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Human Spatial Attitude Control by Means of Zero
Momentum Turns
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This work proposes a methodology for the automatic control of the angular orientation of a multibody system based upon
the preservation of its angular momentum. The control strategy used is hierarchical and decentralized arranging the control
stages in levels of attributions and complexity. At a lower level the controllers are responsible for handling each of the
multibody degrees-of-freedom forcing them to follow prescribed reference motions through the use of error feedback. Middle
level controllers coordinate the lower level controllers so that each of the multibody sub-systems achieve prescribed
reorientation. These reorientations are defined by a higher level controller with the final objective of reorienting the complete
multibody system to reach a different attitude. The underlying control strategy of the multibody is applied to the human
spatial attitude in a zero gravity environment. Here, the biomechanical model used is defined such a way that all biomechanical
joints are described by joints with one or two degrees-of-freedom, to which lower level controllers are associated. A formulation
based on natural coordinates is used to describe the multibody system due to its ease of representing the biomechanical
features of the model. The physiological data for the biomechanical model is described in a database where information for
different subjects is available. In this form the application case is not dependent in a particular human subject but can be
used in general cases. The control laws associated with the controllers are parametrically adjusted for the biomechanical
model under analysis. The results obtained are finally discussed in face of the modeling assumptions made and control laws
used.
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1. INTRODUCTION

Some natural and artificial systems, made of multiple
rigid bodies that have their relative motion constrained
by kinematic joints, are required to reorient their spatial
attitude without the application of any external force or
moment. Space satellites with movable antennas,
astronauts, divers or a falling cat are examples of these
type of systems. The cat self-aligning reflex is an
example of how a biomechanical system can achieve
an prescribed orientation only by changing the relative
orientations of its segments, preserving in this form the
momentum [1,2]. The same type of zero momentum
turns can be developed by the diver, with a succession
of turns and somersaults, or by an astronaut in a zero
gravity environment. This case deserved the attention
of Kane and co-workers [3,4] and of Passerello and
Huston [5], who in a series of contributions described
the typical maneuvers necessary to achieve a desired
orientation and demonstrated experimentally their
feasibility.

In this work, a strategy for the angular reorientation
of multibody systems using zero momentum turns is
proposed. The system, a biomechanical model, is
described using natural coordinates [6]. This type of
coordinates lead to equations of motion that have a
lower degree of nonlinearity than the Cartesian
coordinates [7] making it possible to introduce

kinematical joints without increasing the number of
kinematic constraints. The biomechanical model used
is composed of 18 biomechanical segments represented
by a total of 33 rigid bodies whose physical
characteristics assuring biofidelity, are tied to a human
anatomic database. Furthermore, this models has the
relative segment rotation penalized if they achieve
physically unfeasible relative orientations [8,9]. The
control of the angular reorientation is a complex task
as the biomechanical model is a large scale system.
Therefore a methodology suitable to this large scale
system is necessary [10] . A decentralized and
hierarchical control is used with three stages of
controllers of increasing complexity. The execution of
a large number of maneuvers is then planed using
artificial intelligence concepts [11].

2. BIOMECHANICAL MODEL

The description of the biomechanical multibody system,
used here, is based on natural coordinates [6]. In this
formulation all bodies are represented by sets of points
and unit vectors. Kinematic constrains arise naturally by
sharing points and vectors between different bodies and
by imposing constant distances and angles in the
definition of each body. Figure 1 shows the types of rigid
bodies and joints being the corresponding algebraic
constrains shown on table 1.
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Table 1
Definitions and Constrains used in the Model

Constant distance 2 0,� � � �T
ij ij ij ij j iLr r r q q (1)

between two points

Constant angle between cos( ) 0� � �T
ij i ijLr v (2)

a vector a two point line

Unit vector 1 0� �T
i iv v (3)

Additional constrain in 0�T
i jv v (4)

universal joint

The biomechanical model is represented as a
collection of rigid bodies constrained by kinematic joints
and acted upon by external forces. Its equations of motion
are described by:

� � � ��� T
qMq g (5)

Representing the coordinates of the points and
vectors by q = [q

1
T,..., q

n
T]T, where q

i 
= [r

i
T, r

j
T, v

i
T, v

j
T]T its

second time derivative ��q  is the vector of the Cartesian

accelerations. M the global mass matrix, g the vector of
the generalized external forces, l the vector of Lagrange
multipliers and F

q
 is the Jacobian matrix. Details on the

formulation of multibody systems using the natural
coordinates can be found on the work by Jalon and Bayo
[6].

3. CONTROL OF THE BIOMECHANICAL
SYSTEM

Due to the high complexity of the multi-body
biomechanical system the use of global control through
full state feedback is not recommended [10]. The control
scheme used here is decentralized and hierarchical. Three
levels of control are defined: low level control actuates
on the controller of each joint using a variable gain PD
controller; the intermediate controller defines trajectories

Figure 1: Rigid bodies defined by: (a) 2 points and 1 vector, (b) 3 points and 1 vector. Joints: (c) Revolute joint obtained by sharing
2 points; (d) Revolute joint obtained by sharing 1 vector; (e) Universal joint obtained by sharing 1 point and imposing the
orthogonality between 2 vectors

Figure 3: Block diagram of the control structure

Figure 2: Biomechanical model used showing all the bodies,
points, vectors and actuators
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that the local controllers have to ensure; the high level
controller chooses the best set of maneuvers that minimize
an energy function, as described in Figure 3.

3.1. Low Level Controllers

Using the joint coordinate method [7] the biomechanical
system is represented by a base body connected to other
rigid bodies by kinematic joints. The base body has 6
d.o.f., each revolute joint has 1 d.o.f. and each universal
joint has 2 d.o.f. Each joint is controlled by a independent
variable gain PD controller [12]. Each pair of bodies is
connected by a joint actuated by a single independent
control torque T

ij
 which is applied through the joint.

Ignoring Coriolis, centrifugal and reaction forces, results
in

� ����ij ij ijJ T (6)

where

��
�
i j

ij
i j

J J
J

J J (7)

�
ij
 = �

j
 – �

i
(8)

where �
ij
 is the relative angle between adjacent body

segments and J
i
 is the inertia moment of body i and all

the attached bodies relative to the joint axis, as seen in
Figure 4.

A more common form of presenting the equilibrium
equation for a second order system is

22 0� � � � � � � � ��� �
i i ni i ni i (11)

which by comparing equations (10) and (11) leads to the
definition of the damping coefficient �

ni
 and natural

frequency �
ni
 as

2
' ';

2
� � � �

�

D P
ij ij

i ni
ni ij ij

k k

J J (12)

Note that the choice for the damping coefficient
is particularly important as it leads to under, critically
or over-damped systems. Solving second order
differential equation and choosing k

ij
D so that the response

is slightly over damped results in the following control
law:

� �2 2 , 1� � � � � � � � � � � �� � �
ij ij ij ij ref ij ij ij ijT J J (13)

where �
ij
 is the angular frequency of the controller and

� is the over-damping term. Note that the angular
frequency of the controller, which needs to be adjusted
for each particular joint, defines the stability and the
quickness of response of the system with feedback. Due
to the chain configuration of the multibody system the
moment of inertia calculated on one joint changes if a
preceding body connected by a different joint alters its
center of mass. Referring to figure 5, the update of the
moments of inertia, required in each time step, is
calculated by [13]

2
,

� �

� �� �� �� �
� �� �
� �

i i

T T
i ij k k k ij k ij k

k S k S

J m du A I A u (14)

where u
ij
 is a unitary vector collinear to the axis of the

joint ij, S
i
 is the set of bodies that attached to body i by

other joints than ij, A
k
 is the coordinate transformation

matrix from the local body referential to the global
referential and d

ijk
 is the distance between the axis of joint

ij and the center of mass of body k given by

Figure 4: Simplifications assumed in the model. The doted
arrows represent the bodies included in the calculus
of J

i
 and J

j

The control law applied is proportional-derivative
(PD) on angular position:

� �� � � � � � ��P D
ij ij ij ref ij ij ijT k k (9)

The superscript D stands for derivative and P stands
for proportional over constant k and �

ref ij
 is the desired

angular position on the joint ij imposed by the
intermediate controller.

The simplified model of a system with feedback is
described by the second order linear differential equation
given by

' � � � � � � ��� �D P P
ij ij ij ij ij ij ij ref ijJ k k k (10)

Figure 5: Illustration of parameter involved in the calculus of
the moment of inertia on axis uij
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� �, , , ,,� � � �T
ij k ij k ij k ij ij ij k k ijd r r u u r ρ r (15)

where r
ij
 is the spatial position of joint ij. Finally, a torque

saturation law is defined

� �
max max

max

max max

�� ��
�

� ��
� ��

ij ij ij

ij ij ij ij ij

ij ij ij

T if T T

F T T if T T

T if T T
(16)

The controller action, including the feedback, is
described by figure 6.

For each rotation maneuver an energy cost function
must be defined. Since each zero angular momentum turn
only permits a limited of angle of rotation, high angles,
such as those illustrated in figures 9 through 11, require
repetitions of the elementary zero angular momentum
turn. The energy function associated to each axis is
defined by:

� � � �� � � �max, 1 / , , ,

( ) : 1 ,

� � � � � � � �

� � � � � �
E i i if i d c floor i X Y Z

floor x n n x x n n IN
(17)

where c
i
 represent the cost due to alteration of moment

of inertia, and d
i
|q| represents the cost due to torsion.

Assuming the single body simplification, PD controllers
and ideal actuators, the cost due to amount of torsion is
linear. Figure 12 illustrates the energy cost function. It
should be noted that the intermediate controller simply

Figure 6: General representation of the low level joint controllers

At this point it is emphasized that the gains of the
controllers are in fact adjusted for each new point of the
trajectory due to the variations of the inertia moments.
In order to avoid that the controllers develop a unrealistic
moment a saturation moment is adopted for each
controller, based on physiological reasoning.

3.2. Intermediate Controller

The intermediate control, after receiving from the higher
level control the definition of the maneuver that the whole
body is supposed to develop, defines for each local
controlled the reference angle and a law for its variation.
This controller has the complete description of the
particular maneuver required and assures that they
are properly developed. The functional scheme of
the intermediate controller is briefly described in
figure 7.

There are quite a good number of motion tasks that
include zero-momentum turns. The self-aligning reflex
of the cat or the alignment maneuver of a diver are some
of the best known of these type of maneuvers. The
sequence described in figure 8(a) illustrate the maneuvers
involved in the self-alignment reflex of the cat,
characterized by successions of torsion-bending tasks
while in figure 8(b) the torsion tasks with changes in the
inertia moments, associated with human body alignments,
are described.

Figure 8: Maneuvers that involve zero-momentum turns: (a)
torsion-bending as in the cat self-aligning reflex; (b)
torsion with variation of the inertia moments

Figure 7: Schematic description of the intermediate level
controller
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guarantees that the maneuver assigned by the high level
controller is fulfilled, without regard for its cost. The
choice of the actual maneuver that minimizes the cost
function is done by the high level controller.

S
A
 = {(i, �), i � {X, Y, Z}, –� < � � �} (20)

Since any spatial rotation can be described by a
sequence of three rotations #S

R
 = 3, the number of

permutations leading to different sets of rotations is 12.

The solutions adopted for the high level controller
consists on the search of the minimal energy spend on
rotations. The matrices of rotation about the principal axes
are defined by:

� � � �

� �

, ,

,

1 0 0 cos 0 sin

0 cos sin , 0 1 0 ,

0 sin cos sin 0 cos

cos sin 0

sin cos 0

0 0 1

� �

�

� � �� � � �
� � � �� � � �� � � �
� � � �� � � � �� � � �

� �� �
� �� � � �� �
� �� �

X Y

Z

M M

M

Since the product of 3 rotation matrices of the
previous type returns a matrix with simple products of
sine and cosine terms, extraction of the sets of angles for
all axes permutations is straight forward. The periodicity
of trigonometric functions results in 2 different solutions
for each combination of rotations: if i, j, k are different

� � � � � � � � � � � � � �, , , , , ,. . . . ; , , , ,��� ��� ��� � � �� �i j k i j k i j k X Y ZM M M M M M

(21)

or if  i = j � k � i � j = k � i = k � j.

� � � � � � � � � � � � � �, , , , , ,. . . . ; , , , ,��� �� ��� � � �� �i j k i j k i j k X Y ZM M M M M M

(22)

The high level controller results in the following
algorithm:

1. Extract sets of angles from matrix M
R
 for the 12

combinations of rotations.

2. Use the periodicity to double de solutions of sets
of angles.

3. Apply energy cost function to each set of angles.

4. Choose the set of angles that have minimum
energy cost.

Figure 9: Zero angular momentum maneuvers illustrating a
rotation in X axis

Figure 11: Zero angular momentum maneuvers illustrating a
rotation in Z axis.

Figure 10:Zero angular momentum maneuvers illustrating a
rotation in Y axis

3.3. High Level Controller

Any reorientation maneuver in space can be
accomplished by performing a rotation, or a set of
rotations, with respect to well-defined axes. Assuming
that the goal is the reorientation a base body, then the
rotation matrix (M

R
) for this body to achieve the goal is

defined by the product of the desired orientation matrix
(A

F
) by the initial orientation matrix (A

I
) transposed. The

matrix M
R
 can by built using any set of rotational

coordinates such as Euler parameters, Euler angles or
Bryant angles

.� T
R F IM A A (18)

� �
� � � �

,

: , ,
� � �

� �� �� � � � � �� �
� �� �

� � �R A A i R E E
i A B i A j B

S A S B S f i f jM M

(19)

The problem consists on choosing the best set of 3D
rotations S

R
 on the available set S

A
, based on some energy

functions f
E
(i), that return matrix M

R
. As shown before

the rotations are defined on the principal axes of the base
body, referred to by XYZ. Therefore, S

A
 is defined by:

Figure 12:Energy cost function associated with zero angular
momentum turns
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This method has the advantage of easily providing
the set of rotations that minimize energy. However
the method is not yet developed for generic axes of
rotation.

4. APPLICATION TO THE HUMAN BODY
ATTITUDE IN ZERO GRAVITY

As an application of the methodology the spatial change
of attitude of a biomechanical model in a zero gravity
environment is selected. A model initially facing the X-
axis is required to rotate 60º counter clockwise, resulting
in the motion illustrated by Figure 13. The general
purpose code APOLLO [14] is used. No particular effort
has been made to use an optimized gain for the
controllers. If the gain is increased the maneuvers
proceed at a higher velocity, approaching what is
perceived to be a reasonable speed of execution, but
the time step of the integration scheme decreases.
Consequently, the ratio between the computational time
required to simulate the maneuver and the time
simulated does not change in the same proportion of
the increase of the gains. In setting up these gains the
physiological characteristics of the human body model
must be accounted for [15].

5. CONCLUSIONS

A methodology using a general multibody description of
a biomechanical model, to which is applied a
decentralized hierarchical control strategy, has been
presented in this paper and applied to the attitude control
of a biomechanical model in a zero gravity environment.
The application shows that the use of the techniques
described are feasible to achieve the reorientation of
mechanical systems with efficiency and reliability in a
systematic form. The sequence of individual motions

Figure 13:Initial,  intermediate and final position of
biomechanical model: top view; front view

In figure 14 the change of the angles due to the
control strategy adopted are represented as a function of
time. The corridors shown in the picture correspond to
the range for which a particular low level controller is
not active because the corresponding joint angle is in the
neighborhood of the target. Figure 15 presents the
evolution of the total moments of inertia about Z-axis
for upper torso and the upper extremities of the
biomechanical model and for the lower torso and lower
extremities respectively. It is observed that the variation
of the inertia moment of the lower torso and legs is more
important that the variation of the upper torso inertia. As
a consequence, the rotation of the lower torso is much
smaller than the upper torso while the control is trying to
reposition the biomechanical model. This result is
described in figure 16.

Figure 16:Evolution of the attitude upper and lower torso during
the simulation

Figure 14:Change of angles during maneuvers for shoulder (joint
20 of figure 2), torso (joint 23) and leg (joint 6). The
dotted lines represent the limits of the angles within
which there is no active control

Figure 15:Variation of the upper body and lower body inertia
moment about the Z axis
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required to complete each maneuver is closely followed
by the individual biomechanical segments, as
demonstrated by the simulation results. However, some
further considerations must be taken into account in order
to improve the application of the method to biological
systems. The choice of the sequence of maneuvers
outlined here is based on a look at table of available
motions. Though this mimics the fact that the human
being uses in fact a finite set of motion to execute any
complex task it does not account for the optimization of
these simple movements. Therefore, it is desirable to
obtain the finite set of maneuvers contained in the table
by some optimal criteria, which would correspond to the
training and mechanization of the motion by the human
subject.

REFERENCES

[1] D. Tsai and A. Arabyan, Decentralized and hierarchical control
of articulated multibody systems. Technical Report CAEL-91-
2, Computer-Aided Engineering Laboratory, Department of
Aerospace and Mechanical Engineering, The University of
Arizona, Tucson, Arizona, 1991.

[2] O. K. Garriott, Conservation Laws In Zero G, ST0046;
Opportunities In Zero Gravity, ST0070, Textbook Tapes, Inc.
http://www.textbooktapes.com

[3] T. R. Kane, M. R. Headrick and J. D. Yatteau, Experimental
investigation of an astronaut maneuvering scheme, Journal of
Biomechanics, 5, 313-320, 1972.

[4] T. R. Kane and M. P. Scher, Human self-rotating by means of
limb maneuvers, Journal of Biomechanics, 3, 39-49, 1970.

[5] C. Passarello and R. Huston, Human attitude control, Journal
of Biomechanics, 4, 95-102, 1971.

[6] J. Jalón and E. Bayo, Kinematic and Dynamic Simulation of
Multibody Systems. Springer Verlag, Heidelberg, Germany,
1994.

[7] P. Nikravesh, Computer-Aided Analysis of Mechanical
Systems. Prentice Hall, Englewood-Cliffs, New Jersey, 1988.

[8] M. Silva, J. Ambrósio and M. Pereira, Biomechanical model
with joint resistance for impact simulation. Multibody System
Dynamics 1, 65-84, 1997.

[9] M. Silva and J. Ambrósio, Modelo biomecânico para a
dinâmica computacional do movimento humano articulado.
Technical Report IDMEC/CPM-96/003, IDMEC, Instituto
Superior Técnico, 1996.

[10] N. Sandell, P. Varaiya, M. Athans and M. Safonov, Survey of
decentralized control methods for large scale systems. IEEE
Trans. on Automatic Control, 23(2), 108-128, 1978.

[11] S. Russel and P. Norvig, Artificial Intelligence, a Modern
Approach. Prentice Hall, Englewood-Cliffs, New Jersey, 1995.

[12] B. Kuo, Automatic Control Systems, Prentice Hall, Englewood-
Cliffs, New Jersey, 1995.

[13] J. Meriam and L. Kraige, Engineering Mechanics Dynamics
Vol. 2, 3rd ed, John Wiley & Sons, New York, New York, 1993.

[14] M. Silva e J. Gonçalves, APOLLO, 3D dynamic analysis of
mechanisms, IDMEC, Instituto Superior Técnico, 1995.

[15] D. A. Winter, Biomechanics and Motor Control of Human
Movement, John Wiley & Sons, New York, New York, 1990.


