 2].
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Example 3.6. Let X = [0, 1] be endowed with the usual order ≤ in R and
the standard metric d(x, y) = |x − y| for all x, y ∈ X. Consider the following
discontinuous mappings S, T : X → X and functions ϕ, φ : [0,+∞)→ [0,+∞):

Sx =


0, 0 ≤ x < 1/2

1/2, x = 1/2,

2/3, 1/2 < x ≤ 2/3,

4/5, 2/3 < x ≤ 1,

T x =

{
1/2, 0 ≤ x ≤ 1/2,

1, 1/2 < x ≤ 1,

ϕ(t) =


(7/5)t, 0 ≤ t < 1/2,√

2/2, t = 1/2,

(2t+ 3)/5, 1/2 < t < +∞,
φ(t) = (1/10)t2.

We will prove that:

(A) φ(t) > ϕ(t)− ϕ(t−) for any t > 0, where ϕ(t−) is the left limit of ϕ at t.
(B) T ,S : X → X satisfy generalized (ϕ, φ)-weakly contractive condition.
(C) T is S-nondecreasing;
(D) there exists x0 ∈ X such that Sx0 � T x0;
(E) if {xn} ⊂ X is such that xn � xn+1, for all n ∈ N and xn → x, then there

exists a subsequence {xnk
} of {xn} such that xnk

� x for all k ∈ N;
(F) for all u, v ∈ X , if Su = T u and Sv = T v, then Su and Sv are comparable.

Proof. (A) It is clear.
(B) Since φ(t) ≤ ϕ(t) for all t ∈ [0, 1], the only nontrivial cases when the

contractive condition (2.1) has to be checked are when x ∈ [0, 1/2), y ∈
(1/2, 2/3] and x ∈ [0, 1/2), y ∈ (2/3, 1] (or vice versa).

In both these cases, (3.1) becomes ϕ(1/2) ≤ ϕ(1) − φ(1), and this
inequality is easily verified. Hence T ,S : X → X satisfies generalized
(ϕ, φ)-weakly contractive condition.

(C) It is clear from the definition of S and T that for all x, y ∈ X, Sx � Sy
implies that T x � T y.

(D) Taking x0 = 1
2 , we have Sx0 = 1

2 = T x0.
(E) Let {xn} be a sequence in X such that xn � xn+1 for all n and xn → x

as n → ∞ for some x ∈ X . Since xn ∈ [0, 1] for n and [0, 1] is a closed
set with respect to the Euclidean metric, we get that x ∈ [0, 1]. Then,
xnk
� x for all k ∈ N.

(F) It is easy to show that, only for u = v = 1
2 , we have Su = T u and

Sv = T v. So Su � Sv. So, condition (F) is satisfied.
Now, all the hypotheses of Theorem 2.3 are satisfied; thus T and S have a

unique common fixed point in X (which is 1/2).
Note that this example is not covered when S = I by [8, Theorem 2.1], since

the function ϕ is not right-continuous at the point 1/2. �

Remark 3.7. Similar to section 3, we can give application to cyclic mapping as in
[5].
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