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The inverse dynamic analysis of biomechanical systems is corrupted by numerous sources of error that reduce its usefulness.
The most important errors are the raw displacement differentiation and the kinematic inconsistency induced by skin motion.
The first type of error is mainly due to the amplification of high-frequency low-amplitude noise introduced by the motion
capture system when the raw displacement signals are differentiated. The second source of error, the skin motion artifact,
produces violations of the kinematic constraint equations of the multibody system. This work studies the influence of the
filtering method in the kinematic consistency of biomechanical systems. The objective is to compare the obtained results
using several classical and advanced filtering and smoothing schemes: Butterworth filter, GCVSPL (splines), singular
spectrum Analysis and the Hodrick-Prescott filter and filter parameters. A benchmark example that includes computer
generated data of a four-bar mechanism was processed using the filtering-consistency method to study the influence of
several parameters. The results show that the most important error is the raw data problem. The kinematic consistency must
be imposed on the smoothed data; in fact, the consistency condition does not eliminate the high-frequency low-amplitude
noise present in the displacement signals. Another important conclusion is that the kinematic consistency can detect the
presence of subfiltering or overfiltering.
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1. INTRODUCTION: THE RAW DATA PROBLEM

The systems for motion capture currently used in
biomechanical analysis introduce measurement errors that
appear in the form of noise in the recorded displacement
signals. In particular, the noise is amplified unacceptably
when the displacements are differentiated in order to
obtain velocities and accelerations (Vaughan, 1982).
Since this may lead to large errors in the inverse dynamics
analysis of biomechanical systems (Hatze, 2002), it is
necessary to filter the displacement signal prior to
differentiation. The filtering of displacement signals to
obtain noiseless velocities and accelerations has been
widely studied in the literature. Traditional filtering
techniques include digital Butterworth filters, splines, and
filters based on spectral analysis (Pezzack et al., 1977;
Hatze, 1981; Dowling, 1985; D’Amico & Ferrigno, 1990,
1992; Van den Bogert, 1996; Giakas & Baltzopoulos,
1997a, 1997b, 1998; Vaughan, 1982; Walker, 1998; Yu
et al., 1999). These traditional filtering methods are well
suited for stationary noise and signal patterns, but are
poorly suited to smoothing nonstationary signals. This
drawback is particularly problematic in biomechanical
analysis since many physical activities involve impacts
(Woltring, 1995; Giakas et al., 2000; Georgiakis et al.,
2002).

Instead, advanced filtering techniques such as discrete
wavelet transforms (Adham & Shibab, 1999), the Wigner
function (Giakas et al., 2000), singular spectrum analysis
(Alonso et al., 2005a) and the Hodrick-Prescott filter
(Alonso et al., 2005b) have been applied. While these
methods yield better results than conventional techniques,
their application is more complex and a number of
additional parameters must be chosen. For instance, one
has to introduce a mother wavelet function for discrete
wavelet transforms, the parameters of the filtering
function for the Wigner function, an appropriate window
length and grouping strategy for singular spectrum
analysis, and the proper smoothing parameter for the
Hodrick-Prescott filter. The aim of this work is to compare
the results obtained by using several classical and
advanced filtering and smoothing schemes: Butterworth
filter, GCVSPL (splines), singular spectrum analysis
(SSA) and the Hodrick-Prescott filter; and to study the
importance of the filtering method in the kinematic data
consistency results: namely, the robustness of the results
with respect to variations in the filtering parameters.

2. FILTERING AND SMOOTHING METHODS

The following sections briefly describe the major steps
of the filtering and smoothing methods used in this work.
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2.1. Butterworth Filter

The Butterworth filter is a recursive filter, the equation
that describes the filter is:
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 are the constants of the filter. The

recursive character of the filter introduces a phase lag
into the signal. To remove the phase lag it is necessary to
apply the filter in both forward and backward direction.
The constants are dependent on the sample rate and the
desired cutoff frequency. Details of application of this
filter to biomechanical signals are given in Pezzack et
al. (1977), Challis (1999), Yu (1999) and Erer (2007).

2.2. Generalized Cross-validated Quintic Splines

The first and second derivatives of a given displacement
signal can be calculated by fitting a quintic spline y(t) to
the displacement signal x = (x
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) and

differentiating the resulting equations (Woltring, 1986).
The generalized cross validation (GCV) criterion as
described by Woltring (1986) assumes uncorrelated,
additive noise to be present in the data and selects
automatically the optimal amount of filtering. The spline
function y(t) is chosen which minimizes
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where x
i
 are the raw data samples, and yk denotes the k th

derivative of y(t). The weight factor p is the smoothing
parameter, which is related to how closely the smoothed
data tracks the raw data: for p = 0 no smoothing (spline
passes through each point) is applied, for p = � spline is
1-piece polynomial fit to entire data set. The GCVSPL
has the advantage of producing continuous estimates
which are needed in some applications. Details of
application of this smoothing method are given in
Woltring (1986).

2.3. Singular Spectrum Analysis (SSA)

SSA is a novel non-parametric technique used in the
analysis of time series and based on principles of
multivariate statistics. A concise description of the method
will be given in this section, whereas Golyandina et al.
(2001) have presented a complete derivation. Let
x = (x

0
, x

1
,..., x
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) be the length N time series representing

the noisy displacement signal and let L represent a
window length. The first step is to construct a Hankel
matrix X = [X

1
, X
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)T,

where K = N – L + 1, from the original signal by sliding
a window with length L. The second step is to perform a
singular value decomposition (SVD) of the Hankel matrix
X = UDWT. The final step is to keep only the r  first
singular values of X  that account for a selected (large)
percentage of the total variance and to reconstruct the
signal with the r  value.

2.4. Hodrick-Prescott Filter

In Econometrics, the HP filter is one of the standard tools
used to decompose a macroeconomic time series
xT = (x
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) that represents the filtered signal, and

a stationary residual component (noise signal) cT = (c
0
,

c
1
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) = xT – yT (Baxter and King, 1999; Hodrick

and Prescott, 1980; King and Rebelo, 1993; Reeves,
2000). The filter equations are derived from the following
assumptions:

1. 2 2~N( , )y� �y 0 I

2. 2~N( , )c�c 0 I
3. �2y is independent of c

4. 2
c�  and 2

y�  are known

Under these assumptions, the maximum-likelihood
estimate of the filtered signal y is

� �� �2 2min
TT � � � �y c c y y (3)

where � is the ratio between the variances, 2 2/c y� � � � .

In the minimization problem (3), the effect of �, usually
termed the smoothing parameter, is to penalize the sum
of the squared accelerations in the second term. Details
of application of this filter to biomechanical signals are
given in Alonso et al. (2005b).

3. THE SKIN MOTION ARTIFACT: KINEMATIC
DATA CONSISTENCY

The skin motion artifact is due to the skin displacement
and deformation that causes marker movement with
respect to the underlying bone. This motion produces
spurious reaction forces and driver moments when the
inverse dynamic analysis (IDA) is performed, which
result from violations of the kinematic constraint
equations as seen in Fig. 1. This is regarded as one of the
most critical sources of error in the IDA (Kuo, 1998;
Gunther et al., 2003; Leardini et al., 2005). The
techniques designed to minimize the contribution of this
artifact can be divided into those which model the skin
surface and those which include kinematic constraint
equations of the biomechanical model.

In this work, we correct the filtered displacement
signals in order to satisfy the kinematic multibody
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equations of the biomechanical model to ensure that the
length of each body segment remains constant during the
simulation. The process is shown in Fig. 1. It is important
to note that the raw data smoothing procedure does not
ensure the kinematic data consistency in the
biomechanical multibody model because the kinematic
constraint equations are not necessarily satisfied after
smoothing. This is due to the nature of the skin motion,
which is a large-amplitude modulated oscillatory motion,
and cannot be considered a part of the noise present in
the displacement signal (Fig. 1). Moreover, the kinematic
data consistency of the multibody model does not
eliminate the noise present in the signal.

of the desired solution vector. Using the non-consistent
(filtered raw-data) positions q* as an initial guess to the
Newton–Raphson procedure (Silva et al., 2002),
consistent positions q are obtained. The vector q
represents a correction of the inconsistent positions q*.
Using the obtained corrected positions q as a new initial
guess to the Newton–Raphson procedure, and iterating
the procedure one obtains a convergent solution after
three or four iterations. This is due to the quadratic
convergence rate of the method in the neighbourhood of
the solution. The expression that describes the iterative
procedure is:

q
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i
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where q(q
i
), is the Jacobian matrix of the constraints

at the inconsistent position q
i
, and q

i
 = q – q

i
 is the

generalized coordinates correction at iteration i. Solving
the above linear system iteratively one obtains a vector q
that satisfies the kinematic constraint equations with
sufficient precision. The procedure is halted when the
norm of the constraint equations matrix is smaller than a
certain tolerance value, namely

||�(q
i
)|| <� = 10–6 (6)

Solving Eq. (5) for each instant of the simulation
and applying the termination criterion (6), one obtains
kinematically consistent data with sufficient precision.
It is assumed that the Newton–Raphson method
converges at each time of the simulation. This supposition
is reasonable because the initial estimate of the desired
solution is close to the exact solution due to the negligible
amplitude of the skin motion with respect to the rigid
body motion.

Consistent velocities q�  and accelerations q��  are

obtained by solving velocity and acceleration equations
of the multibody system:
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No differences were observed when comparing the
kinematically consistent positions, velocities and
accelerations obtained using Eqs. (5-7) with a data set
where consistent positions obtained using Eq. (5) are
directly differentiated using finite differences to calculate
velocities and accelerations (Silva, 2002).

This procedure produces reasonable good results
(Silva et al., 2002, 2005; Alonso et al., 2007a).
Nevertheless, the biomechanical model is driven by the
angular histories calculated from the inconsistent input
data, which are not the true angular histories. To
overcome the calculation of the intersegmental angles
from inconsistent data, we propose the simultaneous
correction of the natural coordinates and intersegmental
angles by performing a projection of the position solution

Figure 1: Biomechanical model with markers. The grey circles
represent the natural coordinates of the multibody
model. The figure illustrates the  presence  of
measurement noise and skin motion artifact in the
acquired signal

Silva and Ambròsio (2002) were the first to apply a
systematic procedure using a multibody formalism to
ensure kinematic data consistency. First, the initially
inconsistent positions are used to calculate the constant
lengths of the rigid bodies of the biomechanical model.
Second, the intersegmental angles are calculated from
the filtered displacement data, and the position analysis
is performed using these angles. The kinematic analysis
produces a new set of marker positions, which are
consistent with the kinematic structure of the
biomechanical model at each instant (Silva et al., 2002,
2005).

To implement this procedure, the kinematic
constraint equations of the biomechanical model are
obtained

(q) = 0 (4)

where q is the vector of generalized coordinates (marker
coordinates) and (q) = 0 is the vector of kinematic
constraint equations of the multibody system. Newton–
Raphson iterative method is applied to solve the nonlinear
system (4) and obtain kinematically consistent data. The
Newton–Raphson procedure starts by making an estimate
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to the constraint manifold, in order to obtain a new set of
positions q that satisfies  = 0 (Alonso et al., 2007b).
This scheme projects the set of natural coordinates
measured with the motion capture system and calculates
the angular histories from the consistent positions. The
projection can be obtained by the solution of the
following constrained minimization problem (Bayo and
Ledesma, 1996):

� � � �* *1
min . .

2

T
V s t� � � �q q q W q q Φ 0 (8)

where W is a weighting matrix. Different weighting
factors can be assigned to each natural coordinate to
reflect the average degree of skin movement artifact
associated to each coordinate. An identity weighting
matrix has been used in this work. Using an augmented
Lagrangian method to minimize the above function (Bayo
and Ledesma, 1996), the following iterative scheme to
calculate the consistent data positions q is obtained:
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where q
i+1

 and q
i
 are the position data corrections and

the subscripts indicate the iteration number. Equation (9)
can be solved iteratively until || q

i
|| < �, where � is a user

specified tolerance. The value of the penalty factor � only
affects the convergence rate. Bayo et al. (1996)
recommend penalty factors ranging from 105 to 107 to
obtain a good convergence rate. The execution times to
solve equations (5) and (8) were similar. In order to obtain

consistent velocities q� , we perform again an orthogonal

projection of the velocities *q�  (calculated using the

filtered data) to the velocity constraint manifold. This can
be achieved by the solution of the linear equation:

� � *T� � �q qW Φ Φ q Wq� � (10)

To obtain consistent accelerations, the projection of

the accelerations *q��  (calculated using the filtered data)

onto the constraint manifold can be obtained trough the
solution of the following equation:

� � *T T� � � � �q q q qW Φ Φ q Wq Φ Φ q��� �� � (11)

4. RESULTS

To test the performance of the proposed procedure,
several benchmark raw displacement signals (observed
signals) were processed using the smoothing and filtering
procedures presented in section 2, and the orthogonal
projection scheme described in section 3. The computer-
generated data correspond to the simulation of a four-
bar crank-rocker mechanism during two crank revolutions
(Fig. 2a). The input angular velocity and the lengths of

the links were fixed to 2� � ��  rad/s, L
1
 = 2m, L

2
 = 8m

and L
3
 = 5m. The time step adopted was h = 0.01s

(sampling frequency f
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 = 100 Hz) for a total time of
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, y
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)T

were corrupted to simulate both the skin motion artifact
and noise introduced by the motion capture system using
three different patterns: Gaussian noise, sinusoidal
stationary noise and non-stationary noise. The non-
stationary noise is simulated by adding lumped point
masses connected to the system by viscoelastic unions.
Figures 2a-2f show the original data and the corrupted
data.

To study the influence of the filtering method in the
obtained results, Butterworth (BW), GCVSPL, singular
spectrum analysis (SSA), and the Hodrick-Prescott (HP)
filter were applied to raw displacement signals.

The operation of the filter mainly depends on the
filter parameter selection. Several attempts have been
made to design a fully automatic optimal filter, but this
objective has not been reached yet. Three filter parameter
selection cases were studied: subfiltering (there exists
some degree of amplification of high-frequency noise
when the raw displacement signals are differentiated),
normal filtering (proper filtering parameters are chosen),
and overfiltering (the noise is filtered, but the filtering
procedure produces loss of information of the
displacement signal). A total number of 3 × 4 × 3 = 36
studies were made considering the noise pattern, the filter
method and the parameter selection.

There are no general rules for selecting the values of
the filtering parameters. Their values depend on the type
of signal to be analysed, and on the type of noise to be
removed prior to differentiation. The choice is, as always,
determined, on the one hand, by the desire to faithfully
reproduce fast transients and, on the other hand, by the
need to reduce noise in the accelerations. The literature
presents a complete description of parameter selection
criteria for each type of filter. To illustrate parameter
selection, Table 1 presents the parameter selection for
the Gaussian stationary noise. Figure 3 presents the

Hodrick-Prescott smoothed kinematic signals * * *
2 2 2, ,y y y� ��

along with the reference kinematic signals 2 2 2, ,y y y� ��

using the parameters of Table 1.

Table 1
The Filters Parameter Set (Gaussian Stationary Noise)

Filter Subfiltering Normal Overfiltering

BW f
c
 = 0.5 f

s
 Hz f

c
 = 0.05 f

s
 Hz f

c
 = 0.01 f

s
 Hz

GCVSPL f
c
 = 0.5 f

s
 Hz f

c
 = 0.05 f

s
 Hz f

c
 = 0.01 f

s
 Hz

SSA L = 100 r = 20 L = 100 r = 2 L = 100 r = 1

HP � = 10 � = 1e3 � = 1e5



Influence of the Filtering Method in the Kinematic Data Consistency of Biomechanical Systems: 183

Figure 2: The four-bar benchmark example: (a) original coordinates; (b) model for the simulation of non-stationary noise; (c) the
original y

2
; (d) the corrupted y

2
* using Gaussian noise; (e) the corrupted y

2
* using sinusoidal stationary noise; (f) the

corrupted y
2

* using non-stationary noise

(a) (b)

(c) (d)

(e) (f)

In order to compare the results obtained by different
procedures, the normalized root mean square (rms) of
the error signal of acceleration is evaluated. The error
signal is the difference between the reference acceleration
signal and the signal obtained by the smoothing-
consistency method.

25 5
2*

1 1 1 1

/
N N

jn jn jn
j n j n

q q q
� � � �

� �� � �� ��� ���� �� �� (13)

where jnq��  is the reference acceleration of coordinate j at

instant n and 
*

jn
q��  is the acceleration of coordinate j at

instant n obtained by the smoothing-consistency method.

Figures 4-6 show the residuals obtained for the
Gaussian noise (amplitude p = L

1
/100), the sinusoidal

stationary noise, and the non-stationary noise, using the
filtering methods presented in section 2 and, then,
ensuring the kinematic consistency through the
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orthogonal projection methods for q = (x
1
, y

1
, x

2
, y

2
)T and

its higher derivatives.

Results show that the amount of filtering plays a key
role in the kinematic data consistency. Namely,
overfiltering causes the projection method to slightly
improve the obtained acceleration residuals. In this case,

Figure 3: HP-smoothed kinematic signals (dashed line) and reference kinematic signals (solid line). Coordinate y
2

* and its derivatives
(Gaussian stationary noise)

Figure 5: Acceleration residuals for sinusoidal stationary noise:
( ) no kinematic consistency applied, (◊ ) kinematic
consistency applied

Figure 4: Acceleration residuals for Gaussian noise: ( ) no
kinematic consistency applied, (◊ )  kinematic
consistency applied
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the displacement projection method does not converge.
Overfiltering causes large changes in displacement
signals that affects the lengths of the links of the four-
bar mechanism (see Fig. 3). Signals in order to satisfy
the kinematic multibody equations of the biomechanical
model to ensure that the length of each body segment
remains constant during the simulation.

The proper selection of filtering parameters to
calculate the higher derivatives prior to projection
dramatically improves the results, as shown in Figs. 4-6.
Moreover, the projection method significantly improves
the obtained acceleration residuals when optimal filtering
is performed. This fact illustrates the importance of the
raw displacement smoothing method in the kinematic
consistency problem.

Another important conclusion is that the kinematic
consistency can’t be imposed directly on the raw data,
because the consistency condition does not eliminate the
high-frequency low-amplitude noise present in the
displacement signals, as can be seen in the subfiltering
case results (Figs. 4-6).

the displacement signals, so the consistency
condition cannot substitute the filtering of
displacement signals.

• Overfiltering produces a noiseless displacement
signal with loss of information that can affect
the convergence of the orthogonal projection.

• The kinematic consistency can serve to check
the presence of subfiltering or overfiltering since,
in these cases, the projection method only
achieves a slight improvement of the residuals.

Future works will need to focus on the possibilities
of producing an automatic algorithm, and on the
embedding of the algorithm in commercial biomechanical
analysis packages. Namely, techniques will be devised
to automatically choose the filtering parameters for
smoothing and differentiation of the given signal. Further
research is required in order to automate a procedure that
detects the presence of subfiltering or overfiltering in the
projection step and selects the optimal filtering
parameters that produce a noisless kinematic consistent
data with minimun loss of information.
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