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The aim of this work is to study the mechanosensation mechanism and the reaction of bone tissue to external loads. The
strain detection called mechanosensation is further responsible for bone remodeling which is the process of formation and
resorption of bone tissue. To calculate the displacement, strains and stresses the homogenization methods are used. Material
properties are derived from the nano length scale. The computations of mechanical models with geometral and material
properties, obtained from the literature, are carried out with use of ABAQUS and MSC. PATRAN commercial software. Several
models of osteons, structural component of bone responsible for its characteristic mechanical properties, are prepared on a
micro length scale.

The results show how crucial is the exactness of the biological geometry modeling. The most satisfactory are the results
obtained for the model with the most adequate shape of the biological reality. The strain values computed in the osteocytes –
bone cells responsible for the strain detection in bone tissue, are in agrement with the medical theory and experiments.
Moreover, it is confirmed that the main contribution to a total strain derives from the osteon longitudinal �z strain component.

1. INTRODUCTION

The goal of this study is to contribute to the remodeling
simulation of bone tissue. This can be achieved after
understanding the mechanosensation of bone cells. The
presented work is focused on the micro length scale but,
the homogenised results might be of a great importance
to the specification of bone’s growth and remodeling.
The better understanding of problems like implantation
of hip-joint-prosthesis (Ebbecke and Nackenhorst (2003))
or osteoporosis (Mullender et al. (1996)) and the
cooperation of the engineers with medical professionals
will lead to the improvement in diagnostics and the
decrease in the often painful healing of bone fractures.

Nowadays, numerous simulations based on
computational methods and clinical observations are
carried out (Ebbecke and Nackenhorst (2003)). However,
these kind of calculations cannot take into consideration
all processes which occur at the microscale. Especially
the process of detecting the external forces by bone tissue
namely mechanosensation. It is certain that the network
of osteocytes is responsible for detecting the external
loading, however, sending signals to other cells in order
to remodel the bone is not yet known (You et al. (2001)).
The latest results (Lenz and Nackenhorst (2003)) describe
these relations between the mechanical loading and strain
detection in bone tissue and give a better view over most
length scales (nano-micro-meso).

The hierarchical structure is of a great importance
in this work. It helps to identify on which of the length
scales need to be carried out the modeling process. The
most important bone components for the mechanical

simulation are briefly introduced. Further on the
biomechanic of skeletal adaptation is presented along
with several theories concerning this process. Next, the
continuum mechanics concepts (kinematics, tensor
description) as well as the constitutive relations (linear
isotropy and transversal orthotropy) are presented.

Finally the simulation of the living tissues is
presented. Formulation of the model requires wide
knowledge in both mechanical and biological fields. In
order to obtain the geometry which would describe the
biological reality in the proper way, it is necessary to use
all available medical methods including e.g. micro
tomographic pictures. The exactness of the biological
geometry was carefully studied in this work and
significantly improved in comparison to previous
research. Knowing the geometry of the objects under
consideration along with the bone tissue behavior under
mechanical loading it is possible to attempt the modeling
process.

The main goal of this work is to create a three
dimensional model of a single osteon and numerical
simulation of the selected boundary value problems that
reflect the micro strain distribution responsible for the
remodeling of bone tissue on the micro level. The
complexity of the task as in three dimensional geometrical
modeling and numerical computations, requires strong
computational environment of the most advanced
preprocessors and solvers.

The mechanical approach is carried out in a typical
engineering way. The model is prepared and computed
with the use of standard engineering software. The
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complexity of the modeled structure requires Finite
Element Model analysis. The detailed description of the
modeling approach is given. Several models with
different material properties and shapes of bone cells
responsible for the strain detection are presented.
Obtained results (strain, stress and displacement
visualization) are shown and compared with existing
theories ((Frost (1992), You et al. (2001)), the fluid-flow
theory (Cowin (2002), Turner and Pavalko (1998)),
streaming potentials theory (Korenstein et al. (1984)) and
damage-repair theory (Doblare and Garcia (2002)). A
brief summary of the models and results along with the
concluding remarks is given and future perspectives are
suggested.

2. BIOLOGICAL BACKGROUND

Human’s skeleton is like a very complex building. It
determines the shape of the body, protects the organs and
works closely together with the muscular system to allow
us to move. There are 206 bones which build up a
skeleton. It means that all these components must function
and cooperate properly in order to create a structure which
will handle all external, sometimes extreme, loading
conditions. In order to provide such conditions it is crucial
to understand the behavior and structure of a single
skeleton’s component.In the following section a
multiscale bone structure is presented and an overview
of the bone and its tissue is given.

Bone is a two-phase porous natural composite
material comprised primarily of collagen and mineral,
which together provide its mechanical properties. The
organic component, mainly collagen, gives bone its form
and contributes to its ability to resist tension, while
mineral component, inorganic, primarily resists
compression. Bones are biological structural materials
made of dynamically adaptable tissue. Its remodeling is
described by Wolf’s law (Wolff (1986)).

Although bones are similar in structure and
development, they vary considerably in size and shape.
The architecture of bones is composed of very complex
material with extraordinary properties that optimally
adjust to external loads or self-replacing mechanisms. In
order to understand these properties it is important to
understand the mechanical properties of all bone’s
component phases and the structural relationships among
them at the various levels of hierarchical structural
organization (shown in Figure 1 from et al. (1998).

Although all computations were carried on a
microscale it was necessary to use results from other
length scales (e.g. osteonal parameters from nanoscale,
Lenz and Nackenhorst (2003)) in order to understand or
describe mechanical and material properties. Figure 1
gives a good introduction into the hierarchical structure
of a long bone.

Figure 1 shows most commonly hierarchical levels
appearing in a bone. The first one on the left side of the
figure is called macrostructure; its main length scale is
larger than 500�m and two bone types such as cortical
and trabecular are determined. Next to the right
mesostructure with length scale of 10-500 �m where
single osteon, called also Haversian systems or single
trabeculae, can be found. The center of the illustration
presents microstructure. This is the most important scale
in this work. Accordingly all presented models are built
within microscale. With a length scale of 1 �m to 10 �m
single osteonal lamellae can be determined. In length
scale of a few hundred nanometers to 1 �m these
lamellaes are structured of fibrillar collagen and
embedded minerals which already pertain nanostructure.
The last illustration on the right introduces the
subnanostructure. With a length scale of some tens
nanometers it is possible to observe molecular structure
of the constituent elements such as hydroxyapatite
crystals, collagen and non-collagenous organic proteins.

Figure 2 presents the typical long bone with its
structure (Cowin (2001)). On the first sight two tissues
can be distinguished which, among others, differ mostly
in density. These tissues are called cortical and
trabecular.

Figure 1: Hierarchical structure of bone tissue (Rho et al. (1998))

Figure 2: Illustration of bone structures- cortical (compact) and
trabecular (spongy) found in Grass (2005)
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3. MECHANOSENSITIVITY

The fact that bone tissue adapts its material properties,
and the whole bone shape, in response to altered
mechanical loading was proved and confirmed long time
ago. However, the physiological mechanism by which
the mechanical loading applied to the bone is sensed and
the mechanism by which the sensed signal is transmitted
to the cells has not been finally identified yet.

In order to make the theoretical description entirely
complete, one more ’ingredient’ ought to be presented –
the mechanosensation process. Although the capacity of
bone tissue to adapt to changing mechanical demands is
well known, the reaction of bone cells is not fully
understood. In the last decades significant progress has
been made in understanding the bone cells reaction on
mechanical signals, derived from bone loading. Lately,
several theories concerning this problem have been
developed (Cowin (1999), V. D. Meulen and Pren-dergast
(2000), Turner and Pavalko (1998) or books like Cowin
(2001), Martin et al. (1998)).

The mechanosensation process is responsible for
detection of the mechanical loading on the bone. It is
one of two main subprocesses of the mechanotrasduction
(see below).

Mechanotransduction in Bone
bone loading

�
matrix strain

�
mechanosensation by bone cells

�
intercellular signaling:
mobilization of BMU’s

(basic multicellular units)

�
bone remodeling

Mechanotransduction is the process which converts
biophysical forces into cellular response and includes the
cells reaction to the external loads.

The current theoretical and experimental evidence
suggests that osteocytes (Cowin (2002)) are the principal
mechanosensory cells of bone, which are activated by
shear stress from fluid flowing through the canaliculi.
The electrically coupled three-dimensional network of
osteocytes and lining cells is the communication system
for the control of bone structural strain detection. The
described mechanosensory mechanisms in bone consist
of:

1. The cell system that is stimulated by external
mechanical loading applied to the bone,

2. The system that transduces that mechanical
loading to a communicable signal,

3. The system that transmits that signal to the
effector cells (osteoblasts, osteoclasts) for the
maintenance of bone homeostasis and strain
adaptation of the bone structure.

However, the way strains are detected in bones is
still under research. After taking a closer look at bone, it
becomes obvious that the network consisting of the above
mentioned cells situated directly inside the bone tissue
would have the capability to fulfill the demands of
mechanosensation. At this point, it is necessary to adress
the problem of strain detection in bone cells. Figure 3
shows the relationship between bone activity and strain
detection. As presented there are two characteristic points
MES

C
 and MES

R
 which are boundary values, according

to which the remodeling processes of bone (resorption,
creation) are carried out. These two values point out the
so called dead zone, in which no change in bone occurs.

However, the problem is much more complicated
than shown in Figure 3. Quantitative studying of the strain
in bones of performing animals (galloping horses, fast-
flying birds, even a running human volunteer) found a
maximal strain not higher than 0.2% to 0.3% (Rubin
(1984), Burr et al. (1996). This poses the problem in
interpreting the results of in vitro studies of strained bone
cells, where much higher deformations, 1% to 10%, are
needed to obtain a cellular response (Murray and Rushton
(1990), Burger and Veldhuijzen (1993)). According to
Neidlinger-Wilke et al. (1995) 1% of unidirectional cell
stretching is required to receive the response in cultures
of human bone cells. However, in an animal study using
rats, 0.15% bending strain of the intact tibia was already
sufficient to activate cell proliferation and bone formation
in vivo (Turner et al. (1994), Forwood (1996)). Assuming
the strain to be somehow involved in bone cell
mechanosensing means that bone tissue must possess a
lever system whereby the small matrix strains
are transduced into a larger signal that is sensed by bone
cells.

Figure 3: Relationship between the strain detection on the osteon
and bone reaction
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4. PURE STRAIN CONCEPT

The core of this concept is a reaction of osteocytes to
pure strains or bone matrix deformations. The external
forces act on the whole bone, and the strains caused on
the macro length scale are the same as on the micro length
scale of the osteocytes. But this problem is much more
complex than described above. Several biological
experiments were carried out and it was found that the
strain occurring in osteocytes must be significantly above
(about two orders magnitude higher) the strain expected
in the bone (You et al. (2000), Burger and Veldhuijzen
(1993)). According to other experiments strain values of
about 1000 microstrain1 is required in order to get a
response from osteoblasts (Kaspar et al. (2000)) while
Frost (1992) described that minimum as 1500 microstrain.
With the strains of this magnitude bone will undergo
remodeling and increase its density in order to reduce
local strains. This action will last as long as the local
strains are small enough. However, higher local strains
will not cause any action and too high strains will cause
damage in the bone tissue. There are two interesting
models suggested. One of them is trying to explain how
the osteocytes could amplify the strain to a level which
would be detected by cellular mechanisms (You et al.
(2001)) while the second attempts to clarify the problem
of the dead zone (Rubin et al. (2002)). In this work the
second model (see Figure 4) will be presented where
osteocytes undergo even higher strains.

microstrains. Therefore, the minimum effective strains
for numerical models presented in this work will be
determined after the values given by Frost (1992).

5. FLUID FLOW HYPOTHESIS

The fluid flow is induced by dynamical external loads
which cause a local hydrostatic pressure gradient. A
hypothesis concerning the mechanism by which the
osteocytes placed in the lacunae of mechanically loaded
bone sense the load applied to the bone by the detection
of strains was suggested by several researchers (Duncan
and Turner (1995), Burger and Klein-Nulend (1999b),
Burger and Klein-Nulend (1999a)). It was proposed that
the osteocytes are stimulated by relatively small fluid
shear stresses acting on the membranes of their osteocytic
processes. The fluid flow is induced by dynamical
external loads which cause a local hydrostatic pressure
(see Figure 5).

Figure 4: Osteocyte between two lamella with additional shear
deformation

As shown in Figure 4 the model of two lamellae with
different fiber orientation is presented with inbetween
located osteocyte. The axial pressure, loading top surfaces
of lamellae, causes additionally stretching strain, which
is clearly higher in osteocyte localization than inside the
lamellae. There is no evidence that these shear strains
will be able to amplify the cell strains significantly
enough. Fulfilling the models mentioned above and
causing strain detection by osteocytes as a final effect
seems however, quite probable.

It is generally accepted that continuum bone matrix
strains are found to be in the order of 0.3 and 2

Figure 5: Creation of fluid flow through the hydrostatic pressure
gradients

 As presented on Figure 5 the bending forces not only
deform the osteocytes situated inside the bone, but further
generate a pressure gradient from compression to tension
regions (Duncan and Turner (1995)). This causes the bone
fluid to flow through the canalicular spaces, and in
addition to causing shear stresses on cell membranes it
also provides the cell with nutrien supplies. Additionally,
a very characteristic electric potential is created which is
called streaming potential and was introduced by
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Korenstein et al. (1984). It is known that extracellular
bone matrix is negatively charged due to its proteins.
When the fluid moves, the excess positive charge is
convected developing streaming currents. The amount
of electrical current created is dependent on the pore sizes
through which the fluid is pressed. The anatomical site
in bone tissue that is the source of the experimentally
observed strain generated potentials is still under
discussion (Pollack and Petrov (1984)).

Although numerous experiments were carried out by
Burger and Klein-Nulend (1999b), Owan et al. (1997),
Wang et al. (2003) it is not finally proven if the
mechanosensation process can be explained with the fluid
flow theory.

6. CONTINUUM MECHANICS

The specific objects represent different outlook when seen
with the naked eye and under a microscope. Material
which appears to be continuum is not the same in a finer
length scale. However, in continuum theory the fact that
matter is made of atoms and that has some sort of
heterogeneous microstructure is ignored in the
simplifying approximation and physical quantities, such
as energy and momentum, can be handled in the
infinitesimal limit. Differential equations can thus be
employed in solving problems in continuum mechanics.
Some of these differential equations are specific to the
materials being investigated, while others capture
fundamental physical laws, such as conservation of mass
or conservation of momentum (Zienkiewicz and Taylor
(1994), Altenbach and Altenbach (1994), Betten (1993),
and Wriggers (2001)).

The kinematic basics of continuum mechanics
contain the description of solid body deformations,
distortions and time derivation of the kinematic variables.

Formally, a solid body B can be described as an
assembly of points in an EUCLIDIAN space E. The
configuration of B is the explicit transformation of� : B � E where the particle of B is included in E.
Therefore, the location of particle X  of body B in
configuration �(B) (coupling operator) is defined as
x = �(X). Figure 6 (based on illustration in Wriggers
(2001)) shows configurations: on the left undeformed
called also reference (B) and on the right deformed or
actual �(B). As stated earlier, both configurations are
coupled by the operator �.

According to Figure 6 a particle A is situated in both
configurations: reference B and actual �(B) but at
different locations, respectively X and x. The location of
particle A in time space t � R+ is described as follows:

x = �(X, t) (1)
The deformation of body B causes the displacement

of particle A which is given by Equation 2:

u(X, t) = x(X, t) – X (2)
To describe deformation processes it is crucial to

introduce the deformation gradient F which combines
the deformation of the line element dX  in reference
configuration B  with the deformation in actual
configuration. This relation is given as:

dx = FdX (3)
Using partial derivatives the deformation gradient

can be expressed as:

1 1Grad
� � �� � � � � � �� � �
x X u

F u H
X X X

(4)

where Gradu = H and is defined as the displacement
gradient tensor.

If the deformation gradient operator is linear, the
transformation given by Equation 3 is also linear. In order
to provide the continuum structure of B during the
deformation, Equation 3 must be unique.

J = detF � 0 (5)
where J is the Jacobian determinant. When
the deformation gradient F is not singular there
exists the inverse F–1 and Equation 2 can be written as
follows

dX = F–1 dx (6)
The Jacobian determinant is of a great importance

in continuum mechanics and the corresponding numerical
formulation. It relates infinitesimal small volume
elements such that

dv = JdV (7)
Deformation gradients can be decomposed into

stretch and rotation tensors using the polar decomposition
theorem as follows:

F = RU = VR (8)

Figure 6: Motion, deformation of the body B
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where respectively R is the orthogonal rotation tensor,
U is the right stretch tensor and V is the left stretch tensor
with

RT R = 1 U2 = FTF = C V2 = FFT = b (9)
where C is described as the right and b as the left CAUCHY-
GREEN tensor.

After describing the deformation gradient tensor F
the GREEN-LAGRANGE strain tensor can be introduced as
follows:

1 1( 1) ( 1)
2 2

T�� � � �E F F C (10)

The deformation gradient contains all information
about displacement and rotation of the body. It is
convenient to describe the GREEN-LAGRANGE tensor with
use of the displacement gradient H (Equation 4) that gives

�
1 ( )
2

T T

nonlinearlinear

� � �E H H H H����� (11)

where the linear and non linear parts can be distinguished.
In this work (except for one example) the linear theory
will be used. The non linear part can be omitted which
results in the linear strain tensor

1 ( )
2

T� � � �H H (12)

With the use of the transport equation and the rule
of mass conservation it is possible to derive the following
expression:

( )
B B

dv div dv� � ���� �v b� (13)

In Equation (13) � is the CAUCHY stress tensor and�v�
represents the inertia which can be neglected in static
mechanical problems. This leads to Equation (14)

( ) 0
B

div dv�� � �� b (14)

To solve for Equation (14) in the field of numerical
methods it is necessary to introduce the variational
formulation. The computation can be obtained with the
use of the principle of virtual displacement, which
multiplies Equation (14) with a test function �. The
resulting expression is integrated over volume B and
finally one obtains the following expression:

( ) 0
B

div dv�� � � �� b (15)

The final form of the weak formulation is as follows:

0
t

T T T

B B B
dv dv da��� � � � � � � �� � �C u b u t (16)

where , u� � ��C  is the unknown displacement and �B
t

is the surface where t is applied.

The constitutive relation between the applied stresses
and strains for linear materials at small strains is given
by:

ij ijkl klC� � � (17)

where C
ijkl

 represents the fourth rank material tensor (81
components). However on the basis of symmetry of strain
(Equation 18) and stress (Equation 19) tensor it is possible
to reduce the number of components to 36.

�T = [�11 �22 �33 �12 �23 �31] (18)
�T = [�11 �22 �33 �12 �23 �31] (19)

In this work the used materials are described below.
Hydroxyapatite crystal, collagen matrix and osteocyte are
isotropic linear elastic materials. With the use of only
two independent constants, POISSON ratio � and YOUNG

modulus E, typical for engineering problems, it is possible
to build the whole material matrix C as shown in Equation
(20):

11 11

22 22

33 33

12 12

23 23

33 31

(1 ) 0 0 0
(1 ) 0 0 0

(1 ) 0 0 0
(1 2 )0 0 0 0 0

2 2(1 ) (1 2 )
(1 2 ) 20 0 0 0 0

2
2(1 2 )0 0 0 0 0

2

E

�� � �� �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� �� � � �� �� ��� � � �� �� �� � � �� � � �� �� �� � � �� �� �� � � �� �� �� � � �� � � �� �� �� �� �� �
(20)

Transversely isotropic material with anisotropic
behavior is very specific for fiber composites in which it
is possible to identify an orthotropic structure of the
material. The typical structure of this unilateral composite
and its orthogonal coordinate set which defines the
orientation of the fibers is presented in Figure 7. The
elastic constitutive relation for this material are than
expresses as follows:

Figure 7: Definition of the coordinate axes with respect to the
material symmetry axes
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11 11 12 13 11

22 12 11 13 22

33 13 13 33 33

12 44 12

23 44 23

31 66 31

0 0 0
0 0 0
0 0 0

0 0 0 0 0 2
0 0 0 0 0 2
0 0 0 0 0 2

c c c

c c c

c c c

c

c

c

� �� � � � � �� � � � � �� �� � � � � �� � � � � �� ��� � � � � �� �� � � � � �� � � � � �� �� � � � � �� �� � � � � �� � � � � �
(21)

where:

1 1

3 3

2 2
31 21 31 21 31

11 12 13

1 (1 )
E E
E E

c c c
�� � � � � � �� � �� � �

21 3 1
33 44 13 66 12

21 13 31 21

(1 )
1 2 2(1 )

E E
c c c

��� � � � � �� � � � � � � (22)

with
221 1

21 31
1 3

1 1 2 E

E E

� �� �� � �� � � �� �� � (23)

7. HOMOGENIZATION

The constitutive material relations shown in this work
have been derived under the assumption that the material
parameters are homogenous in the entire body B. For
heterogenous materials, e.g. composite materials, the
constitutive equations are applicable only to
homogeneous volume fractions. In these cases the
homogenization procedures are used to create effective,
homogenous materials out of heterogeneous composites.
The effective material properties strongly depend on the
elastic properties, the volume fraction, the orientation and
dimension of the constituents on the micro level. In case
of biological materials of small size, experiments to derive
the material properties are very difficult to carry out.
Analytical or numerical estimations of homogenized
material parameters are sometimes useful alternatives,
but they remain approximations. Having knowledge
about the mechanical properties on the nano scale of the
material constituents, effective material parameters can
be derived for micro scale calculations. Therefore several
homogenization procedures are described in the literature.
They all have to fulfill certain requirements concerning
RVE’s (representative volume element). It has to be small
enough on the computation scale, but large enough on
the scale, where its properties are known. It can than be
considered statistically representative.

One of the most widely used classical
homogenization methods is the Mori & Tanaka (1973)
method. It was used by Lenz and Nackenhorst (2003) to
obtain nano parameters of the bone on the micro scale.

This method is an extended approach to
homogenization considering the interaction between the
inclusions and their finite volume fraction. Therefore, the

strain field of the matrix is approximated through the
average strain field in a sufficient distance. The load on
each inclusion depends on the existence of other
inclusions and the average matrix strain and stress fields
created by them. The interaction does not include the
fluctuation of the fields. Finally, the effective material
C*  is calculated by:

( )M I I M MTc� � � � � �C C C C L (24)

where C
M
 and C

I
 are the fourth order material tensors of

matrix and inclusion, respectively. The parameter c
I
 is

the concentration of inclusion and L
TM

 is the localization
tensor based on the Mori & Tanaka assumption

1 1[ ( )]MT M M M Ic � �� � � � � �L I S C C I (25)

The localization tensor represents the solution of a
linear elastic boundary value problem of the following
form

0 0( ) ( )I
ij ijkl kl i ij jx L x for u x on� � � � � � ��� (26)

which means that if the strain �° in the matrix material
acting on the boundary of the inclusion �� is known
(assumed to be constant in this case) then the calculation
of the strain field �I inside the inclusion becomes possible.

The localization tensor itself depends on both
material tensors, the matrix concentration and the fourth
order ESHELBY tensor S (Eshelby (1957)). The ESHELBY

solution denotes that inside ellipsoidal inclusions, if the
strain field �t is constant, the resulting total strain field �t

is also constant. These two strain fields are coupled by
the fourth rank ESHELBY tensor S:

t
ij ijkl klS const in� � � � � � (27)

In the case of simple inclusion geometries, analytical
solutions for the ESHELBY tensor are known and may be
denoted explicitly. In other cases, numerical
approximations of this tensor have to be computed.

8. MATERIAL MODEL

The mechanical behavior of osteons depends on their
elastic properties which are essential and must be
determined to carry out the finite element analysis.
Thereby many factors play a role like the fiber pattern of
the lamella, the degree of mineralization as well as the
elastic properties of the main constituents of bone tissue:
HA-crystals and collagen molecules. Taking into
consideration the scale in which this research was done
the dimensions of osteon and the dimensions of HA-
crystals (2x4x20nm), homogenization methods become
necessary. The homogenization allows the creation of a
material which has the same elastic properties as a
composite of HA-crystals and collagen as shown in
Figure 8:
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Another important fact of the osteon material belongs
to its anisotropy. This anisotropy arises basically from
the approximately ellipsoidal (also cuboidal according
to other researchers) HA-crystal structure. Despite of the
isotropy of collagen and hydroxyapatite, the
homogenization yields an orthotropic lamella material.
Thus, three principle axis for the stiffness of the lamella
material are obtained where the highest stiffness belongs
to the semi-major axis of the ellipsoid.

For homogenization the classical MORI-TANAKA

method is used and the following elastic properties of
the components are applied as shown in Table 1:

Figure 8: Structure of the Haversian System (Osteon)

Table 1
Elastic Properties of Collagen, HA and Composite Created

after Homogenization

Material Young’s modulus Poisson’s ratio Symmetry

collagen 1.2GPa 0.35 isotropic

hydroxyapatite 144GPa 0.27 isotropic

composite 5-18GPa 0.3 orthotropic

The big dispersion of the composite material stiffness
is strongly connected with the concentration of ellipsoidal
HA (mineralization) in the RVE. The problem is
addressed in the following section below.

For the process of homogenization, the HA- crystals
are called inclusions (particles) and the collagen is
referred to as matrix. With the use of the MORI-TANAKA

method, it is possible to calculate the material matrix C*
of the composite material (lamella material).

Finally, the lamella material C*  has to be rotated in
the directions in which they appear in the osteon. Here the
example of lamellae ±45° (see also Figure 8) is introduced:

45 (45 ) (45 ) (45 ) (45 )ijkl mnop lp ko jn imC C D D D D�� �� � � � � (28)

where D( ) is the rotation matrix around 1-axis of alpha
degrees:

1 0 0
( ) 1 cos( ) sin( )

1 sin( ) cos( )

� �� �� � � � �� �� �� �� �
D (29)

After the execution of all steps, including the rotation
procedure, the orthogonal material tensor can be obtained.

1. Geometry of the Model

To solve the mechanical problem of an ordinary osteon
under physiological boundary conditions a three
dimensional finite element model is developed. The
geometry of such a model is idealized to a simple hollow
cylinder, and further, with the use of periodical boundary
conditions, simplified to 60° section (see Figure 9 on the
right and Figure 14).

Figure 9: Part of Haversian system in the numerical approach

The modeling process in this work is carried out
according to the theory presented earlier. All properties
are defined in a cylindrical coordinate system (Figure 9)
in order to obtain axial symmetry. The small osteon
models presented in this work contain only two lamellae.

Each of them has a radial width of 5 �m and a height of
50 �m. The radius of the inner hole is 40 �m.

There are several theories describing the geometry
of osteocytes. According to COWIN (2001) they are
spherically shaped with diameters of 4–14�m. Martin
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et al. (1998) suggested even smaller dimensions while
Fritton et al. (2004) accept more specific shapes of a
triaxial ellipsoid with axes lengths of 17.6 ± 0.3 µm, 6.1
± 0.3 µm and 4.0 ± 0.2 µm. According to these data the
osteocyte geometry was chosen and is presented below.

The geometry of the models prepared in previous
research (e.g. Lenz and Nacken-Horst (2003)) poorly
approximated the shape of the osteocyte which did not
reflect the real biological geometry. Here, this geometry
is substantially improved. It was decided to create two
kinds of models one with spherical osteocytes with
diameter of 5µm and the second one with ellipsoidal
osteocytes with axial lengths of 2.5µm, 2.5µm and height
of 5µm. That gives the opportunity to compare the
differences arising during the computation process and
present the geometrical development of the model.
Models with both kind of inclusions are presented in
Figure 10. The location of osteons (red on Figure 10) is
random.

2. Material Properties

The created models in this research use great variety of
the material properties (described earlier) but all of them
are generated for the mineralization degree of 65%. All
orthogonal material tensors used for the modeling in this
research and describing the properties of the lamella with
specific fiber orientation are expressed in VOIGT notation.
The orthotropic tensors for the fiber orientation 0° and
90° look identical to transversal isotropic material
matrices. The other material tensors look very similar.
The differences lie in the rotation routine which causes
the material axes not to coincide with the cartesian
coordinate system axes. However, the obtained
homogenized material behaves in transversal isotropic
way which means that exchanging the x and z-axes would
not affect the material properties.

According to the biological studies the osteocytes
are modeled with much softer material than lamellae, as
fully elasto–isotropic material, described with two
material parameters YOUNG’s moduli E = 0.2GPa and
POISSON ratio � = 0.3.

3. Model Discretization

For the discretization process the 10-node tetrahedral
elements with quadratic shape functions are used to
describe the geometry. The discretization is shown in
Figure 11.

Figure 10:The lamella with spherical (left) and ellipsoidal (right)
osteocytes

To make the geometrical description complete the
number of osteocytes in the lamellar tissue must be
discussed. Here arises another disaccord occurring in
several sources. According to Cowin (2001) the number
of lacunae per mm3 is about 15000. Martin et al. (1998)
supports this number, suggesting 13000-17000 lacunae
per mm3, but Fritton et al. (2004), who also suggested
the largest axial sizes of the osteocyes, proposes much
larger value of 80600 lacunae per mm3. These relatively
large differences confirm the lack of consensus in
research. In order to hold one source geometrical data
the number of osteocytes for the final model as well as
the shape and size are those proposed by Cowin (2001)
and Martin et al. (1998). However, for the small two
lamellae models which should only describe the modeling
approach these values are not applied. Here four
osteocytes are placed between lamellar layers. At this
point the model development is shown. The exactness of
the biology representation is discussed later.

Figure 11: Discretization of lamella inclusion; spherical (left) and
ellipsoidal (right)

The discretization is carried out in a very specific
way. Except of big size differences between modeled
elements (lamella layer and osteocyte) which is discussed
later, the use of MPC (multi point constraint) boundary
condition requires characteristic properties. Therefore the
right side of the lamellae is discretized first with the two
dimensional triangle elements. Next, these elements are
copied to the opposite surfaces on the left, hence
corresponding nodes are created. Thereafter, the entire
net was created based on the already existing one. The
obtained discretization fulfills the boundary conditions
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requirements and additionally provides very good
visualization of the results.

The sizes of osteocytes in comparison to the lamellar
layers are relatively small. Although the discretization
of the osteocytes must be fine to obtain satisfactory
results, the size of the elements composing the lamellae
layers cannot be the same. That would cause enormous
number of elements and makes the computation difficult
to carry. In Figure 12 the single discretization of the
osteocytes placed in the lamella is shown.

Figure 12:I llustration of the discretized osteocytes with
surrounding lamella; spherical (left) and ellipsoidal
(right)

The number of elements for the spherical osteocytes
is smaller than the number of ellipsoidal osteocytes
(as shown in Figure 12). This comes off the size
differences–the smaller ellipsoidal inclusion requires finer
discretization than the larger spherical ones.

The discretization has to provide the union between
the lamellae layers and osteocytes placed between them.
This could be proved by the continuities of the
displacements and strains occuring in the osteocytes. By
using the nodal equivalence function which eliminates
double nodes in the model, the expected results are
obtained in computation.

4. Boundary Conditions

There are two main boundary conditions applied to the
generated model. The first one fixes the bottom of the
model in the z-direction. The second, makes possible the
reduction of the entire cylindrical osteon. In this work,
only the section of 60° is modeled and computed (see
Figure 13).

This reduction is possible due to the periodical
boundary conditions which are applied at the side
boundaries. This is realized by Multi Point Constraint
(MPC), by which the same deformations in the section
are obtained as if the whole osteons are analyzed.
Periodical boundary conditions imply that the
deformation of two, axial symmetric corresponding nodes
(same radial distance to the center and the same z-
dimensional hight at both sides) is equal. In order to
obtain such a method the side surfaces (Figure 14) had

to be discretized, one after another, with triangle surface
elements that results in creation of the corresponding
nodes.

The corresponding nodes are constrained with MPC.
This tactic tremendously reduces the time and required
memory of the computations. In Figure ??0 the MPC for
a 2-lamellae osteon model is presented. The red circles
show the node locations and the red lines connect two
corresponding nodes.

5. Loading

On the top of the model a uniform physiological pressure
of 6.25 MPa is applied. This value was estimated by Lenz
(2005) according to the experimental and literature
review – COWIN (2001), Martin et al. (1998) and others.
The illustration of the loading application is shown on
the right in Figure 13.

6. Results without MPC Boundary Conditions

In Figure 15 the displacements of the model without MPC
boundary conditions is shown. The displacement
distribution is similar for both cases. A very interesting
behavior of the displacement can be noticed which relates

Figure 13:Entire cylinder of the osteonal model (left) and a section
of 60° (right)

Figure 14:Periodical boundary conditions applied in the osteon
model
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to the material parameters C and the fibriform structure
with opposite fiber direction (±45°) for each lamella.

In Figure 16 the cross sectional view of the HUBER

von MISES strains are presented.
This model is calculated with the use of all modeling

methods described in this work excluding the MPC
boundary condition. The HMH (Huber, Mises, Hencky)
strains are calculated according to the equation

3
2red ij ij� � � �� . The strains in osteocyte are clearly

higher than those in the lamellae, which, according to
the material parameters, is expected.

Figure 15:Total displacements of both models, left with sphere
and right with elliptic osteocytes

Figure 16:Cross-sectional view of MISES strains, left with sphere
and right with elliptic osteocytes

The presentation of the displacement and strains
showed that the model is created properly. The
displacement of separately discretized lamellae are united
and the strains occurring in softer osteocytes are higher
than those obtained in the lamellar tissue.

7. Results with MPC Boundary Conditions

With the use of MPC boundary conditions, the
displacements become symmetric as expected. They are
presented in Figure 17. The cross-sectional strains are
very similar to those presented in the previous section,
and will not be shown again.

At this point one more very characteristic
displacement property will be presented which is
illustrated in Figure 18. As stated earlier, the periodical
boundary conditions guarantee the same behavior of a
section of 60° as if the whole cylindrical osteon would
have been analyzed. It means that there should not be

any possibility of displacement of the section’s sides in
the � direction. With the use of a greater scale factor
(0.1) and proper view it is possible to notice the
displacement differences between models with and
without MPC. They are compared in Figure 18.

Figure 17:The displacement of osteon models with periodical
boundary conditions, model with spherically shaped
osteocytes on the left and with elliptically on the right

Figure 18:The model with MPC on the left, and without, on the
right

The whole modeling procedure is presented and
explained in this work. All the modeling requirements
are fulfilled. With such an experience, creating the entire
model is much easier and takes less effort. However, the
computation time is longer because of the model size. In
the the following section detailed description of the entire
models with both kinds of osteocytes (spherical and
ellipsoidal) will be given and obtained results will be
compared with the theory developed earlier.

9. NUMERICAL EXAMPLES

The finite element analysis results of the osteon model
with ten lamellae layers is presented in these examples.
The aim is to study the deformations between the osteonal
lamellae where the lacunae are situated. Each lacuna
accommodates an osteocyte, and the strains at these
locations are responsible for the initiation of the
remodeling processes.

The full model description is given in Table 2.
Using the periodical boundary conditions, the entire

cylindrical model is reduced to a section of 60°. It leads
to the model shown in Figure 19. The number of
osteocytes is obtained according to the information
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Table 2
Parameters of the model (properties, boundary

conditions and loading)

Model Parameters

Diameter of entire ostenal cylinder 140µm
Diameter of inner whole (Haversian canal) 40µm
Hight of the entire model 50µm
Number of lamellae 10
Radial width of single lamellae 5µm
High of single lamellae 50µm
Diameter of the spherical osteocytes 5µm
Axial dimensions of the ellipsoidal 2.5µm, 2.5µm and
osteocytes 5 µm

Botton boundary conditions z-fixed
Side boundary conditions MPC

Loading top surface pressure 6.25 MPa

presented earlier. Table 3 presents the calculation of the
number of osteocytes for the model.

The location of the osteocytes is random and is
chosen to be between 3rd and 4th, and 7th and 8th lamella.
Both models with spherical and ellipsoidal osteocytes are
shown in Figure 20.

Figure 19:Geometry and loading pressure of the entire osteon
model

The geometry, boundary condition and loading are
now determined and the model is almost ready for the
simulation. The computation of both models, as presented
in Table 5, is carried out with different lamellae material
parameters. Six different models are created, three with
spherical and three with elliptical osteocytes. For all
simulations the hydroxyapatite concentration (degree of
mineralization) was set to 65%, which describes fully
mineralized osteons.

The orientation of collagen fibers between lamellae
may change up to 90° in adjacent lamellae. Except of

orthogonal models, where the collagen fibrils only assume
one of two directions which are out of phase 90° with
each other, there is also the possibility of a twisted model.
In this case parallel collagen fibrils continuously rotate
by a constant angle from plane to plane in a concentric
structure. In this work, three most common lamellae fibril
orientations are simulated. The first group of two models
with spherical and ellipsoidal inclusions, has the angles
of fiber inclination for a cross ply lamellae pattern of
±45°, in the second, the angles are respectively 0° and
90° and the third group is an example of the twisted
model, where the angle of fiber inclination is rising from
–45° to 90° with 15° increase between each lamellae.
The summary of the all models with different material
properties is given in Table 4.

The geometry of both models with different shapes
of osteocytes was presented before. Discretization and
setting the boundary condition with use of MPC was
carried out in the same way as it was presented for the
small model in the previous sections.

Table 3
Number of osteocytes in a model

Calculation of number of osteocytes

Volume of all cylindrical model 0.000769mm3

including Haversian canal
Volume of Haversian canal 0.0000628mm3

Volume of all cylindrical model 0.000706mm3

without Haversian canal
Volume of 60° section 0.000117mm3

Number of lacunae (Cowin (2001), 15000-17000/mm3

Martin et al. (1998))
Number of lacunae for the final model 1.7 – 2.01 � 2
(60° section)

Figure 20:The entire model geometry with the location of
spherical (left) and ellipsoidal (right) osteocytes

However, between the two models presented in
Figure 20 there are some discretization differences. This
arises due to the fact that the geometry of the inside
inclusions is not the same. Smaller ellipsoidal osteocytes
require finer tetrahedral elements than the larger spherical
ones. The differences of the discretization data are shown
in Table 5.
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The FEM models with both kinds of osteocytes look
identical. Though their surfaces are discretized in the
exactly same way to obtain the corresponding nodes and
MPC so that there is no visual differences in the external
view. The entire discretized model is presented in
Figure 21.

The finite element model, presented in Figure 21
is generated in MSC.PATRAN Simulating Reality
software. After creating the model, an input file
is produced. ABAQUS is used to solve the linear
elastic mechanical problem. There is also one
nonlinear computation carried out for the model with
spherical inclusions and ±45° fibers orientation. It is
presented and compared with linear calculations.
According to different model parameters, which are the
shape of inclusions and material parameters, the
displacements at nodal points are calculated. Next, strains
and stresses are obtained. These results are presented in
the following Sections.

1. Model Including Lamellae with ±45° Fiber
Orientation

In Figure 22 the displacements of models with different
inclusions are shown in millimeters. On the left, the model
with spherical osteocytes and, on the right, with the
ellipsoidal osteocytes. The displacement distribution for
both models is very similar and does not differ
significantly from each other. Due the to periodical
boundary conditions the problem is symmetrical. The

largest displacements are on the top for both models, and
they get smaller in the lower portion. These values vary
between 4.31.10–2 and 0.884.10–2 micrometers for model
with spherical inclusions, and 4.29.10–2 and 0.935.10–2

micrometers for model with ellipsoidal inclusions. The
displacements on the top of the models are nearly constant
while in the lower region they get larger with increasing
radius. It is visible in Figure 22 that the shape of the
osteocytes do not have significant influence on the
displacement distribution and values.

Additionally, the computations of the the model with
spherical inclusions is carried out with the nonlinear
theory to compare the plausible differences to the linear
elastic computation. The displacement field is shown in
Figure 23. The non linear computation did not show any
differences in displacement field distribution as well as
in displacement values in comparison to the linear
computations of the same model. Both results are quasi
identical (Figure 22 on the left for linear and Figure 23
for nonlinear computation).

The strains presented in Figures 24 and 25 are
essential for this work, especially the values at the lacuna
locations where the osteocyte elements are placed. The
strain in the osteonal corpus of the models are relatively
constant therefore in Figures 24 and 25 only the two
characteristic lamellar layers with the inclusions-4th and
8th lamella are presented.

Table 4
Material parameters (65% mineralization) for six osteonal

models computed in this work

Kind of inclusion Fiber orientation Description of appearance

Model with spheres ±45° lamella with smallest
radius –45°

Model with spheres 0;90° lamella with smallest
radius 0°

Model with spheres –45º/(+15°)/ + 90° lamella with smallest
radius –45°

Model with ellipses ±45° lamella with smallest
radius –45°

Model with ellipses 0;90° lamella with smallest
radius 0°

Model with ellipses –45°/ +14° / + 90° lamella with smallest
radius –45°

Table 5
FEM data of the models with different inclusions

Number of nodes 160274 201862
Number of elements 109905 142806
Number of equations 480822 605586
Required memory for 3.04G Bytes 4.87G Bytes
the calculation

Figure 21:The view of discretized models with different types of
inclusions

Figure 22:The model displacements after finite element analysis
in mm. On the left the model with spherical inclusions,
on the right with ellipsoidal inclusions
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In Figure 24 both presented models contain spherical
osteocytes. They are computed according to two different
theories, the model on the left is calculated with linear
analysis while the model on the right is calculated with
nonlinear analysis. It is clearly visible that the results of
these two different computational methods are almost
identical. The reason lies in the resulting small strains,
which makes the nonlinear analysis obsolete. Both
models present exactly the same strain values and
distribution. The strains in the lacunae are between
9.67.10–4 and 1.65.10–3 (red, yellow and pink colors)
while the strains in the osteon corpus are much more
constant from 5.79.10–4 to 6.76.10–4 (red and blue colors).
For the entire osteon corpus the strains can be
approximated with about 0.7 millistrains while at the
lacunae the maximum value of 1.65 millistrains is located.
These comparatively higher strains at the lacuna results
from the lower stiffness of the osteocytes elements. The
main contribution to the total strain derives from the
longitudinal �

z
 strain component which has nearly the

same value as the total strain. The influence of all the
other strain components is much smaller and remains
lower than 0.5 millistrains.

 In Figure 25 the obtained strains are presented; on
the left the strains in the model with ellipsoidal inclusion
and on the right the magnification of the strains in the
osteocyte. As in the previous models, the osteocyte

material is much softer than the osteonal corpus therefore
the strains in the lacunae are three to four times higher.
Their values vary between 1.15.10–3 and 2.66.10–3 (red,
pink and green color) while the strains in the osteonal
corpus present even more stable values (than for the
spherical inclusions 24) of 6.44 – 8.12 . 10–4 (constant
blue color). The approximation of the strains in the model
would result in 0.7 millistrains for the osteonal corpus.
The maximal strains in the osteocytes is computed to be
2.66 millistrains. The main contribution to the total strain
derives, as for the previous models, from the longitudinal
(�

z
) strain component, while the other components remain

much smaller (less than 0.4millistrains).
An additional characteristic property is now

presented – the shear stress ��z
. The lamellae in both

models (see Figure 26) changes the value in a very
specific, alternating way (colors green and pink). For both
examples the green color presents the shear stress ��z

 in
lamellae as negative while the pink color presents the
positive values. The reason for these results is the
orientation pattern of the fibers in the lamellae which
correlates to the main stiffness axes. These axes of the
pink lamellae lie in the positive while the green lamellae
lie in the negative circumferential direction.

The comparison of the presented strains for spherical
and ellipsoidal inclusions shows that the strains in the
osteonal corpus under specific pressure remains the same,
0.7 millistrains for both kind of models. Comparing these
values with the simulation made by Lenz and
Nackenhorst (2003) (their model was programmed in
Matlab programming language) it turned out that the
results in the osteonal corpus are very similar.

The strains obtained in the osteocytes vary
significantly. The maximal value for the spherical
inclusions is estimated to be 1.65 millistrains while for
the ellipsoidal 2.66 millistrains. In comparison with the
results presented by Lenz and Nackenhorst (2003), about
1.16 millistrains, both results obtained in this work are
up to almost 1.5 times higher. The model by Lenz and
Nackenhorst (2003) had the same material parameters,
but much simpler geometry for the osteocytes (two
hexagonal elements). These relatively high difference in
strain detection, caused by the different geometry of the
osteocytes, shows how important the modeling approach
is, and might suggest and explain the most proper shape
for the osteocytes.

The other conclusion concerns the nonlinear
calculation, which takes much more time and requires,
in comparison to the linear theory, much more memory
to save the huge results data. There are no differences
between the results obtained in linear elastic and
nonlinear analysis. Therefore, the following computations
will be carried out only according to the linear elastic
theory which turns out satisfactory for this example.

Figure 23:The displacements of model with spherical inclusion
for non linear computation

Figure 24:Strain distribution in osteon model. The model with
spherical inclusions: on the left the results of the linear
and on the right of nonlinear analysis
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2. Models Including Lamellae with 0° and 90° Fiber
Orientation

Another osteonal model computed in this work (see Table
4) has the fiber orientation in a phase of 90° : 0° and 90°
respectively. On Figure 27 the displacements of the
models with spherical (left) and ellipsoidal (right)
inclusions are presented.

direction, so their stiffness in this direction is the highest.
Analogically the stiffness of fibers with orientation of
90° for such an axial loading is the smallest. It causes
the entire lamella stiffness with fibers orientation of 0°
to be much higher than the other lamellae. This explains
the characteristic displacement, but also the strain
distribution in the top region. In the middle part of both
models the displacement fields are nearly constant, very
similar to the previous example and in the lowest part
they get larger with increasing radius however, not as
much as those in the previous example. The displacement
values in the top region are slightly higher than in the
model with fibers orientation of ±45° but in the lower
part they appear to be much smaller. For both models the
displacement values are very similar and vary between
3.5510–2 and 4.0710–6 micrometers for the model
with spherical inclusions and between 3.5010–2 and
6.5110–6 for the ellipsoidal inclusions.

In Figure 28 the strains in the models with both kinds
of inclusions are presented.

Figure 25:The strains in the model with the ellipsoidal inclusions
(left) and the larger magnification of the strains in the
osteocyte (right)

Figure 26:The shear stress 
z
 shows an interesting behavior. On

the left model with spherical and on the right with
ellipsoidal inclusions

Figure 27:Displacement distributions, strongly dependent on the
fiber orientation. A model with spherical (left) and with
ellipsoidal (right) inclusions

Similar to the previous models the displacement
values (in mm) and distribution for both cases are very
similar that suggests that the shape of the inclusion does
not influence the total displacement. This behavior,
especially in the top region is noticeable. This property
is strongly connected with material parameters. The 1st,
3rd, 5th, 7th and 9th lamella have the fiber orientation of 0°.
The fibers are situated exactly parallel to the loading

Figure 28:The strain fields of both models; with spherical (left)
and ellipsoidal (right) inclusions

 The distribution, as well as strain values for the
osteonal corpus are qualitatively similar for both models.
The above explained stiffness of lamellae with different
fiber orientations (see displacement description) is the
reason of the characteristic strain distribution in the top
region of the models. The softer material under specific
loading results in higher strains than the stiffer one. It is
clearly visible especially in the 1st and last lamella of both
models. The strain values in the softer lamellae, the one
with the fiber orientation of 90°, vary between 6.5110–4

and 9.1010–4 for the model with spherical inclusions and
between 5.1110–4 and 9.7110–4 for the model with
ellipsoidal inclusions. For the lamellae with higher
stiffness (fiber orientation 0°) these values vary between
1.3310–4 and 2.6310–4, and 1.6610–4 and 2.8110–4

respectively. The strain values presented at the top of both
models are very alike and do not differ very much. In the
lower parts, the strains in both kinds of lamellae stabilize,
become constant and equal respectively 2.63–3.9210–4

for the model with spherical and 2.81–3.9610–2 for the
model with ellipsoidal inclusions. They can be
approximated to 0.3-0.35 millistrains and is much smaller
than in the model presented earlier.
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In Figure 29, the cross-sectional strain distribution
in the osteocytes are presented. As explained, in the top
region higher strains can be noticed which are the results
of the material parameters. Although the strains of
osteonal corpus are much lower than those obtained for
the model presented earlier, the strains inside
the osteocytes still remain relatively high. For the
spherical inclusion maximal obtained strains are equal
to 1.5010–3 while for the ellipsoidal they are even higher
and equal to 1.7810–3. These strains can be approximated
to 1.5 and 1.78 millistrains, respectively. Here the
obtained values are slightly smaller than those in the
previous example but it must be also pointed out that the
strains detected in osteonal corpus are about twice smaller
than those in the previous example. Assuming the
osteonal corpus strains are clearly smaller than in the
previous example, the strains in the osteocyte stays on
the very high level and still remains much higher than
those obtained in Lenz and Nackenhorst (2003). Again,
the strain detection in ellipsoidal osteocytes resulted in
highest values and turned out to be the most efficient.

In Figure 30 the characteristic behavior can be
noticed. As already explained previously, the more the
fiber orientation angle differs from 0° location, the more
the displacements of the lamella are larger. Accordingly
the smallest displacement would be the one with fiber
angle of 0° and the softest one, with largest displacement
respectively, would be the one with angle of 90°. This
property is clearly visible on Figure 30. The 4th lamella
described by the material tensor C(0°) has the smallest
displacements while the last, 10 th lamella, with the
material tensor C(90°) has the highest displacements.
With increase of the fiber angle, no matter if in positive
or negative direction, the lamellae displacements are
getting larger. In the lower half of the model the
displacement’s distribution is more stabilized and grows
with increasing radius. Both displacement distributions
and the values presented in Figure 30 are quite similar.
For the model with spherical inclusions these values vary
between 5.5210–2 and 2.0110–3 micrometers, while for
the model with ellipsoidal inclusions between 5.4910–2

and 1.3310–3, respectively. In this last example it is again
shown, that the inclusion shape does not affect the global
displacements in a significant way.

According to the above description a characteristic
strain distribution field could be expected. Taking into
consideration the material properties, their stiffness and
the type of example, the strain distributions in the top
region of the model should behave in a similar way as
the displacements. The softer material under the loading
undergoes higher strains than the stiffer one. All these
issues are confirmed in Figure 31, which presents the
strain distribution for both models, on the left with
spherical and on the right with ellipsoidal inclusions.

The strains presented in Figure 31 shows the
expected properties. The strain values in the stiffest
lamella (4th lamella with fiber orientation 0°) are the
smallest while for the softest ones (the last 10th lamella
with fiber orientation 90°) are the highest. The
characteristic of the distribution of the strain field is
congenial to the displacement field. According to the
material parameters like the lamellae stiffness, the strains
in osteonal corpus vary between 2.6010–4 and 8.6610–4

Figure 29:The cross-section strains of spherical (left) and
ellipsoidal (right) osteocytes

3. Models Including Lamellae with Twisted Fiber
Orientation

In the models presented by Giraud-Guille (1988), the
parallel collagen fibrils continuously rotate by a constant
angle from plane to plane in a concentric structure
(Table 4). The orthogonal material tensors take the values
from C (–45°) for the first lamella to C(+90°) for the last
one with increase of 15° for every following lamella layer.

In Figure 30 the displacements of the osteon model
with spherical and ellipsoidal osteocytes are presented.

Figure 30:The displacements of the model with spherical
inclusions (left) and with ellipsoidal inclusions (right)

Figure 31:The strains of the osteonal corpus with twisted fiber
orientation for spherical (left) and ellipsoidal (right)
osteocytes
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for the models with spherical inclusions, and between
2.2710–4 and 8.8010–4 for the model with ellipsoidal
inclusions (see also Figure 31). These values can be
approximated to 0.3-0.9 and 0.25-0.9 millistrains,
respectively. The higher strains (0.9 millistrains) appear
in the softer lamellae while the strains in the stiffer ones
stay on a lower level (0.3 millistrains).

The last Figure 32 presents the cross-sectional view
of the strains in both kinds of osteocytes. Although the
strains in osteonal corpus vary because of the different
material parameters of each lamella, the strains in the
osteocytes still remain much higher. The presented

Figure 32:The strains in 4th and 8th lamella with reference to the
values in spherical (left ) and e llipsoida l (r ight)
osteocytes

Table 6
Strains obtained from the analysis

Fiber orientation Shape of the Osteocytes Strains in Osteonal Corpus Max Strains in Osteocytes

±45° Sphere 5.79–6.76  10–4 1.65  10–3

±45° Ellipse 6.44–8.12  10–4 2.66 �10–3

0; 90° Sphere 2.63–3.92  10–4 1.50  10–3

0; 90° Ellipse 2.81–3.96  10–4 1.78  10–3

–45° / (+15°) / + 90° Sphere 2.60–8.66  10–4 1.96  10–3

–45° / (+15°) / + 90° Ellipse 2.27–8.80  10–4 2.51  10–3

lamellae have material parameters of C(0°) (the 4th

lamella) and C(+60°) (8th lamella). The strains detected
in osteocytes located in the 4th lamella are smaller than
those detected in the 8th lamella, but still remain visibly
higher than the strains in the osteonal corpus. The
maximal strain values for the spherical inclusions is
1.9610–3 and for the ellipsoidal inclusions is 2.5110–3.

In the last example it is shown again, the
independence of the kind of material properties that the
lamella has, the strains in the osteocytes always remain
much higher. The strains detected by the ellipsoidal
inclusion are larger in all the three presented models.
Probably this kind of geometry is closer to the real
biological shape and suits better for the mechanical
simulations.

4. Summary of the obtained Results

The numerical analysis of all models were carried out.
The obtained results confirmed important properties for
the osteon and showed interesting behavior for some
layers with specific material properties. The advantages
of the detailed modeling are also pointed and discussed
later in this section. The summary of the obtained strains
is presented in Table 6.

For all of the models the main contribution to the
total strain derives from the longitudinal (�

z
) strain

component (as was suggested by Cowin (2001) or Lenz
(2005)) which always had nearly the same value as the
total strain. The influence of the other strain components
is much smaller.

According to the previous investigation (Lenz and
Nackenhorst (2003)) the strain detection obtained by the
osteoctes improved. The two hexagonal elements
approximating the osteocyte in Lenz and Nackenhorst
(2003) detected 1.15 millistrains (with the same loading,
boundary condition etc. and for the ±45° fiber
orientation), while in this work the spherical osteocytes
detected 1.65 millistrains and ellipsoidal even 2.66
millistrains. The results of this research satisfy the pure
strain theory by [?], according to which the results are
interpreted. It is shown in Table 6 that the values obtained
in the osteocytes are much higher than the values in

osteonal corpus, and fulfill the required minimum (Frost
(1992)) of 1.5 millistrains to send the remodeling signal
to the BMU groups.

The total osteon stiffness can be approximated to
9.2GPa which gives good correlation with the measured
values by Ascenzi and Bonucci (1968) (7.3 – 9.5 G Pa)

10. SUMMARY AND CONCLUSIONS

The mechanosensation process describes the bone
physiological reactions. They are coupled with the
biomechanical signals produced by the osteocytes under
mechanical deformation. The detailed knowledge of all
processes occurring in micro scale gives the opportunity
to describe more exactly the bone remodeling algorithms
which might be of a great importance for healing the
fractures and osteoporosis.

The mechanical simulation of a single osteon which
denotes the properties of the compact bone is presented
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in the beginning of this paper. The analysis is done on
the micro length scale. The aim of the possibly close
approximation of a real biological geometry is obtained.
The three dimensional model of a single osteon is created
and computed with the linear elastic theory. The geometry
of the osteocytes is generated in two different approaches,
according to the data obtained in the literature, as
spherical and ellipsoidal inclusions. In comparison with
previous research in the mechanosensation and
biomechanical field, the presented geometry of the model
better describes the biological reality. Six different models
are created and computed.

The deformations, strains and stresses inside of a
single osteon are calculated with the use of the finite
element method and according to the linear elastic
analysis. It is shown, that nonlinear computations give
the same results as the linear analysis. The model is
discretized with relatively a fine mesh. The mesh
differences resulting from different shapes of the
osteocytes are shown and discussed. The discretisation
process is carried out using the tetrahedral elements.
These elements are described using the quadratic shape
functions.

The material parameters on the nano scale are found
in the literature. MORI-TANAKA homogenization method
is applied in this work. This transformation, which
combines nano and micro scales, results in the material
parameters on the micro scale which are presented as an
orthogonal material tensor. These calculations are carried
out and taken from Lenz and Nackenhorst (2003). All
the necessary steps to understand and follow the process,
including theoretical background, are presented. The
resulting orthotropic material is the function of the
mineralization level of the lamellae. These
homogenization methods allow one to describe the model
parameters which are very close to the realistic biological
properties.

The shape of the osteocyte inclusions has a very
important role for the strain detection in the bone tissue.
In all computations the detected strains are always the
highest for the ellipsoidal inclusions. Comparing all the
obtained results in this and in other research, where the
osteocytes are described with two hexagonal elements,
it can be suggested that the ellipsoidal shape is the proper
way to describe the biological geometry.

The improvement of the geometry describing the
osteocytes provided the required minimum of the pure
strain theory presented by Frost (1992). Both, spherical
and ellipsoidal osteocytes reached at least the value of
1.5 millistrains in this mechanosensation process. It
means that under such a specific loading the osteocytes
would send the remodeling signal to the other bone cells
in the bone tissue. The previous research with values of
1.15 millistrains, where the osteocytes did not reflect the

real biological geometry (Lenz and Nackenhorst (2003)),
did not meet the required minimum. This additionally
points the importance of preciseness in the geometry
modeling approach.

Detailed comparisons with data from the literature
and previously carried experiments is given in this work.
The main contribution to the total strain derives from the
osteon longitudinal (�

z
) strain component which always

has nearly the same value as the total strain. The influence
of all the other strain components is much smaller.

The micro-length scale simulations show the
importance of the modeling approach. It is shown that
more satisfactory results are obtained only with more
precise description of the biological geometry. The results
of this work are of a big importance for further
investigation. Especially bridging the micro and meso
length scales or attempting the possible exact description
of the bone properties on meso scale can be carried with
use of results presented here. This work provides some
contribution to the progress in the development of the
biomechanical field of study.

NOTE

1. Strains are reported in units of microstrain, with 10000
microstrain = 1% change in length.
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